
Theoretical Computer Science 321 (2004) 5–12
www.elsevier.com/locate/tcs

The Level Ancestor Problem simpli#ed
Michael A. Bendera ;∗;1 , Mart()n Farach-Coltonb;2

aDepartment of Computer Science, State University of New York at Stony Brook, Stony Brook,
NY 11794-4400, USA

bDepartment of Computer Science, Rutgers University, Piscataway, NJ 08854, USA

Received 15 August 2002; received in revised form 2 May 2003; accepted 22 May 2003

Abstract

We present a simple algorithm for the Level Ancestor Problem. A Level Ancestor Query
LA(v; d) requests the depth d ancestor of node v. The Level Ancestor Problem is to preprocess
a given rooted tree T to support level ancestor queries. While optimal solutions to this problem
already exist, our new optimal solution is simple enough to be taught and implemented.
c© 2003 Elsevier B.V. All rights reserved.

Keywords: Data structures; Rooted trees; Level Ancestor Problem

1. Introduction

A fundamental algorithmic problem on trees is how to #nd Level Ancestors of nodes.
A Level Ancestor Query LA(u; d) requests the depth d ancestor of node u. The Level
Ancestor Problem is thus to preprocess a given n-node rooted tree T to support level
ancestor queries. Both the preprocessing time and the query time must be optimized.
The natural solution of climbing up the tree from u has O(n) query time, and

the alternative solution of precomputing the results of all possible queries has O(n2)
preprocessing. Solutions with O(n) preprocessing and O(1) query time were given by
Dietz [4] and by Berkman and Vishkin [3], though this latter algorithm has an unwieldy
constant factor, 3 and the former algorithm requires fancy word tricks. A substantially

∗ Corresponding author.
E-mail addresses: bender@cs.sunysb.edu (M.A. Bender), martin@farach-colton.com (M. Farach-Colton).
1 Supported in part by Sandia National Laboratories and NSF Grants EIA-0112849, CCR-0208670, and

ACI-0324974.
2 Partially supported by NSF CCR 9820879. This work was performed while the author was working at

Google, Inc.
3 Alstrup and Holm [1] calculate this constant to be 22

28
.

0304-3975/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2003.05.002

mailto:bender@cs.sunysb.edu
mailto:martin@farach-colton.com

6 M.A. Bender, M. Farach-Colton / Theoretical Computer Science 321 (2004) 5–12

simpli#ed algorithm was given by Alstrup and Holm [1], though their main focus was
on dynamic trees, rather than on simplifying LA computations.
In this paper we present an algorithm that requires no “heavy” machinery. Our algo-

rithm is appropriate for (advanced) undergraduates, especially because it is composed
of simple components that are combined in the end.
The remainder of the paper is organized as follows. In Section 2, we provide

de#nitions and initial lemmas. In Section 3, we present an algorithm for Level
Ancestors that takes O(n log n) for preprocessing, and O(1) time for queries. In Section 4,
we show how to speed up the preprocessing to an optimal O(n).

2. De�nitions

We begin with some basic de#nitions. The depth of a node u in tree T , denoted
depth(u), is the number of edges on the shortest path from u to the root. Thus, the root
has depth 0. The height of a node u in tree T , denoted height(u), is the number of
vertices on the path from u to its deepest descendant. Thus, the leaves have height 1.
Let LAT (u; d)= v where v is an ancestor of u and depth(v)=d, if such a node exists,

and undefined, otherwise. Now we de#ne the Level Ancestor Problem formally.

Problem 1. The Level Ancestor Problem:
Preprocessing: A rooted tree T having n vertices.
Querying: For node u in rooted tree T , query LEVELANCESTORT (u; d) returns LAT (u; d),
if it exists and false, otherwise. (When the context is clear, we drop the
subscript T .)

Thus, LEVELANCESTORT (u; 0) returns the root, and LEVELANCESTORT (u; depth(u))
returns u.
In order to simplify the description of algorithms that have both preprocessing and

query complexity, we introduce the following notation. If an algorithm has preprocess-
ing time f(n) and query time g(n), we will say that the algorithm has complexity
〈f(n); g(n)〉.
One of our notational conventions [2] may be of independent interest. 4 We de#ne

the hyper:oor of x, denoted ��x��, to be 2�log x�, i.e., the largest power of 2 no greater
than x. Thus, x=2¡��x��6x. Similarly, the hyperceiling ��x�� is de#ned to be 2�log x�.

3. An 〈O(n log n);O(1)〉 solution to the Level Ancestor Problem

We now present three simple algorithms for solving the Level Ancestor Problem,
which we call the Table Algorithm, the Jump-Pointers Algorithm, and the Ladder
Algorithm. At the end of this section we combine the two latter algorithms to obtain

4 All logarithms are base 2 if not otherwise speci#ed.

M.A. Bender, M. Farach-Colton / Theoretical Computer Science 321 (2004) 5–12 7

a solution with complexity 〈O(n log n); O(1)〉. The Table Algorithm will be used in
the faster algorithms in Section 4.

3.1. The Table Algorithm: an 〈O(n2);O(1)〉 solution

As noted above, the Level Ancestor Problem has a solution with complexity 〈O(n2);
O(1)〉: build a table storing answers to all of the at most n2 possible queries. Answering
a Level Ancestor query requires one table lookup.

Lemma 2. The Table Algorithm solves the Level Ancestor Problem in time 〈O(n2);
O(1)〉.

Proof. The lookup table can be #lled in O(n2) by a simple dynamic program.

We make one more note here, which we use in Section 4. In the lookup table as
described, we store the label of a node as the answer to a query. Instead, we introduce
one level of indirection. We assign a depth #rst search (DFS) number to each node,
and store these in the table. Then when we retrieve the DFS number of the answer,
we look up the corresponding node in the tree. This extra level of indirection does
not increase the asymptotic bounds, but will allow us to share preprocessing amongst
diLerent subtrees.

3.2. The Jump-Pointers Algorithm: an 〈O(n log n);O(log n)〉 solution

In the Jump-Pointers Algorithm, we associate up to log n pointers, which we call
jump pointers, with each vertex. Jump pointers “jump” up the tree by powers of
2; there is a pointer from u to u’s ‘th ancestor, for ‘=1; 2; 4; 8; : : : ; ��depth(u)��.
Thus, the ith jump pointer, denoted JUMPu[i], points to the 2ith ancestor of u, that is,
JUMPu[i] =LA(u; depth(u)− 2i).
We emphasize the following point:

Observation 3. In a single pointer dereference we can travel at least halfway from u
to LA(u; d), for any d. Finding the appropriate pointer takes O(1) time.

Proof. We let �=depth(u)− d. We can travel up by �����, which is at least �=2. The
pointer to follow is JUMPu

[�log ��].

Note that since the Ooor and log operations are word computations, the algorithm is
a RAM algorithm.
As a consequence of Observation 3, we obtain the following lemma:

Lemma 4. The Jump-Pointers Algorithm solves the Level Ancestor Problem in time
〈O(n log n); O(log n)〉.

8 M.A. Bender, M. Farach-Colton / Theoretical Computer Science 321 (2004) 5–12

Proof. To achieve O(n log n) preprocessing, we apply a trivial dynamic program. To
answer query LEVELANCESTORT (u; d) in O(log n) time, we repeatedly follow the pointers
that travels at least halfway to LAT (u; d). Therefore after at most log n jumps, we locate
LAT (u; d).

3.3. The Ladder Algorithm: an 〈O(n);O(log n)〉 solution

In the Ladder Algorithm, we decompose the tree T into (nondisjoint) paths, which
we call ladders.
To understand why it is advantageous to break the tree into paths, observe that

solving the Level Ancestor Problem on a single path of length n in (optimal) complexity
〈O(n); O(1)〉 is trivial. We maintain an array LADDER[0 : : : n − 1], where the ith array
position corresponds to the depth-i node on the path. To answer LEVELANCESTORT (u; d),
we return LADDER[d] (which takes O(1) time).
We now describe the ladder decomposition of the tree T , which proceeds in two

stages: In the #rst stage we #nd a long-path decomposition of the tree T , which
greedily decomposes the tree into disjoint paths.

3.3.1. Stage 1: long-path decomposition
Greedily break T into long disjoint paths as follows. Find a longest root-leaf path

in T , breaking ties arbitrarily, and remove it from the tree. This removal breaks the
remaining tree into subtrees T1; T2; : : : . Recursively split these subtrees by removing
their longest root-leaf paths. The base case is when the tree is a single path, because
the removal yields the empty forest. Note that if a node has height h, it is on a long
path containing at least h nodes.
If we now put each long path into a LADDER array, we may still have a slow

algorithm. In particular, we can only jump up to the top of our long-path. Then we
must step to its parent p, and jump up p’s long path, and so forth. The time taken to
reach LA(u; d) is the number of long-paths we must traverse. There can be as many
as P(

√
n) paths on one leaf-to-root walk, which yields an 〈O(n); O(√n)〉 algorithm. 5

3.3.2. Stage 2: extending the long paths into ladders
We have already allocated an array of length h′ to a path of length h′. Now, we

allocate 2h′ by adding the h′ immediate ancestors at the top of the path to the array.
We call these doubled long-paths ladders; while ladders overlap, they still have total
size at most 2n. We say that vertex v’s ladder is the ladder derived from the long
path containing v, and note that since long-paths partition the tree, each node v has a
unique ladder, but may be listed in many ladders.
Doubling the ladder yields the following key properties, which we will use to speed

up queries.

5 A heavy path decomposition can reduce this number to O(log n), which yields an 〈O(n); O(log n)〉
algorithm. However, we do not know how to speed up the heavy-path-based algorithm without substantial
complications, while the long path decomposition admits an elegant improvement.

M.A. Bender, M. Farach-Colton / Theoretical Computer Science 321 (2004) 5–12 9

Lemma 5. Consider any vertex v of height h. The top of v’s ladder is at least distance
h above v, that is, vertex v has at least h ancestors in its ladder.

Proof. The top of v’s long-path has height h′¿h. Thus, it has h′ ancestors in its ladder.
Node v has 2h′ − h¿h ancestors in its ladder.

Corollary 6. If a node v has height h, then v’s ladder includes a node of height 2h
or it includes the root.

The properties from Lemma 5 and Corollary 6 are the basis for the Ladder
Algorithm, in which we repeatedly climbing ladders until we reach the queried vertex.

Lemma 7. The Ladder Algorithm solves the Level Ancestor Problem in time
〈O(n);O(log n)〉.

Proof. Find the long-path decomposition of tree T in O(n) time as follows. In linear
time, preprocess the tree to compute the height of every node. Each node picks one of
its maximal-height children to be its child on the long-path decomposition. Extending
the paths into ladders requires another O(n) time.
We now show how to answer queries. Consider any vertex u of height h. If we

travel to the top of u’s ladder, we reach a vertex v of height at least 2h. Since all
nodes have height at least 1, after i ladders we reach a node of height at least 2i, and
therefore we #nd our level ancestor after at most log n ladders and time.

3.4. Putting it together: an 〈O(n log n);O(1)〉 solution

The Jump-Pointer Algorithm and the Ladder Algorithm complement each other, since
the Jump-Pointer Algorithm makes exponentially decreasing hops up the tree, whereas
the Ladder Algorithm makes exponentially increasing hops up the tree.
We combine these approaches into an algorithm that follows a single jump-pointer

and climbs only one ladder: the jump-pointer transports us halfway there, the ladder
climb carries us the rest of the way. Thus, we obtain the following theorem.

Theorem 8. The Level Ancestor Problem can be solved with complexity
〈O(n log n);O(1)〉.

Proof. We perform the preprocessing of both the Jump-Pointer Algorithm and the
Ladder Algorithm in time O(n log n).
Queries can be answered by following a single jump pointer and climbing a sin-

gle ladder. Consider query LEVELANCESTORT (u; d). Let �= ��depth(u) − d��. The jump
pointer leads to vertex v that has depth depth(u)−� and height at least �. The distance
from v to LAT (u; d) is at most �, so by Lemma 5, v’s ladder includes LAT (u; d).

10 M.A. Bender, M. Farach-Colton / Theoretical Computer Science 321 (2004) 5–12

4. The Macro-Micro-Tree Algorithm: an 〈O(n);O(1)〉 solution

Since ladders only take linear time to precompute, we can aLord to use them in the
fast solution. The bottleneck is computing the O(n log n) jump pointers. Our #rst step
in improving the 〈O(n log n); O(1)〉 is to exploit the following observation.

Observation 9. We need not assign jump pointers to a vertex v if a descendant w of
v has jump pointers because LAT (v; d) = LAT (w; d), for all d6depth(v).

Since we do not need jump pointers on all vertices, we call vertices having jump
pointers assigned to them jump nodes. A suggestion based on Observation 9 is to
designate only the leaves as jump nodes. Unfortunately, this approach only speeds
things up enough in the special case when the tree contains O(n= log n) leaves.
Our immediate goal is to designate O(n= log n) jump nodes that “cover” as much

of the tree as possible. We de#ne any ancestor of a jump node to be a macro node
and all others to be micro nodes. The macro nodes form a connected subtree of T ,
which we refer to as the macrotree, and we de#ne microtrees to be the connected
components obtained by deleting all macro nodes.
We can deal with all macro nodes by slightly extending the algorithm from

Theorem 8 as noted in Observation 9. This extension requires one depth #rst search
to #nd a jump-node descendant for each macronode. We will use a diLerent technique
for microtrees.

4.1. Dealing with jump nodes

We pick as jump nodes the maximally deep vertices having at least log n=4 descen-
dants. By maximally deep, we mean that each child of these vertices has fewer than
log n=4 descendants. The 1

4 will come into play when we take care of microtrees.

Lemma 10. There are at most O(n= log n) jump nodes. We can compute all jump
node pointers in linear time.

Proof. In the proof of Lemma 4, we used a simple dynamic program to compute jump
pointers at every node. Here, we only compute jump pointers at a few nodes so do
not have all the intermediate values needed for the dynamic program. However, we
can compute the parent of every jump node in constant time. The parent has height at
least 2, so its ladder will carry us another 2 nodes. We keep jumping up ladders, and
so compute the jump pointers for any node in O(log n) time.

4.2. Dealing with macro nodes

Lemma 11. We can solve the Level Ancestor Problem for all macro nodes in
〈O(n);O(1)〉.

Proof. We perform a ladder decomposition and compute the jump pointers of all
jump nodes in O(n) time. Then, with one depth #rst search, we #nd a jump node

M.A. Bender, M. Farach-Colton / Theoretical Computer Science 321 (2004) 5–12 11

descendant JUMPDESC(u) for each macro node u. Finally, by Observation 9, compute
LEVELANCESTOR(u; d) by computing LEVELANCESTOR(JUMPDESC(u); d) using one jump
pointer and one ladder, as in Theorem 8.

4.3. Dealing with microtrees

In short, we use the standard data structural technique [5] of enumerating the so-
lutions for all small instances of the problem. In particular, we note that microtrees
do not come in too many shapes, O(

√
n) in fact. Therefore, we make an exhaustive

list of all microtree shapes and preprocess them via the Table algorithm. We use the
preprocessing on these canonical trees to compute level ancestors on micro nodes in
T . All that remains are a few details.

Lemma 12. Microtrees come in at most
√
n shapes.

Proof. There is a direct existential proof for this bound using Catalan numbers. How-
ever, we prefer the following constructive proof, since it yields a particular log n=2-bit
encoding to be used in our algorithm.
First, recall that each microtree has fewer than log n=4 vertices. For a DFS, call a

down edge an edge traversed from parent to child, and an up edge one traversed from
child to parent. The shape of a tree is completely determined by the pattern of up and
down edges. A microtree has fewer than log n=4 edges, each of which is traversed
twice.
Consider any length 2 log n=4 bit pattern c. Bit pattern c determines a microtree as

follows: Let each 0 represent a down edge and each 1 represent an up edge on the
DFS. Consider the longest pre#x pre(c) of c that encodes a valid DFS of a tree. This
(possibly empty) pre#x pre(c) must satisfy two properties:
(1) Every pre#x of pre#x pre(c) must have at least as many 0’s as 1’s.
(2) Pre#x pre(c) must have an equal number of 0’s and 1’s.
Thus, bit pattern c encodes the tree whose DFS is encoded by pre(c). (If pre(c) is the
empty string, then c encodes a one-node tree.)
Note that every micro tree can be encoded by (at least one) bit pattern c. Thus,

there are at most 2log n=2 =
√
n possible trees.

We conclude with the following.

Theorem 13. The Level Ancestor problem can be solved in 〈O(n); O(1)〉 time.

Proof. First, we enumerate all microtree shapes and apply the Table algorithm to
each of these. This takes O(

√
n log2 n) time. Thus, we do all precomputation for all

microtree shapes in T in O(n) time.
Recall that in the Table Algorithm, we added one level of indirection based on DFS

numbers. For each microtree, we compile a mapping from DFS number to nodes. Then,
when we look up a level ancestor in the tables, we can use the local DFS mapping to
determine the desired ancestor.

12 M.A. Bender, M. Farach-Colton / Theoretical Computer Science 321 (2004) 5–12

This #nishes the problem of #nding a level ancestor within a microtree. The micro
node may want an ancestor outside of its microtree. In this case, we jump to the root
of the microtree in constant time, and then to its parent. This will be a macro node,
and so we revert to the macro node algorithm.
Summing up, the preprocessing time for micro nodes is O(n), as it is for macro

nodes, and in either case the query time is O(1).

References

[1] S. Alstrup, J. Holm, Improved algorithms for #nding level-ancestors in dynamic trees, in: 27th Internat.
Colloquium on Automata, Languages and Programming (ICALP), Geneva, Switzerland, Lecture Notes
in Comput. Sci. Vol. 1853, Springer, Berlin, 2000, pp. 73–84.

[2] M.A. Bender, E. Demaine, M. Farach-Colton, Cache-oblivious B-trees, in: 41st Annual Symp. on
Foundations of Computer Science (FOCS), 2000, pp. 399–409.

[3] O. Berkman, U. Vishkin, Finding level-ancestors in trees, J. Comput. System Sci. 48 (2) (1994)
214–230.

[4] P.F. Dietz, Finding level-ancestors in dynamic trees, in: Workshop on Algorithms and Data Structures
(WADS), Ottawa, Canada, 1991, pp. 32–40.

[5] H.N. Gabow, R.E. Tarjan, A linear-time algorithm for a special case of disjoint set union, J. Comput.
System Sci. 30 (2) (1985) 209–221.

	The Level Ancestor Problem simplified
	Introduction
	Definitions
	An "426830A O(nlogn), O(1)"526930B solution to the Level Ancestor Problem
	The Table Algorithm: an "426830A O(n2),O(1)"526930B solution
	The Jump-Pointers Algorithm: an "426830A O(nlogn),O(logn)"526930B solution
	The Ladder Algorithm: an "426830A O(n),O(logn)"526930B solution
	Stage 1: long-path decomposition
	Stage 2: extending the long paths into ladders

	Putting it together: an "426830A O(nlogn),O(1)"526930B solution

	The Macro-Micro-Tree Algorithm: an "426830A O(n),O(1)"526930B solution
	Dealing with jump nodes
	Dealing with macro nodes
	Dealing with microtrees

	References

