
Augmenting Mobile 3G Using WiFi:
Measurement, System Design, and Implementation

Aruna Balasubramanian‡, Ratul Mahajan§, Arun Venkataramani‡
‡University of Massachusetts Amherst, §Microsoft Research

Abstract
We investigate if WiFi access can be used to augment

3G capacity. To understand the feasibility of 3G aug-
mentation, we conduct a detailed study of 3G and WiFi
access from moving vehicles, in three different cities. We
find that the average 3G and WiFi availability across
the testbeds is 87% and 11%, respectively. We also find
that, unlike stationary environments, WiFi throughput
is lower than 3G throughput in mobile environments,
and WiFi loss rates are higher. We then design a system,
called Wiffler, that uses two key ideas—leveraging delay
tolerance and fast switching. For delay tolerant applica-
tions, Wiffler uses a simple model of the environment to
predict WiFi connectivity, and delays applications to of-
fload more data on WiFi. But Wiffler delays applications
only if it results in 3G savings. For applications that are
extremely sensitive to delay or loss (e.g., VoIP), Wiffler
quickly switches to 3G if WiFi is unable to successfully
transmit the packet within a small time window. We
implement and deploy Wiffler in our vehicular testbed.
Both our implementation and trace-driven experiments
show that Wiffler significantly increases 3G savings. For
example, for a realistic workload, Wiffler reduces 3G
usage by 45% for a delay tolerance of 60 seconds.

1. INTRODUCTION
Mobile Internet access today is suffering the curse

of popularity. The ubiquitous deployment of cellular
data networks has drawn millions of users to these net-
works, which is in turn creating immense pressure on
the limited spectrum of these networks. Subscribers,
especially in big cities, are experiencing deteriorating 3G
quality because the network cannot cope with the high
demand [30].

In response to this pressure, wireless providers are
using methods such as imposing a limit of 5GB per
month [26] and “educating” their users on “responsible”
access [28]. We believe that such methods are in the end

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’10, June 15–18, 2010, San Francisco, California, USA.
Copyright 2010 ACM 978-1-60558-985-5/10/06 ...$10.00.

ineffective or at least insufficient. They are against the
tide of users’ desire for greater consumption.

We investigate the feasibility of a different method
– augmenting 3G using WiFi. At least one wireless
provider is offering incentives to its subscribers to re-
duce their 3G usage by switching to WiFi at home [1].
In addition to reducing pressure on 3G spectrum, such
augmentations also reduce the per-byte cost of data
transfers, by 70% per one estimate [2].

In this paper, we focus on vehicular Internet access, a
particularly challenging case for mobile connectivity. An
increasing number of users today access the Internet from
moving vehicles, either directly through their personal
devices or through proxies inside transit vehicles [6, 14].
A range of other devices, such as navigation units, also
need such connectivity.

However, using WiFi networks from moving vehicles
is challenging. WiFi APs have a short range and are
generally not deployed to provide coverage to roads.
Even when APs are in range, the quality of connectivity
may be poor [12, 15]. Thus, it is unclear if WiFi can
usefully augment 3G, while providing the ubiquity and
reliability that 3G subscribers expect.

To understand feasibility, we conduct a detailed study
of joint 3G and WiFi access from moving vehicles, in
three different cities. We find that on average 3G access
is available 87% of the time, while WiFi access (through
open APs) is available only 11% of the time. Interest-
ingly, we find that their mutual availability is negatively
correlated. In places where 3G is unavailable, WiFi is
available roughly half the time. Thus, the combination is
more available than if the two had independent availabil-
ities. However, we also find that in half of the locations
where WiFi is available, its throughput is much less than
3G. WiFi also experiences a much higher loss rate than
3G. To our knowledge, our study is the first joint char-
acterization of 3G and WiFi; prior works have measured
the performance of one or the other [12,17].

In summary, our study suggests that straightforward
methods to combine the two will reduce 3G load by at
most 11%, and even that will come at the expense of
poor application performance.

We design a system called Wiffler to overcome these
availability and performance challenges. Its two key
ideas are leveraging delay tolerance and fast switching
to 3G. Our starting point is the observation that many
applications such as email or file transfer can afford to

delay data transfers without significantly hurting user
experience. Wiffler leverages this observation to trade-off
application latency for 3G usage. Instead of transmitting
data immediately, it waits for WiFi to become available.
But by using a simple method to predict future WiFi
throughput, it delays data only if 3G savings are ex-
pected. Additionally, so that the performance of delay
and loss sensitive applications is not hurt, Wiffler quickly
switches to 3G if WiFi is unable to transmit the packet
within a time window.

We implement and deploy Wiffler on a vehicular testbed.
We evaluate Wiffler using the deployment and using trace-
driven simulations. In our deployment, we observed that
for transfers of size 5MB that can be delayed by at most
60 seconds, Wiffler reduces 3G usage by 30%. In sim-
ulation using realistic workloads, we find that Wiffler
reduces 3G usage by 45% for a 60 second delay toler-
ance. Because of it’s wait-only-if-it-helps strategy, the
actual transfer latency is increased by only 7 seconds
on average. For a VoIP application, we find that the
fast switching mechanism in Wiffler increases the time
periods with good VoIP quality by 42%, compared to a
system that switches to WiFi irrespective of its quality.
More importantly, the increase in quality is achieved
even when 40% of the VoIP traffic was sent over WiFi.

2. MEASUREMENT
The goal of this work is to augment 3G networks

using opportunistic WiFi. As a first step, we conduct a
measurement study to jointly study the 3G and WiFi
network characteristics. Specifically, we seek to answer
the following questions: (i) What is the availability of
3G and WiFi networks as seen by a vehicular user? and
(ii) What are the performance characteristics of these
two networks?

We conducted measurements in three geographically
separate outdoor testbeds that include effects present in
real vehicular settings, such as noise, fading, interference,
occlusions, and traffic patterns. In this paper, we refer
to the three testbeds as—Amherst, Seattle and Sfo.

2.1 Testbeds and methodology
Amherst is located in Amherst, MA, a college town and

consists of 20 public transit vehicles that are equipped
with a computer, an 802.11b radio, a 3G data modem,
and a GPS unit. The 3G modem has HSDPA-based
service via AT&T. The vehicles visit the same location
multiple times each day. This set up allows us to analyze
the stationarity of WiFi or 3G availability with respect
to location and time of day. We collected more than
3000 hours of measurement data from Amherst over 12
days. In all, over 500 GB of data was transfered over
WiFi and 3G during the course of the experiment.

The vehicles in Amherst cover a large geographical
area totaling 150 square miles. A 1.5 sq mile area of the
testbed is dedicated to an experimental mesh that we
deployed. When vehicles are in the mesh environment,
they connect to mesh APs. In the remaining areas, the
vehicles connect to open APs found on the road (that
we did not deploy). More than 70% of the connections
are through non-mesh APs. Details about the AP distri-

 0

 20

 40

 60

 80

 100

SfoSeattleAmherst

P
er

ce
nt

ag
e

av
ai

la
bi

lit
y

3G
WiFi

None

1: 3G and WiFi availability on the three testbeds.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

A
va

ila
bi

lit
y

Interval Length (sec)

3G
WiFi

None

2: 3G and WiFi availability in Amherst at longer time
intervals. The data are averaged all 8 days. Vertical
bars show the 95% confidence interval.

bution, contact durations, and AP density are presented
in [25].

The software on the vehicles run two main programs.
The first program scans the WiFi and 3G channels si-
multaneously and obtains an IP address whenever a
connection is available. Once a connection is established
to an open AP and/or the 3G channel, the second pro-
gram sends and receives data. Both our server and the
vehicle’s computer log the characteristics of the duplex
data transfer on the WiFi and the 3G interfaces.

In the case of WiFi APs, we verify that the AP is
open before the second program starts to send data.
The verification is performed by pinging a known server.
If the AP is closed, the vehicle attempts to associate with
a different access point. Vehicles in Amherst encounter
more than 55% closed APs during a day. Nevertheless,
the vehicles were able to successfully exchange data with
more than 100 unique open WiFi APs each day.

Seattle and Sfo are located in Seattle, Washington and
San Francisco, California respectively. Both testbeds
consist of one vehicle that is equipped with the exact
hardware and software as the vehicles in Amherst. Mea-
surements on Seattle include large portions of highway
driving and we present results for data collected over
6 days. From the single vehicle, about 5GB of data
were sent and received over the course of the experiment.
Sfo is located in a metropolitan environment and we
conduct a smaller scale measurement study in Sfo, and
collect data for 3 days. In both Seattle and Sfo, vehicles
exchange data with open APs that we did not deploy.
Unlike buses in Amherst that follow a scheduled run, the
Seattle and Sfo traces were collected using unscheduled
driving patterns that did not follow a regular path.

2.2 Availability
To measure availability, the vehicle and the server pe-

riodically send data to each other over UDP. Availability
is measured over 1 second intervals. In each interval,
an interface (WiFi or 3G) is considered available if at
least one packet was received in the interval. Availability
is defined as the number of available 1-second intervals
divided by the total number of intervals.

2.2.1 Availability in the three testbeds
Figure. 1 shows that availability in Amherst: 3G is

available 90% of the time and WiFi is available 12% of
the time. Interestingly, the percentage of time neither
3G or WiFi is available is only 5%.

The combination of WiFi and 3G reduces unavailabil-
ity significantly because of a negative correlation between
the availability of 3G and WiFi. Out of the 12%, 5% of
the WiFi availability is when 3G is not available. Note
that if WiFi and 3G availability were completely indepen-
dent, the overall unavailability even when both 3G and
WiFi are combined would be (1− 0.90)(1− 0.12) = 9%.

Figure. 1 shows that the negative correlation between
3G and WiFi is not specific to Amherst, but can be
observed both in Seattle and Sfo. In Seattle, 3G avail-
ability is only 82%, and the average WiFi availability is
10%. When 3G and WiFi are both considered, network
unavailability is 11%. Again, if only the 3G interface is
used, the unavailability would be 18%. Similarly, in Sfo,
3G availability is 89% leading to an unavailability of 11%.
But when combined with WiFi, the total unavailability
reduces to 5%. In summary, in all three testbeds, net-
work unavailability is reduced by over 50% by combining
WiFi and 3G compared to using 3G alone. We were not
able to uncover the reason for the negative correlation
observation.

For less-demanding applications, such as email or file
transfer, intervals longer than 1 second are more appro-
priate for measuring availability. Figure. 2 shows the
availability of 3G and WiFi from moving vehicles over
larger time intervals, from 5 to 60 seconds. The results
are based on Amherst measurements. 3G is available
(i.e., at least one packet is received in an interval) close
to 98% of the time with 60-second intervals. The avail-
ability of WiFi also increases to 30% with 60-second
intervals. We observed qualitatively similar effects in
Seattle and Sfo (not shown in Figure).

2.2.2 Spatial distribution of 3G/WiFi availability
Using data collected in Amherst, we study the geo-

graphical distribution of 3G and WiFi availability. The
goal of this study is to characterize the locations where
WiFi can augment 3G connectivity. We divide the ge-
ographical area into grids and compute the total data
transfered over the 3G and WiFi per unit time spent in
the grid, averaged over a day.

Figure. 3 compares the performance of 3G and WiFi
at different grid locations. In all, there were 120 grid
locations in which packets were received on either WiFi
or 3G at least once. In 47% of the grid locations, the
total data sent on WiFi is insignificant compared to the
data sent over 3G. In the remaining 53% of the grid

WiFi << 3G
(47%)

WiFi = 20% of
3G

(31%)

WiFi = half
of 3G
(13%)

WiFi = 3G
(5%)

WiFi = Twice
of 3G (3%)

No 3G,
only WiFi

(1%)

3: Comparing the total data sent over WiFi versus 3G in
each grid location. The grid size is 0.5 miles × 0.5 miles.
Results are averaged over all data collected in Amherst.

locations, at least 20% of the 3G data could be shifted
to WiFi. In 9% of the grid locations, equal or more data
was sent over WiFi than 3G, i.e., all 3G traffic could be
offloaded to WiFi.

2.3 Performance
We measure three performance characteristics—UDP

throughput, TCP throughput, and loss rate. To measure
the upstream and downstream UDP throughput, the
vehicle and server each send 10 back-to-back 1500-byte
packets every 20 ms. We measure throughput in all three
testbeds. To measure the upstream and downstream loss
rates, the vehicle and server each send a 20-byte packet
every 100 milliseconds. To measure TCP throughput,
the vehicle and the server each create a TCP connection
and send 100KB data to each other repeatedly. At the
end of a 100KB transfer, the TCP connection is closed
and a new connection is created. We measure loss rate
and TCP throughput only in Amherst. All performance
results are based on at least 3 days of measurement data.

2.3.1 Capacity
Figure 4 shows the 3G and WiFi upstream and down-

stream UDP throughput. All CDFs are generated using
measurements over 1-second intervals. They include
points only for intervals with non-zero throughput, and
so the 3G lines have almost 10 times as many points as
the WiFi lines.

In the upstream direction, 3G and WiFi achieve a
median UDP throughput of 850 Kbps and 400 Kbps
respectively in Amherst (Figure. 4a). The median up-
stream UDP throughput is similar in Seattle. In both
testbeds the median WiFi UDP throughput is about
half of the median 3G throughput, but the top 20th
percentile of WiFi outperforms 3G.

In the downstream direction, shown in Figures. 4(c)
and 4(d), the median 3G throughput is again about 2
times that of WiFi. For example, in Amherst, we observe
a median 3G throughput of 1Mbps and a median WiFi
throughput of 500Kbps.

2.3.2 TCP Throughput

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
D

F

Upstream capacity (Mbps)

WiFi
3G

(a) Amherst: Upstream UDP
throughput

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
D

F

Downstream capacity (Mbps)

WiFi
3G

(b) Amherst: Downstream UDP
throughput

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
D

F

Upstream capacity (Mbps)

WiFi
3G

(c) Seattle: Upstream UDP through-
put

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
D

F

Downstream capacity (Mbps)

WiFi
3G

(d) Seattle: Downstream UDP
throughput

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
D

F

Upstream TCP throughput (Mbps)

WiFi
3G

(e) Amherst: TCP upstream through-
put

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
D

F

Downstream TCP throughput (Mbps)

WiFi
3G

(f) Amherst: TCP downstream
throughput

4: 3G and WiFi throughput measurements.

Figures 4(e) and 4(f) compare the upstream and down-
stream TCP throughput of 3G and WiFi in Amherst.
In the upstream direction, the median TCP throughput
of 3G and WiFi are 500 Kbps and 200 Kbps, respec-
tively. In the downstream direction, the median TCP
throughput of 3G and WiFi are 600 Kbps and 280 Kbps,
respectively. We note that the median TCP throughput
is only about half of the median UDP throughput for
both the 3G and WiFi networks. However the relative
TCP performance of 3G versus WiFi is similar to the
relative UDP performance.

Taken together with the UDP measurements, the re-
sults above suggest that the throughput performance of
WiFi in mobile outdoor environment is poorer than 3G.
The result points to an important difference between sta-
tionary and mobile environments. In typical stationary
settings, WiFi throughput is significantly higher than
3G throughput.

2.3.3 Loss rate
Figure. 5 shows the loss rates over 1-second intervals

for 3G and WiFi in Amherst. We see that 3G loses no
packets in 93% of the intervals. WiFi has no packet loss
in 78% of the intervals but loses all packets in 12% of
the intervals. In other words, in 90% of the intervals
WiFi delivers no packet or delivers all of them. This
behavior is consistent with prior studies that have shown
that WiFi losses are bursty in both indoor and vehicular
settings [3, 27] and losses are bi-modal. These bursty
losses make WiFi offloading challenging, especially for
applications with strict QoS requirements such as VoIP
or video conferencing.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1

C
D

F

Success rate

3G
WiFi

5: 3G and WiFi loss rate on Amherst.

2.4 3G availability during peak and off-peak
hours

We study 3G availability with respect to time of day,
in particular, during peak and off-peak hours. We define
peak hours to be between 8.00 am and 9.00 pm and
off-peak hours to be 9.00 pm to 8.00 am.

The vehicles in Amherst are operational during both
peak and off-peak hours, but the vehicles are scheduled
to operate in a smaller set of locations during off-peak
hours. For a fair comparison, we only consider locations
where the vehicle operates both during the peak hours
and off-peak hours. We perform the experiment using
days when the vehicles were operational both during
peak and off-peak hours for at least 30 minutes. In
Amherst, we present results averaged over 4 days and in
Seattle, we present the results averaged over 2 days.

Figure 6 shows the 3G availability during peak and
off-peak hours. 3G availability during off-peak hours in

 0

 20

 40

 60

 80

 100

Amherst Seattle

P
er

ce
nt

ag
e

av
ai

la
bi

lit
y

Off-Peak hours
Peak hours

6: Comparing 3G and WiFi availability during peak and
off-peak hours in Amherst and Seattle.

Amherst is 9% more than the availability during peak
hours. Figure 6 shows that the difference in availability
between peak and off-peak hours extends to Seattle as
well and the availability during off-peak hours is 6%
more than during peak hours.

The results could indicate that the performance of
3G networks suffer during periods of high spectrum use
(i.e., during peak hours). But our experiments do not
provide stronger evidence to show causality between 3G
availability and spectrum use.

2.5 Summary
In summary, the measurement study shows that

• A non-trivial amount of WiFi is available, but the
availability is an order of magnitude poorer than
3G.

• Unlike stationary environments, WiFi throughput
is much lower than 3G throughput. The WiFi loss
rate performance is also poorer compared to 3G.
Therefore, leveraging WiFi to augment 3G may
incur performance penalties.

Finally, our measurement results are consistent across
three geographically diverse environments.

3. Wiffler: AUGMENTING 3G USING WIFI
The goal of Wiffler is to reduce 3G usage by leveraging

opportunistic WiFi, but to do so without affecting appli-
cation performance. The simplest policy for using WiFi
is to send data on the WiFi network when available and
switch to the 3G network when WiFi is unavailable.

Results from our measurement study show that this
simple policy does not work well in practice because of
two key challenges. First, the average availability of WiFi
in our measurement is only 11%, and therefore at most
11% of the data can be offloaded to WiFi. Second, WiFi
loss rate is higher than 3G. For applications that are
sensitive to losses, such as VoIP, using WiFi irrespective
of its loss characteristics will degrade application quality.

Wiffler uses two ideas to address these two challenges:
Leveraging delay tolerance and Fast switching to 3G. The
key insight in leveraging delay tolerance is that delay
tolerance allows applications to trade-off completion time
for 3G usage. A user may be willing to tolerate a few
seconds delay to send their email or complete a file
transfer if it results in 3G savings. Wiffler leverages
delay tolerance to reduce 3G usage, but only delays

an application if the added delay results in 3G savings.
Today, commodity phones such as iPhones provide an
interface to specify application delay tolerance, but for
energy benefits. For example, an iPhone user can set a
delay tolerance threshold of 15 minutes, and new emails
will begin downloading with a delay of up to 15 minutes.

For applications with strict quality of service require-
ments, Wiffler uses the fast switching mechanism. Wiffler
uses 3G whenever WiFi is unavailable; when using WiFi
connectivity, Wiffler promptly switches packets over to
3G if WiFi fails to deliver it in a certain time period.

3.1 Wiffler API
Wiffler takes as input application data, which is char-

acterized using S, the size of the transfer, D, the delay
tolerance and an application-specified QoS metric. Based
on these characteristics and those of the operating en-
vironment, it decides how to distribute the data across
3G and WiFi.

Our characterization of application data is flexible
as a wide range of applications can be mapped to it.
For example, a VoIP application might request (every
20 ms) for transferring a packet of 20 bytes with a delay
tolerance threshold of 0 and a strict QoS requirement.
A Web transfer might be 100 KB with a delay tolerance
threshold of 20 seconds and no QoS requirement.

3.2 Leveraging delay tolerance
For applications that can tolerate small delays, the

goal of Wiffler is to offload as much data to the WiFi
interface as possible. The simplest solution is to wait
until the delay tolerance threshold to opportunistically
transfer data on WiFi when available, and to transfer
the remaining data on 3G. However, this simple solution
may significantly increase the completion time even when
there are no 3G savings. For example, consider a scenario
when there are no WiFi APs available until the delay
tolerance threshold. The application will wait until the
delay tolerance threshold for a WiFi offload opportunity
even though delaying the transfer does not provide any
3G savings.

Wiffler uses WiFi throughput prediction to decide if
data transfer should be delayed. Wiffler delays transfers
only if the prediction indicates that delaying transfer
will result in 3G savings. Wiffler’s prediction method is
described in Section 3.4. For now, assume that we have
a predictor that yields a (possibly erroneous) estimate of
WiFi capacity from the current time until a future time.

Wiffler uses the predictor to estimate offload capacity
of the WiFi network until the delay tolerance threshold.
The decision to either wait for a potential WiFi offload
opportunity or to send immediately on 3G is made based
on the predicted WiFi capacity and the application work-
load. For example, one possible strategy is to wait for
WiFi only if all of the application data can be transfered
over WiFi before the delay tolerance threshold. Since the
estimate can be wrong, an alternative, more conservative
strategy is to wait for WiFi only if the predictor esti-
mates that twice the application data can be transfered
over WiFi before the delay tolerance threshold. The
completion time versus 3G savings trade-off for these
two strategies is clearly different.

D: earliest delay tolerance threshold among queued
transfers
S: size in bytes to be transferred by D
W : estimated WiFi transfer size

if (WiFi is available):

• send data on WiFi and update S

if (W < S · c and 3G is available):

• send data on 3G and update S

7: Wiffler’s prediction-based offloading.

To capture this trade-off, we introduce a tuning param-
eter called the conservative quotient. The conservative
quotient is a number between 0 and Infinity and for
a given conservative quotient c, the Wiffler offloading
algorithm is shown in Figure 7. The algorithm considers
the total data S that needs to be transfered within the
earliest delay tolerance threshold, and the total data the
node can transfer on WiFi, W . The next two steps are
done in parallel. If WiFi is available, we use it immedi-
ately to transfer data. 3G connectivity is used only if
we estimate that W ≤ S · c.

If c < 1, Wiffler will wait for WiFi offload opportunity
even if only a fraction c of the total application data can
be transfered on WiFi in expectation. Therefore, this
strategy will offload more data on WiFi at the expense
of completion time. On the other hand, if c > 1, Wiffler
waits for WiFi only if the WiFi capacity is substantially
more than the load. Therefore, the completion time of
the strategy is likely to be lower, but it also has a lower
offload potential. Unless stated, we set c = 1 in our
experiments.

The conservative quotient can be set not only by the
system or the application but also by the 3G provider.
For example, during peak times when 3G spectrum pres-
sure is high, the provider may decide to offload more
data on WiFi at the expense of application latency and
set c to a small value. But during the off-peak times, c
can be set to a large value to improve application latency.

3.3 Fast switching to 3G
Applications such as video streaming and VoIP are

sensitive to even small delays and losses. Because of a
higher chance of loss, using WiFi to transfer such data
can hurt application performance. Thus, if WiFi is losing
or delaying packets, we should send them on 3G as soon
as possible.

Wiffler uses low-level, link-layer information to enable
fast switching to 3G in the face of poor WiFi conditions.
Link layer information is needed because the WiFi NIC
frequently takes a long time to complete retransmis-
sion attempts. For instance, the driver that we use in
our testbed (Madwifi) retries packets 11 times, which
even if we ignore medium access delays takes more than
120 milliseconds with the default 802.11b specification.
This delay can affect performance of applications such as
VoIP. Changing the default retransmission limit is not
desirable either since other applications may actually
desire retransmissions. Additionally, because of variable
medium access delays, a low retransmission limit does

not guarantee that WiFi would deliver the packet or
declare failure in a timely manner.

Our fast switching mechanism is simple: it sends the
packet on 3G if the WiFi link-layer fails to deliver the
packet within a delay threshold. The motivation for
this algorithm is that waiting for WiFi link-layer re-
transmissions incurs delays. In addition, when a packet
is lost, there is a high chance that the retransmission
will fail, since losses are bursty in the vehicular environ-
ment [3, 27]. Thus, it is better to send time-sensitive
packets on 3G rather than waiting for likely more fail-
ures on WiFi. Choosing the delay threshold involves a
trade-off between better application performance and
sending less data over the 3G network. In Section 6, we
analyze this trade-off in more detail.

3.4 WiFi throughput prediction
We predict WiFi offload capacity based on an estimate

of the average throughput offered by an AP and a pre-
diction of the number of APs that will be encountered
until a given future time-interval.

Our prediction of AP encounters is based on the ob-
servation that AP meetings occur in bursts. That is, if
the mobile node meets APs frequently (e.g., because it is
in a dense urban area with many APs), then the node is
likely to meet the next AP within a short time interval.
Similarly, if the mobile node hasn’t met an AP for a long
period of time (e.g., because it is on a highway), then
the node is unlikely to meet an AP within a short time
interval. An analysis of our measurement data shows
that AP meetings in reality indeed have this property.

Based on this observation, we predict the number of
AP encounters using a simple history-based predictor.
The mobile node keeps track of the last n AP encounters
and computes the average time between the encounters.
Wiffler predicts the number of AP encounters until a
future time-interval using the average inter-meeting time
of the past encounters. For example, if the average inter-
meeting time of the past encounters is I seconds, then
Wiffler predicts the number of AP encounters in a next
T seconds to be T

I
. Similarly, the average throughput

is estimated based on the throughput observed by the
vehicle at each AP encounter.

We study the accuracy of the AP encounter prediction
using the traces we gathered from our testbeds. Figure 8
shows the AP prediction error for different values of n,
the number of previous encounters used in the prediction.
The prediction error is presented for different future
time-intervals (or prediction intervals). We compare the
predicted number of encounters with the actual number
of encounters over 10-second time periods, and present
the average.

Figure 8(a) shows that if the prediction is based on
only one previous AP encounter, (n = 1 in the figure),
the prediction accuracy is low. The prediction error is
close to 20% even for predicting AP encounters until a
small future time-interval of 20 seconds. On the other
hand, when prediction is based on the previous 4 or
8 AP encounters, the prediction error is less than 5%
up to a future prediction time-interval of 50 seconds.
The prediction error increases to 20% for a prediction
time-interval of 100 seconds. Figure 8(b) shows that AP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

Pr
ed

ict
ion

 e
rro

r

Future time-interval (or prediction interval)

n = 8
n = 4
n = 1

(a) Amherst

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

Pr
ed

ict
ion

 e
rro

r

Future time-interval (or prediction interval)

n = 8
n = 4
n = 1

(b) Seattle

8: The relative average error between the number of
APs predicted and the number of AP meetings observed
in the measurement. Based on measurements collected
from Amherst and Seattle. Vertical bars shows the 95%
confidence interval around the mean.

prediction yields high accuracy in the Seattle testbed
as well, even though the vehicle did not follow a sched-
uled run, unlike the vehicles in Amherst. Since in both
testbeds the accuracy of prediction based on 8 previous
encounters (n = 8) is similar to the prediction based on
4 previous AP encounters (n = 4), in our experiments
we predict based on 4 previous AP encounters.

Our simple prediction framework allows us to esti-
mate the WiFi offload capacity with no pre-programmed
knowledge about the environment. More complicated
prediction models that use additional information about
the environment exist in the literature. For example, if
the AP locations are available a priori, then the WiFi
offload capacity can be predicted by predicting user mo-
bility, instead of AP prediction [10, 20]. In Section 6,
we show that the marginal improvement in performance
obtained by using AP location information is small.

3.5 Adopting Wiffler
In this section, we comment on two issues relating

to adopting Wiffler. First, to deploy Wiffler, each ap-
plication needs to be associated with a delay tolerance
threshold and a QoS requirement. One alternative is
for the applications themselves to specify their delay
tolerance threshold and their QoS requirement. We en-
vision Wiffler to be implemented by exposing a simple
API to applications. Alternatively, Wiffler can use ap-
plication port information to infer delay tolerance. For
example, packets from the well known “HTTP” port will
be delayed for a pre-defined time.

Second, Wiffler requires proxy support, both to imple-
ment fast switching and the prediction-based offloading.

A proxy will facilitate packet reception from multiple IP
addresses (i.e., from the 3G and the WiFi interface) and
allow switching between the interfaces. We note that
proxy support is not needed for some applications. For
instance, for HTTP, the client can use range requests
to control when and how much data arrives on each
interface using two separate connections.

4. Wiffler IMPLEMENTATION
We implemented Wiffler’s prediction based offloading

and fast switching on the same platform that we use in
our measurement study.

4.1 Prediction-based offloading
We implemented the protocol described in Figure 7 to

make offloading decisions based on WiFi capacity pre-
diction. Given pending data, at a 1-second interval, the
vehicle runs the Wiffler offloading algorithm to determine
if data is to be sent/received over WiFi or over 3G. The
vehicle and the server log delivery information. Offload-
ing is implemented both for upstream and downstream
traffic. The destination server also acts as a proxy to
manage data coming from different IP addresses.

4.2 Fast switching
To implement Wiffler’s fast switching, we added a

signaling mechanism in the mobile node’s driver that
signals the application when the wireless card receives a
link layer acknowledgement. The signal contains the ID
of the acknowledged packet. The application matches
the acknowledgement with its outstanding packets. If the
application does not receive a link layer acknowledgement
for a packet before a delay threshold, it sends the packet
on the 3G interface. We set the delay threshold to 50 ms.

Unlike the prediction-based offloading, implementing
fast switching in the downstream direction is challeng-
ing. It either needs support from APs and/or detailed
information on current WiFi conditions at the proxy.
Conveying current WiFi conditions from the mobile to
the proxy can be time consuming. In this paper, we only
implement fast switching in the upstream direction. In
our trace-driven evaluation, we study the benefit of fast
switching in the downstream direction as well.

5. DEPLOYMENT RESULTS
We deployed the Wiffler implementation in the Amherst

testbed. In this section, we present results from the de-
ployment experiments.

5.1 Prediction-based offloading results
This experiment uses a deployment of Wiffler on 20

nodes over a period of 2 days. Each node generated
5Mb of application data, uniformly at random, and the
mean generation interval was set to 100 seconds. We
set the delay tolerance threshold for data delivery to
be 60 seconds. All data is destined to a known server
that we control. The vehicle generates both upload and
download requests. For downloads, the vehicle sends the
request to the server which then transfers data to the
vehicle.

Completion % offloaded
time to WiFi

Wiffler offloading 45 sec 30%

1: Performance of Wiffler’s prediction-based offloading in
our deployment

% time voice % offloaded
quality good to WiFi

Fast switching 68% 34%
WiFi when available 42% 40%

2: Performance of VoIP using Wiffler’s fast switching in
our deployment

Table 1 shows the results. For 5Mb transfers and
a deadline of 60 seconds, Wiffler reduces 3G usage by
30%, even though the WiFi availability is only 12%
(Section 2.2).

5.2 Fast switching results
We evaluate fast switching in the context of VoIP.

Although VoIP is a low-bandwidth application for which
saving 3G usage may be less important, we chose it as
an application representative of others such as video
conferencing, real-time streaming, gaming, etc. Unlike
the mean-opinion-score (MOS) for VoIP, there is not a
simple measure of video quality based on the loss and
delay characteristics of the underlying channel.

We assume that the VoIP application uses the popular
G.729 codec and generates 20-byte packets every 20 ms.
We calculate VoIP quality by using the standard MOS
metric that ranges between 1 (unacceptable) and 5 (best).
To evaluate VoIP performance in a quickly changing
environment, we use the methodology we used in our
previous work [3]. We estimate the MOS value for 3-
second intervals. The overall quality is measured as the
fraction of intervals where the MOS value was more than
3.0.

Table 2 shows the results using one vehicle in our
deployment that operated in an area with high WiFi
availability. Fast switching maintains good voice quality
for over 68% of the time and reduces 3G usage by 34%.
Instead, if we used WiFi whenever available, without
switching to 3G during periods of bad WiFi quality, voice
quality is maintained only 42% of the time, even though
the 3G savings marginally increases from 34% to 40%.

6. TRACE-DRIVEN EVALUATION
In this section, we present a trace-driven evaluation

of Wiffler’s prediction-based offloading and fast switch-
ing.

6.1 Evaluation Methodology: Offloading
To evaluate Wiffler’s prediction-based offloading, we

use the TCP throughput traces collected during our mea-
surement. The traces provide information about data
sent or received on 3G and WiFi at 1-second intervals.

We compare the performance of Wiffler with alternate
offloading algorithms. We characterize the behavior of
the offloading algorithms using two metrics: (i) the

fraction of data sent over WiFi, or the reduction in 3G
usage; (ii) the average completion time.

6.1.1 Alternate offloading strategies
We compare Wiffler against three other classes of al-

gorithms.

Algorithms without prediction: To understand
the value of prediction, we evaluate two algorithms that
do not use prediction. The Impatient algorithm uses a
very simple policy: use 3G whenever WiFi is unavailable;
else use WiFi. The Patient waits and sends data on WiFi
until the delay tolerance threshold, and only switches to
3G if all of the data is not sent on WiFi before the delay
tolerance threshold. Patient and Impatient present the
two extreme points in the design space.

Algorithms based on forecasting: To understand
the accuracy versus complexity trade-off, we compare
Wiffler’s simple prediction scheme against a more sophis-
ticated prediction model, we call Adapted-Breadcrumbs.
Adapted-Breadcrumbs is similar to the Breadcrumbs sys-
tem [20]. At each location grid, the system learns the
available WiFi bandwidth and the probability of the
client moving to an adjacent grid. It forecasts WiFi trans-
fer sizes by taking the weighted average of expected trans-
fers at each future grid. We use grid sizes of 0.2 miles ×
0.2 miles and the learning phase uses the previous day
of data.

Algorithm with future knowledge: To quantify
the remaining room for improvement, we also consider
an (impractical) algorithm with perfect future knowledge
that we call Oracle. Oracle knows the exact amount of
data that can be transfered using WiFi within the delay
tolerance threshold, and uses this knowledge to make a
decision about when to use the 3G network. It provides
a lower bound on the lowest achievable completion time
while minimizing 3G usage.

6.1.2 Workload
We conduct our experiments based on two workloads.

Realistic application workload: We obtained
the workload from two corporate commuter buses that
provide Internet access to the passengers. We sniffed
the intra-bus WiFi network to capture packets that are
sent and received by the riders. Based on the captured
traces, we obtain distributions of connection sizes and
inter-arrival times. We then generate realistic workloads
based on the distributions. The average size of workload
is 86 Kbps but it is highly bursty. More details about
the workload is described in [18].

Synthetic workload: In order to experiment a
wider range of workload parameters, we generate a syn-
thetic workload where a mobile node generates applica-
tion data of size 5Mb uniformly at random. The mean
generation interval is set to 100 seconds. Similarly, a
remote server generates transfers for each client at the
same rate. Each experimental setting is run 10 times
with different seeds.

 0

 20

 40

 60

 80

 100

C
o
m

p
le

ti
o
n
 T

im
e
 (

s
e
c
o
n
d
s
)

Deployment
Trace-driven simulation

(a) Completion time

 0

 20

 40

 60

 80

 100

P
e
rc

e
n
ta

g
e
 o

ff
lo

a
d
e
d
 t
o
 W

iF
i

Deployment
Trace-driven simulation

(b) Percentage data of-
floaded to WiFi

9: Comparing the deployment versus simulation results.

6.2 Prediction-based offloading performance
First, we validate the trace-driven simulation using the

deployment results. We then evaluate the performance
of Wiffler and the alternate offloading protocols with
respect to three dimensions

• Varying workload: Using realistic application
workloads as well as synthetic workloads.

• Varying location: Using traces collected from both
Seattle and Amherst. We also present separate ex-
periments to evaluate performance of the protocols
in areas with dense AP connectivity.

• Varying application conservativeness: Using dif-
ferent conservative quotients and delay tolerance
thresholds.

6.2.1 Validating trace-driven simulation
To validate the simulator, we collect throughput data

during the deployment. During deployment periods when
there are no application data to be sent or received, the
vehicle transfers random data to the server both over
WiFi and 3G and logs details of this transfer. As a
result, the logs contain the throughput trace for the
entire deployment duration. We conduct a trace-driven
evaluation of Wiffler using this collected trace. We use the
same packet generation parameters as the deployment.
The simulation results are averaged over 10 runs with
different seeds.

Figure 9 shows the performance of Wiffler observed in
the deployment and in the simulator. Error bars show
the 90% confidence interval. The deployment results
match well with the simulation results both in terms
of completion time and percentage of data offloaded to
WiFi.

6.2.2 Varying location: Realistic workload
Amherst: Figures 10 shows the performance of the
different offload algorithms for varying delay tolerance
threshold. Wiffler offloads a significant fraction of data
to WiFi; the offload fraction increases with longer delay
tolerance. For example, if users are willing to wait 60
seconds, they can reduce 3G usage by 45%.

The Patient protocol reduces 3G usage by the most,
because Patient sends data on WiFi opportunistically
until the delay tolerance threshold. As a result, Figure 10
(a) shows that the completion time using Patient is
significantly higher than all the other protocols. In terms
of completion time, the Impatient protocol is the best
performing since the protocol sends data on both 3G

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 20 40 60 80 100

Co
m

ple
tio

n
Ti

m
e

(s
ec

on
ds

)

Delay Tolerance (seconds)

Oracle
Wiffler

Adapted-Breadcrumbs
Impatient

Patient

(a) Amherst: Completion time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

Fr
ac

tio
n

da
ta

 o
n

W
iF

i
Delay Tolerance (seconds)

Oracle
Wiffler

Adapted-Breadcrumbs
Impatient

Patient

(b) Amherst: Fraction data offloaded to WiFi

10: Amherst: Realistic application workload

and WiFi and does not leverage delay tolerance. And
as a result, Impatient only reduces 3G usage by 23%
compared to nearly 50% 3G savings achieved by other
protocols, for a delay tolerance of 100 seconds.

Oracle, with complete future knowledge achieves the
optimal balance between reducing 3G usage and decreas-
ing completion time. Wiffler performs within 5% of both
Oracle and Patient in terms of 3G savings, and is within
7 seconds of Oracle with respect to completion time. In
contrast, the Patient scheme that uses no prediction has
a completion time that is on an average, 25 seconds more
than Oracle.

Figures 10 shows that Adapted-Breadcrumbs performs
similar to Wiffler both in terms of completion time and
3G savings even though Adapted-Breadcrumbs uses a
more sophisticated prediction algorithm that learns WiFi
performance in each location.
Seattle: Figures 11 shows the performance of the
different offload protocols for Seattle data for realistic
workload. Since we did not collect TCP throughput
traces in Seattle, we use the UDP traces for this experi-
ment. Similar to the Amherst results, Wiffler provides
about the same amount of 3G savings as Oracle. The
completion time of Wiffler is within 10 seconds of Oracle.

6.2.3 Varying location: Synthetic workload
We repeated the above experiments, but for a syn-

thetic workload of 5Mb file transfers. The goal of this
experiment is to understand the performance of the dif-
ferent protocols when the transfer sizes are much larger.
Figures 12 shows the performance results over Amherst
data. For large file transfers, we observe that less than
22% of data is offloaded to WiFi for small delay toler-
ance threshold. But for a delay tolerance of 100 seconds,
Wiffler offloads 40% of data over WiFi.

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

C
om

pl
et

io
n

Ti
m

e
(s

ec
on

ds
)

Delay Tolerance (seconds)

Oracle
Wiffler

Impatient
Patient

(a) Seattle: Completion time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

Fr
ac

tio
n

da
ta

 o
n

W
iF

i

Delay Tolerance (seconds)

Oracle
Wiffler

Impatient
Patient

(b) Seattle: Fraction data offloaded to WiFi

11: Seattle: Realistic application workload

Not surprisingly, Figure 12 (a) shows that the com-
pletion time for the synthetic workload is higher than
the completion time for the realistic workload, because
of the larger data sizes. The difference in completion
time between Wiffler and Oracle is about 35 seconds
compared to only 5 seconds for the realistic-workload
experiments that had smaller data transfer sizes (Fig-
ures 10(a)). The completion time of Patient is nearly
75 seconds more than Oracle. As the data size increases,
it is more likely that all of the data cannot be delivered
using WiFi because of the lower throughput on WiFi and
lower availability. As a result, in Patient, most transfers
are completed only after the delay tolerance threshold,
significantly inflating its completion time.

Figure 13 shows the performance of the different pro-
tocols using the synthetic workload over Seattle data.
The results are qualitatively similar to the performance
over Amherst data.

6.2.4 Varying AP density
3G cell towers are carefully placed to achieve near-

complete coverage, but WiFi AP placement tends to be
organic. In Amherst, certain areas have high AP density,
but other areas have moderate to low AP density. As
AP density is high typically in crowded downtown areas,
where augmenting 3G capacity with WiFi is especially
useful, we created a second data set. The filtered data
set includes only measurements from a 15 sq. mile area
with a higher WiFi density. The availability of WiFi in
this filtered data set is 24%, compared to 12% in the
entire data.

Figures 14 show the performance of Wiffler in the to-
tal and the filtered data. In this experiment we used
the realistic application workload. In areas with higher
WiFi availability, 3G usage is reduced by 75% for a delay

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 20 40 60 80 100

Co
m

ple
tio

n
Ti

m
e

(s
ec

on
ds

)

Delay Tolerance (seconds)

Oracle
Wiffler

Adapted-Breadcrumbs
Impatient

Patient

(a) Amherst: Completion time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

Fr
ac

tio
n

da
ta

 o
n

W
iF

i
Delay Tolerance (seconds)

Oracle
Wiffler

Adapted-Breadcrumbs
Impatient

Patient

(b) Amherst: Fraction data offloaded to WiFi

12: Amherst: Synthetic workload

tolerance threshold of 100 seconds compared to a 50%
reduction in 3G usage in regions with lower WiFi avail-
ability. The figure shows that even though the difference
in WiFi availability in only 12%, the corresponding in-
creasing in 3G savings is much higher. However, this
is true only for large delay tolerance thresholds. For
a lower threshold of 20 seconds, the difference in 3G
savings between the two areas is only 9%.

6.2.5 Varying application conservativeness
Wiffler uses prediction to trade-off completion time

and 3G savings. As a result, the performance of Wiffler
lies in between Patient and Impatient, the two extreme
offloading strategies. In Section 3.2 we described an
additional parameter called the conservative quotient
that allows Wiffler to achieve different trade-offs between
completion time and 3G savings.

Figures 15 shows the completion time and 3G savings
for different values of the conservative quotient, starting
from c = 0.2 to c = 10. Recall that, Wiffler waits for
WiFi only if the predicted WiFi capacity is c times
the workload size. As the value of c increases, Wiffler
starts sending data on the 3G interface much earlier
instead of waiting for WiFi, and as a result has lower
completion time. On the other hand, the total data
offloaded to WiFi when c = 10 is significantly lower.
When c = 0.2, the total data offloaded to WiFi is 40%
for a 100 seconds delay tolerance and the performance
is close to the Patient protocol. On the other hand, the
strategy has poor performance in terms of completion
time.

The conservative quotient is an additional parameter
that can be tuned to achieve different trade-offs. We
find that setting c = 1 offers a good trade-off between
completion time and 3G savings.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 20 40 60 80 100

Co
m

ple
tio

n
Ti

m
e

(s
ec

on
ds

)

Delay tolerance (seconds)

Oracle
Wiffler

Impatient
Patient

(a) Seattle: Completion time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

Fr
ac

tio
n

da
ta

 o
n

W
iF

i

Delay Tolerance (seconds)

Oracle
Wiffler

Impatient
Patient

(b) Seattle: Fraction data offloaded to WiFi

13: Seattle: Synthetic workload

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

F
ra

ct
io

n
da

ta
 o

n
W

iF
i

Delay Tolerance (seconds)

Wiffler: AP availability 24%
Wiffler: AP availability 12%

14: Amherst: Comparing the fraction of data offloaded
to WiFi under different AP availability (realistic workload)

6.3 Evaluating fast switching
Similar to the deployment experiments, we evaluate

Wiffler’s fast switching in the context of VoIP. We eval-
uate based on two metrics — (i) Fraction of time the
mean opinion score (MOS) is good. MOS represents
the voice quality, and (ii) Fraction of data offloaded to
WiFi or alternatively, the 3G savings. Similar to the
deployment experiments we estimate the MOS value for
3-second intervals. The overall quality is measured as
the fraction of intervals the MOS value was more than
3.0.

The goal of the evaluation is to understand the trade-
off between VoIP quality and 3G savings for different
values of delay threshold. Recall that Wiffler waits for
a short period of time for a packet to be delivered over
WiFi; if the packet is not delivered, Wiffler sends the
packet over 3G. Clearly, a higher delay threshold in-
creases 3G savings because there is a higher probability

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100

C
om

pl
et

io
n

tim
e

(s
ec

on
ds

)

Delay Tolerance (seconds)

Patient
c = 0.2

c = 1
c = 2
c = 5

c = 10
Impatient

(a) Completion time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100
Fr

ac
tio

n
da

ta
 o

n
W

iF
i

Delay Tolerance (seconds)

Patient
c = 0.2

c = 1
c = 2
c = 5

c = 10
Impatient

(b) Fraction data offloaded to WiFi

15: Amherst: Trade-offs between application latency
time and 3G usage by varying the conservative quotient
(Synthetic workload)

that the packet will be delivered using WiFi instead of
3G. However, the VoIP quality may be affected. Simi-
larly, a lower delay threshold improves VoIP quality but
may reduce 3G savings.

6.3.1 Workload
For this trace-driven evaluation, we collected traces on

Amherst by instrumenting one vehicle to send 20 byte
packets every 20 ms to a server over both WiFi and
3G. Unlike the implementation, packets are sent both in
the upstream and downstream direction. We evaluate
the fraction of time the voice quality is good in both
directions. The traces are 1-hour long and the traces
were collected from an area in Amherst with dense AP
deployment.

6.3.2 Alternate strategies
We compare the performance of Wiffler to four other

system. The Only 3G system supports VoIP using only
3G. The WiFi system does not switch away from WiFi
for as long as it remains available. Oracle knows ahead
of time if the packet will be lost on WiFi and, only in
those cases, opts to send it on 3G. We evaluate Wiffler
for different delay thresholds.

6.3.3 Performance of fast switching
Figure 16 shows VoIP performance as a function of

switching threshold. We see that for thresholds below
60 ms, Wiffler is as good as the Oracle. It does not hurt
VoIP quality if we can discover within that time that
WiFi will lose or delay the packet. Of the four systems,
using WiFi alone performs the worst because of high
loss rates. Wiffler performs better than using only 3G

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

%
 o

f t
im

e
V

oI
P

 q
ua

lit
y

go
od

Switching delay threshold (ms)

WiFi
3G

Oracle
Wiffler

(a) VoIP performance

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100 120 140

Fr
ac

tio
n

of
flo

ad
ed

 to
 W

iF
i

Switching delay threshold (ms)

Wiffler

(b) Fraction data offloaded to WiFi

16: The performance of VoIP for varying switching time

because 3G frequently experiences high delays [17]. By
dynamically deciding when to switch from WiFi to 3G,
Wiffler combines the best of both worlds: low delays of
WiFi and high reliability of 3G.

This advantage does come at the cost of a modest
increase in 3G usage. We find that, compared to the
WiFi-only system, the increase in 3G usage is 10% if
the switching threshold is 60 ms and 20% if it is 20 ms.
Given the benefits of fast switching to application quality,
we consider this increase to be a worthwhile trade-off.

7. RELATED WORK
Our work builds on previous research related to the

use of multiple interfaces, predicting future connectivity,
and characterizing connectivity from moving vehicles.

Using multiple interfaces. Many previous works
propose mobile systems that leverage multiple interfaces.
One thread of existing work optimizes for energy and
exploits the differences in power consumed by different
interfaces. For example, one method is to select the
interface with low idle power consumption to wake up
another interface [5,24]. Zhong et al. [22] estimate the
power consumption of different interfaces for various
network activities. They use these estimates to switch
between interfaces to save energy.

Other works use multiple interfaces to optimize per-
formance. For example, vertical handoff techniques se-
lect the interface that currently offers the best perfor-
mance [7]. Striping techniques multiplex data across
different interfaces to balance load and improve perfor-
mance [23].

In contrast to these works, our primary goal is not
to optimize power consumption or performance. In our
setting, a more expensive interface (3G) provides almost

ubiquitous connectivity, but a cheaper interface (WiFi)
is available intermittently. Our goal is to offload as many
bytes on the second interface as possible, while satisfying
a minimum application-specific performance requirement.
Thus, instead of responding purely to current conditions,
we also base decisions on predictions of future conditions.

Predicting future connectivity. Breadcrumbs
predicts future WiFi connectivity based on a model of
the environment [20]. Similarly, Deshpande et al. [10] use
WiFi prediction to improve mobile access. Both of these
schemes rely on RF fingerprinting or an AP database
for prediction. In addition, breadcrumbs uses client
location information as part of its model, which means
that clients must estimate the bandwidth available in
different location grids and the transition probabilities
between the adjacent grids. In contrast, our model
does not require an external database or learning, and
predicts based only on a short meeting history. In our
evaluation, we compare the performance of Wiffler with
a Breadcrumbs-like prediction model.

Characterizations of vehicular connectivity. Sev-
eral studies have characterized WiFi and 3G connectivity
in isolation for vehicular settings. For WiFi, the CarTel
study quantifies the frequency of AP encounters and
the throughput that can be achieved using the open
APs [15]. Various researchers have since studied link
layer characteristics [3, 19], TCP throughput [13], as
well the performance of a specific application (e.g., web
search [4]) and handoff policies [11]. Similarly, for 3G,
several recent works have studied characteristics such as
signal strength, loss rate, latency, and TCP throughput
in vehicular [17, 21] as well as stationary [8, 9, 16, 29]
settings.

In contrast, our measurement study enables a joint
characterization and a head-to-head comparison of 3G
and WiFi. For any one technology, our results are quali-
tatively consistent with the studies above, but our joint
characterization is crucial to understand and leverage
their combined power. For instance, we uncovered a
surprising finding that 3G and WiFi availability are neg-
atively correlated, so WiFi can mitigate more issues for
3G than nominally expected.

8. CONCLUSIONS
Our field measurements and system evaluation have

demonstrated that systematically offloading data from
3G to WiFi can reduce demand on 3G networks with-
out hurting application performance. Our measurement
study jointly characterizes 3G and WiFi for two testbeds,
finding that WiFi is available for a non-trivial amount
of time, but has poorer quality in terms of loss rate and
throughput. We present Wiffler, that uses WiFi to aug-
ment 3G using two key ideas: leveraging delay tolerance
and fast switching. For applications that can tolerate a
small delay, Wiffler waits for WiFi offload opportunities
to reduce 3G usage. However, Wiffler waits for WiFi and
delays applications only if it will result in 3G savings. For
delay- and loss-sensitive applications, Wiffler switches
proactively to 3G without incurring the high delay of
WiFi when operating in a lossy environment. We imple-
ment and deploy Wiffler in our vehicular testbed. Both

our implementation and trace-driven experiments show
that Wiffler significantly reduces 3G usage. For example,
for a realistic workload, Wiffler reduces 3G usage by 45%
for a delay tolerance of 60 seconds.

9. REFERENCES
[1] T-Mobile @ Home.

http://support.t-mobile.com/doc/tm23449.xml.
[2] Economy + internet trends: Web 2.0 summit.

http://www.morganstanley.com/institutional/
techresearch/pdfs/MS_Economy_Internet_Trends_
102009_FINAL.pdf, 2009.

[3] A. Balasubramanian, R. Mahajan, A. Venkataramani,
B. Levine, and J. Zahorjan. Interactive WiFi
Connectivity For Moving Vehicles. In Proc. ACM
Sigcomm, August 2008.

[4] A. Balasubramanian, Y. Zhou, W. B. Croft, B. N.
Levine, and A. Venkataramani. Web Search From a Bus.
In Proc. ACM Workshop on Challenged Networks
(CHANTS), pages 59–66, September 2007.

[5] N. Banerjee, M. D. Corner, and B. N. Levine. An
Energy-Efficient Architecture for DTN Throwboxes. In
Proc. IEEE Infocom, May 2007.

[6] T. Bishop and A. James. Microsoft giving workers free
ride with its own bus service. http://seattlepi.
nwsource.com/business/330745_msfttranspo07.html,
2007.

[7] M. Buddhikot, G. Chandranmenon, S.J.Han, Y.W.Lee,
and S. amd L.Salgarelli. Integration of 802.11 and Third
Generation Wireless Data Networks. In Proc. IEEE
Infocom, 2003.

[8] R. Chakravorty, S. Banerjee, P. Rodriguez,
J. Chesterfield, and I. Pratt. Performance optimizations
for wireless wide-area networks: comparative study and
experimental evaluation. In Proc. MobiCom, pages
159–173, 2004.

[9] M. Claypool, R. Kinicki, W. Lee, M. Li, and G. Ratner.
Characterization by measurement of a cdma 1xevdo
network. In Wireless Internet Conference, August 2006.

[10] P. Deshpande, A. Kashyap, C. Sung, and S. R. Das.
Predictive methods for improved vehicular wifi access.
In MobiSys ’09: Proceedings of the 7th international
conference on Mobile systems, applications, and
services, pages 263–276, New York, NY, USA, 2009.
ACM.

[11] A. Giannoulis, M. Fiore, and E. W. Knightly.
Supporting vehicular mobility in urban multi-hop
wireless networks. In Proc. MobiSys, pages 54–66, 2008.

[12] D. Hadaller, S. Keshav, T. Brecht, and S. Agarwal.
Vehicular opportunistic communication under the
microscope. In MobiSys, June 2007.

[13] D. Hadaller, S. Keshav, T. Brecht, and S. Agarwal.
Vehicular Opportunistic Communication Under the
Microscope. In Proc. ACM Mobisys, pages 206–219,
June 2007.

[14] M. Helft. GoogleÕs buses help its workers beat the rush.
http://www.nytimes.com/2007/03/10/technology/
10google.html, 2007.

[15] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen,
M. Goraczko, A. Miu, E. Shih, H. Balakrishnan, and
S. Madden. CarTel: a Distributed Mobile Sensor
Computing System. In Proc. ACM SenSys, pages
125–138, October 2006.

[16] Y. Lee. Measured tcp performance in cdma 1xev-do
network. In Passive Active Measurement Conference,
March 2006.

[17] X. Liu, A. Sridharan, S. Machiraju, M. Seshadri, and
H. Zang. Experiences in a 3g network: interplay

between the wireless channel and applications. In Proc.
MobiCom, pages 211–222, 2008.

[18] R. Mahajan, J. Padhye, S. Agarwal, and B. Zill. E
pluribus unum: High performance connectivity on
buses,. Technical Report MSR-TR-2008-147, Microsoft
Research, 2008.

[19] R. Mahajan, J. Zahorjan, and B. Zill. Understanding
WiFi-based Connectivity From Moving Vehicles. In
Proc. ACM IMC, pages 321–326, October 2007.

[20] A. J. Nicholson and B. D. Noble. Breadcrumbs:
forecasting mobile connectivity. In Proc. MobiCom,
pages 46–57, 2008.

[21] J. Ormont, J. Walker, S. Banerjee, A. Sridharan,
M. Seshadri, and S. Machiraju. A city-wide vehicular
infrastructure for wide-area wireless experimentation. In
WiNTECH ’08: Proceedings of the third ACM
international workshop on Wireless network testbeds,
experimental evaluation and characterization, pages
3–10, 2008.

[22] A. Rahmati and L. Zhong. Context-for-wireless:
context-sensitive energy-efficient wireless data transfer.
In Proc. MobiSys, pages 165–178, 2007.

[23] P. Rodriguez, R. Chakravorty, J. Chesterfield, I. Pratt,
and S. Banerjee. MARS: A commuter router
infrastructure for the mobile Internet. In MobiSys, June
2004.

[24] E. Shih, P. Bahl, and M. J. Sinclair. Wake on wireless:
an event driven energy saving strategy for battery
operated devices. In Proc. MobiCom, pages 160–171,
2002.

[25] H. Soroush, N. Banerjee, A. Balasubramanian, M. D.
Corner, B. N. Levine, and B. Lynn. DOME: A Diverse
Outdoor Mobile Testbed. In Proc. ACM Intl. Workshop
on Hot Topics of Planet-Scale Mobility Measurements
(HotPlanet), June 2009.

[26] Sprint capping unlimited 3G data service at 5GB.
http://gizmodo.com/391887/
oh-no-sprint-capping-unlimited-3g-data-service-at-5gb,
2008.

[27] K. Srinivasan, M. A. Kazandjieva, S. Agarwal, and
P. Levis. The beta-factor: measuring wireless link
burstiness. In SenSys, pages 29–42, 2008.

[28] P. Svennson. AT&T: Tighter control of cell data usage
ahead. http://seattletimes.nwsource.com/html/
businesstechnology/2010461891_
apustecattdatausage.html, 2009.

[29] W. L. Tan, F. Lam, and W. C. Lau. An empirical study
on the capacity and performance of 3g networks. IEEE
Transactions on Mobile Computing, 7(6):737–750, 2008.

[30] J. Wortham. Customers angered as iphones overload 3g.
http://www.nytimes.com/2009/09/03/technology/
companies/03att.html?_r=2&partner=MYWAY&ei=5065/,
2009.

