
AutoScale: Dynamic, Robust Capacity
Management for Multi-Tier Data Centers

Anshul Gandhi∗ Mor Harchol-Balter∗
Ram Raghunathan∗ Michael Kozuch†

April 2012
CMU-CS-12-109

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

∗Carnegie Mellon University, Pittsburgh, PA, USA
†Intel Labs, Pittsburgh, PA, USA

This research was sponsored by the National Science Foundation under grant number CNS-1116282 and Intel
Science and Technology Center on Cloud Computing. The views and conclusions contained in this document are
those of the author and should not be interpreted as representing the official policies, either expressed or implied, of
any sponsoring institution, the U.S. government or any other entity.

Keywords: Data centers; power management; resource provisioning

Abstract

Energy costs for data centers continue to rise, already exceeding $15 billion yearly. Sadly much of
this power is wasted. Servers are only busy 10-30% of the time on average, but they are often left
on, while idle, utilizing 60% or more of peak power when in the idle state.
We introduce a dynamic capacity management policy, AutoScale, that greatly reduces the num-
ber of servers needed in data centers driven by unpredictable, time-varying load, while meeting
response time SLAs. AutoScale scales the data center capacity, adding or removing servers as
needed. AutoScale has two key features: (i) it autonomically maintains just the right amount of
spare capacity to handle bursts in the request rate; and (ii) it is robust not just to changes in the
request rate of real-world traces, but also request size and server efficiency.
We evaluate our dynamic capacity management approach via implementation on a 38-server multi-
tier data center, serving a web site of the type seen in Facebook or Amazon, with a key-value store
workload. We demonstrate that AutoScale vastly improves upon existing dynamic capacity man-
agement policies with respect to meeting SLAs and robustness.

1 Introduction
Many networked services, such as Facebook and Amazon, are provided by multi-tier data center
infrastructures. A primary goal for these applications is to provide good response time to users;
these response time targets typically translate to some response time Service Level Agreements
(SLAs). In an effort to meet these SLAs, data center operators typically over-provision the number
of servers to meet their estimate of peak load. These servers are left “always on,” leading to only
10-30% server utilization [2, 3]. In fact, [35] reports that the average data center server utilization
is only 18% despite years of deploying virtualization aimed at improving server utilization. Low
utilization is problematic because servers that are on, while idle, still utilize 60% or more of peak
power.

To reduce wasted power, we consider intelligent dynamic capacity management, which aims
to match the number of active servers with the current load, in situations where future load is
unpredictable. Servers which become idle when load is low could be either turned off, saving
power, or loaned out to some other application, or simply released to a cloud computing platform,
thus saving money. Fortunately, the bulk of the servers in a multi-tier data center are application
servers, which are stateless, and are thus easy to turn off or give away – for example, one reported
ratio of application servers to data servers is 5:1 [12]. We therefore focus our attention on dynamic
capacity management of these front-end application servers.

Part of what makes dynamic capacity management difficult is the setup cost of getting servers
back on/ready. For example, in our lab the setup time for turning on an application server is 260
seconds, during which time power is consumed at the peak rate of 200W. Sadly, little has been
done to reduce the setup overhead for servers. In particular, sleep states, which are prevalent in
mobile devices, have been very slow to enter the server market. Even if future hardware reduces
the setup time, there may still be software imposed setup times due to software updates which
occurred when the server was unavailable [12]. Likewise, the setup cost needed to create virtual
machines (VMs) can range anywhere from 30s – 1 minute if the VMs are locally created (based
on our measurements using kvm [21]) or 10 – 15 minutes if the VMs are obtained from a cloud
computing platform (see, for example, [1]). All these numbers are extremely high, when compared
with the typical SLA of half a second.

The goal of dynamic capacity management is to scale capacity with unpredictably changing
load in the face of high setup costs. While there has been much prior work on this problem, all of
it has only focussed on one aspect of changes in load, namely, fluctuations in request rate. This
is already a difficult problem, given high setup costs, and has resulted in many policies, including
reactive approaches [24, 29, 13, 39, 40, 11] that aim to react to the current request rate, predictive
approaches [23, 33, 6, 17] that aim to predict the future request rate, and mixed reactive-predictive
approaches [8, 9, 4, 37, 15, 36, 14]. However, in reality there are many other ways in which load
can change. For example, request size (work associated with each request) can change, if new
features or security checks are added to the application. As a second example, server efficiency
can change, if any abnormalities occur in the system, such as internal service disruptions, slow
networks, or maintenance cycles. These other types of load fluctuations are all too common in data
centers, and have not been addressed by prior work in dynamic capacity management.

1

We propose a new approach to dynamic capacity management, which we call AutoScale. To
describe AutoScale, we decompose it into two parts: AutoScale-- (see Section 3.5), which is a
precursor to AutoScale and handles only the narrower case of unpredictable changes in request
rate, and the full AutoScale policy (see Section 4.3), which builds upon AutoScale-- to handle all
forms of changes in load.

While AutoScale-- addresses a problem that many others have looked at, it does so in a very
different way. While prior approaches aim at predicting the future request rate and scaling up
the number of servers to meet this predicted rate, which is clearly difficult to do when request
rate is, by definition, unpredictable, AutoScale-- does not attempt to predict future request rate.
Instead, AutoScale-- demonstrates that it is possible to achieve SLAs for real-world workloads by
simply being conservative in scaling down the number of servers: not turning servers off recklessly.
One might think that this same effect could be achieved by leaving a fixed buffer of, say, 20%
extra servers on at all times. However, the extra capacity (20% in the above example) should
change depending on the current load. AutoScale-- does just this – it maintains just the right
number of servers in the on state at every point in time. This results in much lower power/resource
consumption. In Section 3.5, we evaluate AutoScale-- on a suite of six different real-world traces,
comparing it against five different capacity management policies commonly used in the literature.
We demonstrate that in all cases, AutoScale-- significantly outperforms other policies, meeting
response time SLAs while greatly reducing the number of servers needed, as shown in Table 3.

To fully investigate the applicability of AutoScale--, we experiment with multiple setup times
ranging from 260 seconds all the way down to 20 seconds in Section 3.7. Our results indicate that
AutoScale-- can provides significant benefits across the entire spectrum of setup times, as shown
in Figure 9.

To handle a broader spectrum of possible changes in load, including unpredictable changes in
the request size and server efficiency, we introduce the AutoScale policy in Section 4.3. While
prior approaches react only to changes in the request rate, AutoScale uses a novel capacity infer-
ence algorithm, which allows it to determine the appropriate capacity regardless of the source of
the change in load. Importantly, AutoScale achieves this without requiring any knowledge of the
request rate or the request size or the server efficiency, as shown in Tables 4, 5 and 6.

To evaluate the effectiveness of AutoScale, we build a three-tier testbed consisting of 38 servers
that uses a key-value based workload, involving multiple interleavings of CPU and I/O within
each request. While our implementation involves physically turning servers on and off, one could
instead imagine that any idle server that is turned off is instead “given away”, and there is a setup
time to get the server back. To understand the benefits of AutoScale, we evaluate all policies on
three metrics: T95, the 95th percentile of response time, which represents our SLA; Pavg, the
average power usage; and Navg, the average capacity, or number of servers in use (including those
idle and in setup). Our goal is to meet the response time SLA, while keeping Pavg and Navg as
low as possible. The drop in Pavg shows the possible savings in power by turning off servers,
while the drop in Navg represents the potential capacity/servers available to be given away to other
applications or to be released back to the cloud so as to save on rental costs.

2

Figure 1: Our experimental testbed.

This paper makes the following contributions:
• We overturn the common wisdom that says that capacity provisioning requires “knowing the

future load and planning for it,” which is at the heart of existing predictive capacity manage-
ment policies. Such predictions are simply not possible when workloads are unpredictable,
and, we furthermore show they are unnecessary, at least for the range of variability in our
workloads. We demonstrate that simply provisioning carefully and not turning servers off
recklessly achieves better performance than existing policies that are based on predicting
current load or over-provisioning to account for possible future load.
• We introduce our capacity inference algorithm which allows us to determine the appropriate

capacity at any point of time in response to changes in request rate, request size and/or server
efficiency, without any knowledge of these quantities (see Section 4.3). We demonstrate that
AutoScale, via the capacity inference algorithm, is robust to all forms of changes in load,
including unpredictable changes in request size and unpredictable degradations in server
speeds, within the range of our traces. In fact, for our traces, AutoScale is robust to even a
4-fold increase in request size. To the best of our knowledge, AutoScale is the first policy to
exhibit these forms of robustness. As shown in Tables 4, 5 and 6, other policies are simply
not comparable on this front.

2 Experimental setup

2.1 Our experimental testbed

Figure 1 illustrates our data center testbed, consisting of 38 Intel Xeon servers, each equipped
with two quad-core 2.26 GHz processors. We employ one of these servers as the front-end load
generator running httperf [28] and another server as the front-end load balancer running Apache,
which distributes requests from the load generator to the application servers. We modify Apache
on the load balancer to also act as the capacity manager, which is responsible for turning servers on
and off. Another server is used to store the entire data set, a billion key-value pairs, on a database.

3

Seven servers are used as memcached servers, each with 4GB of memory for caching. The
remaining 28 servers are employed as application servers, which parse the incoming php requests
and collect the required data from the back-end memcached servers. Our ratio of application
servers to memcached servers is consistent with the typical ratio of 5:1 [12].

We employ capacity management on the application servers only, as they maintain no volatile
state. We use the SNMP communication protocol to remotely turn application servers on and off
via the power distribution unit (PDU). We monitor the power consumption of individual servers
by reading the power values off of the PDU. The idle power consumption for our servers is about
140W (with C-states enabled) and the average power consumption for our servers when they are
busy or in setup is about 200W.

In our experiments, we observed the setup time for the servers to be about 260 seconds. How-
ever, we also examine the effects of lower setup times that could either be a result of using sleep
states (which are prevalent in laptops and desktop machines, but are not well supported for server
architectures yet), or using virtualization to quickly bring up virtual machines. We replicate this
effect by not routing requests to a server if it is marked for sleep, and by replacing its power con-
sumption values with 0W. When the server is marked for setup, we wait for the setup time before
sending requests to the server, and replace its power consumption values during the setup time with
200W.

2.2 Workload

We design a key-value workload to model realistic multi-tier applications such as the social net-
working site, Facebook, or e-commerce companies like Amazon [10]. Each generated request (or
job) is a php script that runs on the application server. A request begins when the application server
requests a value for a key from the memcached servers. The memcached servers provide the value,
which itself is a collection of new keys. The application server then again requests values for these
new keys from the memcached servers. This process can continue iteratively. In our experiments,
we set the number of iterations to correspond to an average of roughly 3,000 key requests per job,
which translates to a mean request size of approximately 120 ms, assuming no resource contention.
The request size distribution is highly variable, with the largest request being roughly 20 times the
size of the smallest request.

We can also vary the distribution of key requests by the application server. In this paper we use
the Zipf [30] distribution, whereby the probability of generating a particular key varies inversely as
a power of that key. To minimize the effects of cache misses in the memcached layer (which could
result in an unpredictable fraction of the requests violating the T95 SLA), we tune the parameters
of the Zipf distribution so that only a negligible fraction of requests miss in the memcached layer.

4

Name Trace Plot

Slowly varying ITA [18]

Quickly varying Synthetic

Big spike NLANR [31]

Dual phase NLANR [31]

Large variations NLANR [31]

Steep tri phase SAP [34]

Table 1: Description of the traces we use for experiments.

2.3 Trace-based arrivals

We use a variety of arrival traces to generate the request rate of jobs in our experiments, most
of which are drawn from real-world traces. Table 1 describes these traces. In our experiments,
the seven memcached servers can together handle at most 800 job requests per second, which
corresponds to roughly 300,000 key requests per second at each memcached server. Thus, we
scale the arrival traces such that the maximum request rate into the system is 800 req/s. Further,
we scale the duration of the traces to 2 hours. We evaluate our policies against the full set of traces
(see Table 3 for results).

5

95%ile response time vs. request rate

Figure 2: A single server can handle 60 req/s.

T95=291ms, Pavg=2,323W, Navg=14

Figure 3: AlwaysOn.

3 Results: Changing request rates

This section and the next both involve implementation and performance evaluation of a range of
capacity management policies. Each policy will be evaluated against the six traces described in
Table 1. We will present detailed results for the Dual phase trace and show summary results for
all traces in Table 3. The Dual phase trace is chosen because it is quite bursty and also represents
the diurnal nature of typical data center traffic, whereby the request rate is low for a part of the day
(usually the night time) and is high for the rest (day time). The goal throughout will be to meet
95%ile guarantees of T95 = 400 − 500 ms1, while minimizing the average power consumed by
the application servers, Pavg, or the average number of application servers used, Navg. Note that
Pavg largely scales with Navg.

For capacity management, we want to choose the number of servers at time t, k(t), such that
we meet a 95%ile response time goal of 400− 500 ms. Figure 2 shows measured 95%ile response
time at a single server versus request rate. According to this figure, for example, to meet a 95%ile
goal of 400 ms, we require the request rate to a single server to be no more than r = 60 req/s.
Hence, if the total request rate into the data center at some time t is say, R(t) = 300 req/s, we
know that we need at least k = d300/re = 5 servers to ensure our 95%ile SLA.

3.1 AlwaysOn

The AlwaysOn policy [38, 8, 17] is important because this is what is currently deployed by most
of the industry. The policy selects a fixed number of servers, k, to handle the peak request rate

1It would be equally easy to use 90%ile guarantees or 99%ile guarantees. Likewise, we could easily have aimed for
300ms or 1 second response times rather than 500ms. Our choice of SLA is motivated by recent studies [36, 23, 27, 10]
which indicate that 95%ile guarantees of hundreds of milliseconds are typical.

6

(a) T95=11,003ms, Pavg=1,281W, Navg=6.2 (b) T95=487ms, Pavg=2,218W, Navg=12.1

Figure 4: (a) Reactive and (b) Reactive with extra capacity.

and always leaves those servers on. In our case, to meet the 95%ile SLA of 400ms, we set k =
dRpeak/60e, where Rpeak = 800 req/s denotes the peak request rate into the system. Thus, k is
fixed at d800/60e = 14.

Realistically, one doesn’t know Rpeak, and it is common to overestimate Rpeak by a factor of 2
(see, for example, [23]). In this paper, we empower AlwaysOn, by assuming that Rpeak is known
in advance.

Figure 3 shows the performance of AlwaysOn. The solid line shows kideal, the ideal number
of servers/capacity which should be on at any given time, as given by k(t) = dR(t)/60e. Cir-
cles are used to show kbusy+idle, the number of servers which are actually on, and crosses show
kbusy+idle+setup, the actual number of servers that are on or in setup. For AlwaysOn, the circles and
crosses lie on top of each other since servers are never in setup. Observe that Navg = d800

60
e = 14

for AlwaysOn, while Pavg = 2323W , with similar values for the different traces in Table 3.

3.2 Reactive

The Reactive policy (see, for example, [36]) reacts to the current request rate, attempting to keep
exactly dR(t)/60e servers on at time t, in accordance with the solid line. However, because of
the setup time of 260s, Reactive lags in turning servers on. In our implementation of Reactive, we
sample the request rate every 20 seconds, adjusting the number of servers as needed.

Figure 4(a) shows the performance of Reactive. By reacting to current request rate and ad-
justing the capacity accordingly, Reactive is able to bring down Pavg and Navg by as much as a
factor of two or more, when compared with AlwaysOn. This is a huge win. Unfortunately, the
response time SLA is almost never met and is typically exceeded by a factor of at least 10-20 (as
in Figure 4(a)), or even by a factor of 100 (see Table 3).

7

(a) MWA: T95=7,740ms, Pavg=1,276W, Navg=6.3 (b) LR: T95=2,544ms, Pavg=2,161W, Navg=11.8

Figure 5: (a) Predictive: MWA and (b) Predictive: LR.

3.3 Reactive with extra capacity

One might think the response times under Reactive would improve a lot by just adding some x%
extra capacity at all times. This x% extra capacity can be achieved by running Reactive with a
different r setting. Unfortunately, for this trace, it turns out that to bring T95 down to our desired
SLA, we need 100% extra capacity at all times, which corresponds to setting r = 30. This brings
T95 down to 487 ms, but causes power to jump up to the levels of AlwaysOn, as illustrated in
Figure 4(b). It is even more problematic that each of our six traces in Table 1 requires a different
x% extra capacity to achieve the desired SLA (with x% typically ranging from 50% to 200%),
rendering such a policy impractical.

3.4 Predictive

Predictive policies attempt to predict the request rate 260 seconds from now. This section describes
two policies that were used in many papers [5, 16, 32, 38] and were found to be the most powerful
by [23].

Predictive - Moving Window Average (MWA)
In the MWA policy, we consider a “window” of some duration (say, 10 seconds). We average
the request rates during that window to deduce the predicted rate during the 11th second. Then we
slide the window to include seconds 2 through 11, and average those values to deduce the predicted
rate during the 12th second. We continue this process of sliding the window rightward until we
have predicted the request rate at time 270 seconds, based on the initial 10 seconds window.

If the estimated request rate at second 270 exceeds the current request rate, we determine the
number of additional servers needed to meet the SLA (via the k = dR/re formula) and turn these

8

on at time 11, so that they will be ready to run at time 270. If the estimated request rate at second
270 is lower than the current request rate, we look at the maximum request rate, M , during the
interval from time 11 to time 270. If M is lower than the current request rate, then we turn off as
many servers as we can while meeting the SLA for request rate M . Of course, the window size
affects the performance of MWA. We empower MWA by using the best window size for each trace.

Figure 5(a) shows that the performance of Predictive MWA is very similar to what we saw for
Reactive: low Pavg and Navg values, beating AlwaysOn by a factor of 2, but high T95 values,
typically exceeding the SLA by a factor of 10 to 20.

Predictive - Linear Regression (LR)
The LR policy is identical to MWA except that, to estimate the request rate at time 270 seconds, we
use linear regression to match the best linear fit to the values in the window. Then we extend our
line out by 260 seconds to get a prediction of the request rate at time 270 seconds.

The performance of Predictive LR is worse than that of Predictive MWA. Response times are
still bad, but now capacity and power consumption can be bad as well. The problem, as illustrated
in Figure 5(b), is that the linear slope fit used in LR can end up overshooting the required capacity
greatly.

3.5 AutoScale−−

One might think that the poor performance of the dynamic capacity management policies we have
seen so far stems from the fact that they are too slow to turn servers on when needed. However,
an equally big concern is the fact that these policies are quick to turn servers off when not needed,
and hence do not have those servers available when load subsequently rises. This rashness is
particularly problematic in the case of bursty workloads, such as those in Table 1.

AutoScale-- addresses the problem of scaling down capacity by being very conservative in
turning servers off while doing nothing new with respect to turning servers on (the turning on
algorithm is the same as in Reactive). We will show that by simply taking more care in turning
servers off, AutoScale-- is able to outperform all the prior dynamic capacity management policies
we have seen with respect to meetings SLAs, while simultaneously keeping Pavg and Navg low.

When to turn a server off?
Under AutoScale--, each server decides autonomously when to turn off. When a server goes idle,
rather than turning off immediately, it sets a timer of duration twait and sits in the idle state for
twait seconds. If a request arrives at the server during these twait seconds, then the server goes back
to the busy state (with zero setup cost); otherwise the server is turned off. In our experiments for
AutoScale--, we use a twait value of 120s. Table 2 shows that AutoScale-- is largely insensitive

9

95%ile response time vs. packing factor

Figure 6: For a single server, p = 10.

T95=491ms, Pavg=1,297W, Navg=7.2

Figure 7: AutoScale--.

to twait in the range twait = 60s to twait = 260s. There is a slight increase in Pavg (and Navg) and
a slight decrease in T95 when twait increases, due to idle servers staying on longer.

The idea of setting a timer before turning off an idle server has been proposed before (see, for
example, [20, 26, 19]), however, only for a single server. For a multi-server system, independently
setting timers for each server can be inefficient, since we can end up with too many idle servers.
Thus, we need a more coordinated approach for using timers in our multi-server system which
takes routing into account, as explained below.

How to route jobs to servers?
Timers prevent the mistake of turning off a server just as a new arrival comes in. However, they
can also waste power and capacity by leaving too many servers in the idle state. We’d basically
like to keep only a small number of servers (just the right number) in this idle state.

To do this, we introduce a routing scheme that tends to concentrate jobs onto a small number
of servers, so that the remaining (unneeded) servers will naturally “time out.” Our routing scheme
uses an index-packing idea, whereby all on servers are indexed from 1 to n. Then we send each
request to the lowest-numbered on server that currently has fewer than p requests, where p stands
for packing factor and denotes the maximum number of requests that a server can serve concur-
rently and meet its response time SLA. For example, in Figure 6, we see that to meet a 95%ile

PPPPPPPPPTrace
twait 60s 120s 260s

Dual phase
[31]

T95 503ms 491ms 445ms
Pavg 1,253W 1,297W 1,490W
Navg 7.0 7.2 8.8

Table 2: The (in)sensitivity of AutoScale--’s performance to twait.

10

T95=320ms, Pavg=1,132W, Navg=5.9

Figure 8: Opt.

guarantee of 400 ms, the packing factor is p = 10 (in general, the value of p depends on the system
in consideration). When all on servers are already packed with p requests each, additional request
arrivals are routed to servers via the join-the-shortest-queue routing.

In comparison with all the other policies, AutoScale-- hits the “sweet spot” of low T95 as well
as low Pavg and Navg. As seen from Table 3, AutoScale-- is close to the response time SLA in
all traces except for the Big spike trace. Simultaneously, the mean power usage and capacity under
AutoScale-- is typically significantly better than AlwaysOn, saving as much as a factor of two in
power and capacity.

Figure 7 illustrates how AutoScale-- is able to achieve these performance results. Observe
that the crosses and circles in AutoScale-- form flat constant lines, instead of bouncing up and
down, erratically, as in the earlier policies. This comes from a combination of the twait timer and
the index-based routing, which together keep the number of servers just slightly above what is
needed, while also avoiding toggling the servers between on and off states when the load goes up
and down. Comparing Figures 7 and 4(b), we see that the combination of timers and index-based
routing is far more effective than using Reactive with extra capacity, as in Section 3.3.

3.6 Opt

As a yardstick for measuring the effectiveness of AutoScale--, we define an optimal policy, Opt,
which behaves identically to Reactive, but with a setup time of zero. Thus, as soon as the request
rate changes, Opt reacts by immediately adding or removing the required capacity, without having
to wait for setup. Figure 8 shows that under Opt, the number of servers on scales exactly with
the incoming request load. Opt easily meets the T95 SLA, and consumes very little power and
resources (servers). Note that while Opt usually has a T95 of about 320-350ms, and thus it might
seem like Opt is over-provisioning, it just about meets the T95 SLA for the Tri phase trace (see

11

PPPPPPPPPTrace
Policy

AlwaysOn Reactive
Predictive Predictive

Opt AutoScale--
MWA LR

Slowly
varying

[18]

T95 271ms 673ms 3,464ms 618ms 366ms 435ms
Pavg 2,205W 842W 825W 964W 788W 1,393W
Navg 14.0 4.1 4.1 4.9 4.0 5.8

Quickly
varying

T95 303ms 20,005ms 3,335ms 12,553ms 325ms 362ms
Pavg 2,476W 1,922W 2,065W 3,622W 1,531W 2,205W
Navg 14.0 10.1 10.6 22.1 8.2 15.1

Big spike
[31]

T95 229ms 3,426ms 9,337ms 1,753ms 352ms 854ms
Pavg 2,260W 985W 998W 1,503W 845W 1,129W
Navg 14.0 4.9 4.9 8.1 4.5 6.6

Dual phase
[31]

T95 291ms 11,003ms 7,740ms 2,544ms 320ms 491ms
Pavg 2,323W 1,281W 1,276W 2,161W 1,132W 1,297W
Navg 14.0 6.2 6.3 11.8 5.9 7.2

Large
variations

[31]

T95 289ms 4,227ms 13,399ms 20,631ms 321ms 474ms
Pavg 2,363W 1,391W 1,461W 2,576W 1,222W 1,642W
Navg 14.0 7.8 8.1 16.4 7.1 10.5

Steep tri
phase [34]

T95 377ms > 1 min > 1 min 661ms 446ms 463ms
Pavg 2,263W 849W 1,287W 3,374W 1,004W 1,601W
Navg 14.0 5.2 7.2 20.5 5.1 8.0

Table 3: Comparison of all policies. Setup time = 260s throughout.

Table 3) and hence cannot be made more aggressive.

In support of AutoScale--, we find that Opt’s power consumption and server usage is only 30%
less than that of AutoScale--, averaged across all traces, despite AutoScale-- having to cope with
the 260s setup time.

3.7 Lower setup times

While production servers today are only equipped with “off” states that necessitate huge setup
times (260s for our servers), future servers may support sleep states, which can lower setup times
considerably. Further, with virtualization, the setup time required to bring up additional capac-
ity (in the form of virtual machines) might also go down. In this section, we again contrast the
performance of AutoScale-- with simpler dynamic capacity management policies, for the case of
lower setup times. We achieve these lower setup times by tweaking our experimental testbed as
discussed at the end of Section 2.1. Furthermore, for AutoScale--, we reduce the value of twait in
proportion to the reduction in setup time.

12

(a) Big spike (b) Dual phase

Figure 9: Effect of lower setup times for (a) Big spike trace [31] and (b) Dual phase trace [31].

When the setup time is very low, approaching zero, then by definition, all policies approach
Opt. For moderate setup times, one might expect that AutoScale-- does not provide significant
benefits over other policies such as Reactive, since T95 should not rise too much during the setup
time. This turns out to be false since the T95 under Reactive continues to be high even for moderate
setup times.

Figure 9(a) shows our experimental results for T95 for the Big spike trace [31], under Reactive
and AutoScale--. We see that as the setup time drops, the T95 drops almost linearly for both Re-
active and AutoScale--. However, AutoScale-- continues to be superior to Reactive with respect
to T95 for any given setup time. In fact, even when the setup time is only 20s, the T95 under
Reactive is almost twice that under AutoScale--. This is because of the huge spike in load in the
Big spike trace that cannot be handled by Reactive even at low setup times. We find similar results
for the Steep tri phase trace [34], with T95 under Reactive being more than three times as high as
that under AutoScale--. The Pavg and Navg values for Reactive and AutoScale-- also drop with
setup time, but the changes are not as significant as for T95.

Figure 9(b) shows our experimental results for T95 for the Dual phase trace [31], under Reac-
tive and AutoScale--. This time, we see that as the setup time drops below 100s, the T95 under
Reactive approaches that under AutoScale--. This is because of the relatively small fluctuations
in load in the Dual phase trace, which can be handled by Reactive once the setup time is small
enough. However, for setup times larger than 100s, AutoScale-- continues to be significantly bet-
ter than Reactive. We find similar results for the Quickly varying trace and the Large variations
trace [31].

In summary, depending on the trace, Reactive can perform poorly even for low setup times (see
Figure 9(a)). We expect similar behavior under the Predictive policies as well. Thus, AutoScale--
can be very beneficial even for more moderate setup times. Note that AlwaysOn and Opt are not
affected by setup times.

13

4 Results: Robustness

Thus far in our traces we have only varied the request rate over time. However, in reality there are
many other ways in which load can change. For example, if new features or security checks are
added to the application, the request size might increase. We mimic such effects by increasing the
number of key-value lookups associated with each request. As a second example, if any abnor-
malities occur in the system, such as internal service disruptions, slow networks, or maintenance
cycles, servers may respond more slowly, and requests may accumulate at the servers. We mimic
such effects by slowing down the frequency of the application servers. All the dynamic capacity
management policies described thus far, with the exception of Opt, use the request rate to scale ca-
pacity. However, using the request rate to determine the required capacity is somewhat fragile. If
the request size increases, or if servers become slower, due to any of the reasons mentioned above,
then the number of servers needed to maintain acceptable response times ought to be increased. In
both cases, however, no additional capacity will be provisioned if the policies only look at request
rate to scale up capacity.

4.1 Why request rate is not a good control knob

In order to assess the limitations of using request rate as a control knob for scaling capacity, we ran
AutoScale-- on the Dual phase trace with a 2x request size (meaning that our request size is now
240ms as opposed to the 120ms size we have used thus far). Since AutoScale-- does not detect an
increase in request size, and thus doesn’t provision for this, its T95 shoots up (T95 = 51, 601ms).
This is also true for the Reactive and Predictive policies, as can be seen in Tables 4 and 5 for the
case of increased request size and in Table 6 for the case of slower servers.

Figure 10 shows measured 95%ile response time at a single server versus request rate for
different request sizes. It is clear that while each server can handle 60 req/s without violating the
T95 SLA for a 1x request size, the T95 shoots up for the 2x and 4x request sizes. An obvious
way to solve this problem is to determine the request size. However, it is not easy to determine the
request size since the size is usually not known ahead of time. Trying to derive the request size
by monitoring the response times doesn’t help either since response times are usually affected by
queueing delays. Thus, we need to come up with a better control knob than request rate or request
size.

4.2 A better control knob that’s still not quite right

We propose using the number of requests in the system, nsys, as the control knob for scaling up
capacity rather than the request rate. We assert that nsys more faithfully captures the dynamic state
of the system than the request rate. If the system is under-provisioned either because the request
rate is too high or because the request size is too big or because the servers have slowed down,
nsys will tend to increase. If the system is over-provisioned, nsys will tend to decrease below some

14

95%ile response time vs. request rate

Figure 10: A single server can no longer handle
60 req/s when the request size increases.

95%ile response time vs. nsrv

Figure 11: For a single server, setting nsrv =
p = 10 works well for all request sizes.

expected level. Further, calculating nsys is fairly straightforward; many modern systems (including
our Apache load balancer) already track this value, and it is instantaneously available.

Figure 11 shows the measured 95%ile response time at a single server versus the number of
jobs at a single server, nsrv, for different request sizes. Note that nsrv = nsys in the case of a single-
server system. Surprisingly, the 95%ile response time values do not shoot up for the 2x and 4x
request sizes for a given nsrv value. In fact, setting nsrv = 10, as in Section 3.5, provides acceptable
T95 values for all request sizes (note that T95 values for the 2x and 4x request sizes are higher
than 500ms, which is to be expected as the work associated with each request is naturally higher).
This is because an increase in the request size (or a decrease in the server speed) increases the
rate at which “work” comes into each server. This increase in work is reflected in the consequent
increase in nsrv. By limiting nsrv using p, the packing factor (the maximum number of requests
that a server can serve concurrently and meet its SLA), we can limit the rate at which work comes
in to each server, thereby adjusting the required capacity to ensure that we meet the T95 SLA.
Based on these observations, we set p = 10 for the 2x and 4x request sizes. Thus, p is agnostic to
request sizes for our system, and only needs to be computed once. The insensitivity of p to request
sizes is to be expected since p represents the degree of parallelism for a server, and thus depends
on the specifications of a server (number of cores, hyper-threading, etc), and not on the request
size.

Based on our observations from Figure 11, we propose a plausible solution for dynamic capac-
ity management based on looking at the total number of requests in the system, nsys, as opposed to
looking at the request rate. The idea is to provision capacity to ensure that nsrv = 10 at each server.
In particular, the proposed policy is exactly the same as AutoScale--, except that it estimates the
required number of servers as kreqd = dnsys/10e, where nsys is the total number of requests in
the system at that time. In our implementation, we sample nsys every 20 seconds, and thus, the
proposed policy re-scales capacity, if needed, every 20 seconds. Note that the proposed policy uses

15

T95=441ms, Pavg=2,083W, Navg=12.5

Figure 12: Our proposed policy overshoots
while scaling up capacity.

Request rate vs. number of jobs.

Figure 13: A doubling of request rate can lead
to a tripling of number of jobs at a single server.

the same method to scale down capacity as AutoScale--, viz., using a timeout of 120s along with
the index-packing routing.

Figure 12 shows how our proposed policy behaves for the 1x request size. We see that our
proposed policy successfully meets the T95 SLA, but it clearly overshoots in terms of scaling
up capacity when the request rate goes up. Thus, the proposed policy results in high power and
resource consumption. One might think that this overshoot can be avoided by increasing the value
of p, thus allowing nsrv to be higher than 10. However, note that the T95 in Figure 12 is already
quite close to the 500ms SLA, and increasing the value of p beyond 10 can result in SLA violations.

Figure 13 explains the overshoot in terms of scaling up capacity for our proposed policy. We
see that when the request rate into a single server, rsrv, doubles from 60 req/s to 120 req/s, nsrv
more than doubles from 10 to 32. Thus, our proposed policy scales up capacity by a factor of 3,
whereas ideally capacity should only be scaled up by a factor of 2. Clearly our proposed policy
does not work so well, even in the case where the request size is just 1x.

We now introduce our AutoScale policy, which solves our problems of scaling up capacity.

4.3 AutoScale: Incorporating the right control knob

We now describe the AutoScale policy and show that it not only handles the case where request
rate changes, but also handles cases where the request size changes (see Tables 4 and 5) or where
the server efficiency changes (see Table 6).

AutoScale differs from the existing capacity management policies in that it uses nsys as the
control knob rather than request rate. However, AutoScale does not simply scale up the capacity
linearly with an increase in nsys, as was the case with our proposed policy above. This is because

16

(a) ρsrv vs. nsrv for the 1x request size. (b) ρsrv vs. nsrv for all request sizes.

Figure 14: Load at a server as a function of the number of jobs at a server for various request sizes.
Surprisingly, the graph is invariant to changes in request size.

nsys grows super-linearly during the time that the system is under-provisioned, as is well known in
queueing theory. Instead, AutoScale tries to infer the amount of work in the system by monitoring
nsys. The amount of work in the system is proportional to both the request rate and the request size
(the request size in turn depends also on the server efficiency), and thus, we try to infer the product
of request rate and request size, which we call system load, ρsys. Formally,

ρsys =
request rate into × average

the data center (R) request size,

where the average 1x request size is 120ms. Fortunately, there is an easy relationship (which we
describe soon) to go from nsys to ρsys, obviating the need to ever measure load or request rate or
the request size. Once we have ρsys, it is easy to get to kreqd, since ρsys represents the amount of
work in the system and is hence proportional to kreqd. We now explain the translation process from
nsys to ρsys and then from ρsys to kreqd. We refer to this entire translation algorithm as the capacity
inference algorithm. The full translation from nsys to kreqd will be given in Equation 3 below.

The capacity inference algorithm
In order to understand the relationship between nsys and ρsys, we first derive the relationship be-
tween the number of jobs at a single server, nsrv, and the load at a single server, ρsrv. Formally,
the load at a server is defined as

ρsrv =
request rate into × average

a single server (rsrv) request size, (1)

where the average 1x request size is 120ms and rsrv is the request rate into a single server. If the
request rate, rsrv, is made as high as possible without violating the SLA, then the resulting ρsrv

17

from Equation 1 is referred to as ρref . For our system, recall that the maximum request rate into a
single server without violating the SLA is rsrv = 60 req/s (see Figure 2). Thus,

ρref = 60× 0.12 ≈ 7, (2)

meaning that a single server can handle a load of at most 7 without violating the SLA, assuming a
1x request size of 120ms.

Returning to the discussion of how ρsrv and nsrv are related, we expect that ρsrv should increase
with nsrv. Figure 14(a) shows our experimental results for ρsrv as a function of nsrv. Note that
ρsrv = ρref corresponds to nsrv = p = 10, where p is the packing factor. We obtain Figure 14(a)
by converting rsrv in Figure 13 to ρsrv using Equation 1 above. Observe that when ρsrv doubles
from 7 to 14, we see that nsrv more than triples from 10 to 32, as was the case in Figure 13.

We’ll now estimate ρsys, the system load, using the relationship between nsrv and ρsrv. To
estimate ρsys, we first approximate nsrv as nsys

kcurr
, where kcurr is the current number of on servers.

We then use nsrv in Figure 14(a) to estimate the corresponding ρsrv. Finally, we have ρsys =
kcurr · ρsrv.

Surprisingly, the relationship between nsrv and ρsrv does not change when request size changes.
Figure 14(b) shows our experimental results for the relationship between nsrv and ρsrv for different
request sizes. We see that the plot is invariant to changes in request size. Thus, while calculating
ρsys = kcurr ·ρsrv, we don’t have to worry about the request size and we can simply use Figure 14(a)
to estimate ρsys from nsys irrespective of the request size. Likewise, we find that the relationship
between nsrv and ρsrv does not change when the server speed changes. This is because a decrease
in server speed is the same as an increase in request size for our system.

The reason why the relationship between nsrv and ρsrv is agnostic to request size is because
ρsrv, by definition (see Equation 1), takes the request size into account. If the request size doubles,
then the request rate into a server needs to drop by a factor of 2 in order to maintain the same ρsrv.
These changes result in exactly the same amount of work entering the system per unit time, and
thus, nsrv does not change. The insensitivity of the relationship between nsrv and ρsrv to changes
in request size is consistent with queueing-theoretic analysis [22]. Interestingly, this insensitivity,
coupled with the fact that p is a constant for our system (see Section 4.2), results in ρref being
a constant for our system, since ρref is the same as ρsrv for the case when nsrv = p = 10 (see
Figure 14(a)). Thus, we only need to compute ρref once for our system.

Now that we have ρsys, we can translate this to kreqd using ρref . Since ρsys corresponds to the
total system load, while ρref corresponds to the load that a single server can handle, we deduce
that the required capacity is:

kreqd =

⌈
ρsys
ρref

⌉
In summary, we can get from nsys to kreqd by first translating nsys to ρsys, which leads us to kreqd,
as outlined below:

nsys
÷kcurr−−−−→ nsrv

F ig. 14(a)−−−−−−→ ρsrv
×kcurr−−−−→ ρsys

÷ρref−−−→ kreqd (3)

18

For example, if nsys = 320 and kcurr = 10, then we get nsrv = 32, and from Figure 14(a),
ρsrv = 14, irrespective of request size. The load for the system, ρsys, is then given by kcurr · ρsrv =
140, and since ρref = 7, the required capacity is kreqd = dk · ρsrvρref

e = 20. Consequently, AutoScale
turns on 10 additional servers. In our implementation, we reevaluate kreqd every 20s to avoid
excessive changes in the number of servers.

The insensitivity of the relationship between nsrv and ρsrv allows us to use Equation 3 to com-
pute the desired capacity, kreqd, in response to any form of load change. Further, as noted above, p
and ρref are constants for our system, and only need to be computed once. These properties make
AutoScale a very robust capacity management policy.

Performance of AutoScale
Tables 4 and 5 summarize results for the case where the number of key-value lookups per request
(or the request size) increases by a factor of 2 and 4 respectively. Because request sizes are dra-
matically larger, and because the number of servers in our testbed is limited, we compensate for
the increase in request size by scaling down the request rate by the same factor. Thus, in Table 4,
request sizes are a factor of two larger than in Table 3, but the request rate is half that of Table 3.
The T95 values are expected to increase as compared with Table 3 because each request now takes
longer to complete (since it does more key-value lookups).

Looking at AutoScale in Table 4, we see that T95 increases to around 700ms, while in Table 5,
it increases to around 1200ms. This is to be expected. By contrast, for all other dynamic capacity
management policies, the T95 values exceed one minute, both in Tables 4 and 5. Again, this is
because these policies react only to changes in the request rate, and thus end up typically under-
provisioning. AlwaysOn knows the peak load ahead of time, and thus, always keeps Navg = 14
servers on. As expected, the T95 values for AlwaysOn are quite good, but Pavg and Navg are very
high. Comparing AutoScale and Opt, we see that Opt’s power consumption and server usage is
again only about 30% less than that of AutoScale.

Table 6 illustrates another way in which load can change. Here, we return to the 1x request
size, but this time all servers have been slowed down to a frequency of 1.6 GHz as compared with
the default frequency of 2.26 GHz. By slowing down the frequency of the servers, T95 naturally
increases. We find that for all the dynamic capacity management policies, except for AutoScale,
the T95 shoots up. The reason is that these other dynamic capacity management policies provision
capacity based on the request rate. Since the request rate has not changed as compared to Table 3,
they typically end up under-provisioning, now that servers are slower. The T95 for AlwaysOn does
not shoot up because even in Table 3, it is greatly over-provisioning by provisioning for the peak
load at all times. Since the AutoScale policy is robust to all changes in load, it provisions correctly,
resulting in acceptable T95 values. Pavg and Navg values for AutoScale continue to be much lower
than that of AlwaysOn, similar to Table 3.

Figure 15 shows the server behavior under AutoScale for the Dual phase trace for request sizes
of 1x, 2x and 4x. Clearly, AutoScale is successful at handling the changes in load due to both,
changes in request rate and changes in request size.

19

PPPPPPPPPTrace
Policy

AlwaysOn Reactive
Predictive Predictive

Opt AutoScale
MWA LR

Slowly
varying

[18]

T95 478ms > 1 min > 1 min > 1 min 531ms 701ms
Pavg 2,127W 541W 597W 728W 667W 923W
Navg 14.0 3.2 2.7 3.8 4.0 5.4

Dual phase
[31]

T95 424ms > 1 min > 1 min > 1 min 532ms 726ms
Pavg 2,190W 603W 678W 1,306W 996W 1,324W
Navg 14.0 3.0 2.6 6.6 5.8 7.3

Table 4: Comparison of all policies for 2x request size2.

PPPPPPPPPTrace
Policy

AlwaysOn Reactive
Predictive Predictive

Opt AutoScale
MWA LR

Slowly
varying

[18]

T95 759ms > 1 min > 1 min > 1 min 915ms 1,155ms
Pavg 2,095W 280W 315W 391W 630W 977W
Navg 14.0 1.9 1.7 2.1 4.0 5.7

Dual phase
[31]

T95 733ms > 1 min > 1 min > 1 min 920ms 1,217ms
Pavg 2,165W 340W 389W 656W 985W 1,304W
Navg 14.0 1.7 1.8 3.2 5.9 7.2

Table 5: Comparison of all policies for 4x request size2.

PPPPPPPPPTrace
Policy

AlwaysOn Reactive
Predictive Predictive

Opt AutoScale
MWA LR

Slowly
varying

[18]

T95 572ms > 1 min > 1 min 3,339ms 524ms 760ms
Pavg 2,132W 903W 945W 863W 638W 1,123W
Navg 14.0 5.7 5.9 4.8 4.0 7.2

Dual phase
[31]

T95 362ms 24,401ms 23,412ms 2,527ms 485ms 564ms
Pavg 2,147W 1,210W 1,240W 2,058W 1,027W 1,756W
Navg 14.0 6.3 7.4 12.2 5.9 10.8

Table 6: Comparison of all policies for lower CPU frequency.

Tables 4, 5 and 6 clearly indicate the superior robustness of AutoScale which uses nsys to
respond to changes in load, allowing AutoScale to respond to all forms of changes in load.

2For a given arrival trace, when request size is scaled up, the size of the application tier should ideally be scaled up
as well so as to accommodate the increased load. However, since our application tier is limited to 28 servers, we follow
up an increase in request size with a proportionate decrease in request rate for the arrival trace. Thus, the peak load
(request rate times request size) is the same before and after the request size increase, and our 28 server application
tier suffices for the experiment. In particular, AlwaysOn, which knows the peak load ahead of time, is able to handle
peak load by keeping 14 servers on even as the request size increases.

20

(a) 1x: T95=474ms
Pavg=1,387W
Navg=7.6

(b) 2x: T95=726ms
Pavg=1,324W
Navg=7.3

(c) 4x: T95=1,217ms
Pavg=1,304W
Navg=7.2

Figure 15: Robustness of AutoScale to changes in request size. The request size is 1x (or 120ms)
in (a), 2x (or 240ms) in (b), and 4x (or 480ms) in (c).

5 Limitations of our work

Our evaluation thus far has demonstrated the potential benefits of using AutoScale. However, there
are some limitations to our work, which we discuss below.

1. The design of AutoScale includes a few key parameters: twait (see Table 2), p (derived in
Figure 6), ρref (derived in Equation 2), and the ρsrv vs. nsrv relationship (derived in Fig-
ure 14(a)). In order to deploy AutoScale on a given cluster, these parameters need to be
determined. Fortunately, all of the above parameters only need to be determined once for a
given cluster. This is because these parameters depend on the specifications of the system,
such as the server type, the setup time, and the application, which do not change at runtime.
Request rate, request size, and server speed, can all change at runtime, but these do not affect
the value of the above key parameters (see Section 4 for more details).

2. In Section 4, we considered a few different forms of changes in load, such as changes in
request size and changes in server speed, as well as changes in request rate. However, in
production environments, load can change in many additional ways. For example, consider
a scenario where some of the servers slow down due to software updates, while other servers
are being backed up, and the rest of the servers are experiencing network delays. Evaluating
AutoScale under all such scenarios is beyond the scope of this paper.

3. Our experimental evaluation is limited to a multi-tier testbed consisting of 38 servers, serv-
ing a web site with a key-value workload. Our testbed comprises an Apache load balancer, a
homogenous application tier running php, and a memcached tier with a persistent back-end
database. There are a variety of other application testbeds that we could have considered,
ranging from single-tier stateless applications to complex multi-tier applications that are de-
ployed in the industry today. The key feature that AutoScale depends on is having some
servers that are stateless, and can thus be turned off or repurposed to save power/cost. Fortu-
nately, many applications have this feature. For example, Facebook [12], Amazon [10] and

21

Windows Live Messenger [8], all use stateless servers as part of their platform. Thus, even
though we have a very specific testbed, it is representative of many real-world applications.

6 Prior Work

Dynamic capacity management can be divided into two types: reactive (a.k.a. control-theoretic)
approaches and predictive approaches. Reactive approaches, e.g., [24, 29, 13, 39, 40, 11], all
involve reacting immediately to the current request rate (or the current response time, or current
CPU utilization, or current power, etc.) by turning servers on or off. When the setup time is high
(260s), these can be inadequate for meeting response time goals because the effect of the increased
capacity only happens 260 seconds later.

Predictive approaches, e.g., [23, 33, 6, 17], aim to predict what the request rate will be 260
seconds from now, so that they can start turning on servers now if needed. Predictive or combined
approaches work well when workload is periodic or seasonal, e.g. [8, 9, 4, 37, 15, 36, 14]. However
when traffic is bursty and future arrivals are unknown, it is clearly hard to predict what will happen
260 seconds into the future.

We now discuss in detail the relevant prior work in predictive approaches and reactive ap-
proaches.

Predictive approaches
Krioukov et al. [23] use various predictive policies, such as Last Arrival, MWA, Exponentially
Weighted Average and LR, to predict the future request rate (to account for setup time), and then
accordingly add or remove servers from a heterogenous pool. The authors evaluate their dynamic
provisioning policies by simulating a multi-tier web application. The authors find that MWA and LR
work best for the traces they consider (Wikipedia.org traffic), providing significant power savings
over AlwaysOn. However, the AlwaysOn version used by the authors does not know the peak
request rate ahead of time (in fact, in many experiments they set AlwaysOn to provision for twice
the historically observed peak), and is thus not as powerful an adversary as the version we employ.

Chen et al. [8] use auto-regression techniques to predict the request rate for a seasonal arrival
pattern, and then accordingly turn servers on and off using a simple threshold policy. The authors
evaluate their dynamic provisioning policies via simulation for a single-tier application. The au-
thors find that their dynamic provisioning policy performs well for periodic request rate patterns
that repeat, say, on a daily basis. The authors evaluate their policies via simulation in a single-tier
setting. While the setup in [8] is very different (seasonal arrival patterns) from our own, there is
one similarity to AutoScale in their approach: like AutoScale, the authors in [8] use the index-based
routing (see Section 3.5). However, the policy in [8] does not have any of the robustness properties
of AutoScale, nor the twait timeout idea.

22

Reactive and mixed approaches
Horvath et al. [17] employ a reactive feedback mechanism, similar to the Reactive policy in this
paper, coupled with a non-linear regression based predictive approach to provision capacity for a
multi-tier web application. In particular, the authors monitor server CPU utilization and job re-
sponse times, and react by adding or removing servers based on the difference between observed
response time and target response time. The authors evaluate their reactive approach via imple-
mentation in a multi-tier setting.

In Urgaonkar et al. [36] and Gandhi et al. [14], the authors assume a different setup from our
own, whereby request rate is divided into two components, a long-term trend which is predictable,
and short-term variations which are unpredictable. The authors use predictive approaches to pro-
vision servers for long-term trends (over a few hours) in request rates and then use a reactive
controller, similar to the Reactive used in this paper, to react to short-term variations in request
rate.

While the above hybrid approaches can leverage the advantages of both predictive and reactive
approaches, they are not robust to changes in request size or server efficiency (see Section 4). In
fact, none of the prior work has considered changes in request size or server efficiency.

There is also a long list of papers that look at dynamic capacity management in the case of
negligible setup times (see, for example, [7, 25]). However, our focus in this paper is on dynamic
capacity management in the face of setup times.

7 Conclusion and Future Work
This paper considers dynamic capacity management policies for data centers facing bursty and
unpredictable load so as to save power/resources without violating response time SLAs. The diffi-
culty in dynamic capacity management is the large setup time associated with getting servers back
on. Reactive approaches that simply scale capacity based on the current request rate are too rash
to turn servers off, especially when request rate is bursty. Given the huge setup time needed to
turn servers back on, response times suffer greatly when request rate suddenly rises. Predictive
approaches that work well when request rate is periodic or seasonal, perform very poorly in our
case where traffic is unpredictable. Furthermore, as we show in Section 3.3, leaving a fixed buffer
of extra capacity is also not the right solution.

AutoScale takes a fundamentally different approach to dynamic capacity management than has
been taken in the past. First, AutoScale does not try to predict the future request rate. Instead,
AutoScale introduces a smart policy to automatically provision spare capacity, which can absorb
unpredictable changes in request rate. We make the case that to successfully meet response time
SLAs, it suffices to simply manage existing capacity carefully and not give away spare capacity
recklessly (see Table 3). Second, AutoScale is able to handle unpredictable changes not just in
the request rate but also unpredictable changes in the request size (see Tables 4 and 5) and the
server efficiency (see Table 6). AutoScale does this by provisioning capacity using not the request
rate, but rather the number of requests in the system, which it is able to translate into the correct

23

capacity via a novel, non-trivial algorithm. As illustrated via our experimental results in Tables 3 to
6, AutoScale outclasses existing optimized predictive and reactive policies in terms of consistently
meeting response time SLAs. While AutoScale’s 95%ile response time numbers are usually less
than one second, the 95%ile response times of existing predictive and reactive policies often exceed
one full minute!

Not only does AutoScale allow us to save power while meeting response time SLAs, but it also
allows us to save on rental costs when leasing resources (physical or virtual) from cloud service
providers by reducing the amount of resources needed to successfully meet response time SLAs.

While one might think that AutoScale will become less valuable as setup times decrease (due
to, example, sleep states or virtual machines), we find that this is not the case. AutoScale can
significantly lower response times when compared to existing policies even for low setup times
(see Figure 9). In fact, even when the setup time is only 20s, AutoScale can lower 95%ile response
times by a factor of 3.

References

[1] Amazon Inc. Amazon elastic compute cloud (Amazon EC2), 2008.

[2] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H. Katz, Andrew
Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia.
Above the clouds: A berkeley view of cloud computing. Technical Report UCB/EECS-
2009-28, EECS Department, University of California, Berkeley, 2009.

[3] Luiz André Barroso and Urs Hölzle. The case for energy-proportional computing. Computer,
40(12):33–37, 2007.

[4] N. Bobroff, A. Kochut, and K. Beaty. Dynamic Placement of Virtual Machines for Man-
aging SLA Violations. In Proceedings of the 10th IFIP/IEEE International Symposium on
Integrated Network Management, IM ’07, pages 119–128, Munich, Germany, 2007.

[5] Peter Bodı́k, Rean Griffith, Charles Sutton, Armando Fox, Michael Jordan, and David Patter-
son. Statistical machine learning makes automatic control practical for internet datacenters.
In Proceedings of the 2009 Conference on Hot Topics in Cloud Computing, HotCloud ’09,
San Diego, CA, 2009.

[6] Malu Castellanos, Fabio Casati, Ming-Chien Shan, and Umesh Dayal. ibom: A platform for
intelligent business operation management. In Proceedings of the 21st International Confer-
ence on Data Engineering, ICDE ’05, pages 1084–1095, Tokyo, Japan, 2005.

[7] Jeffrey S. Chase, Darrell C. Anderson, Prachi N. Thakar, and Amin M. Vahdat. Managing
energy and server resources in hosting centers. In Proceedings of the Eighteenth ACM Sym-
posium on Operating Systems Principles, SOSP ’01, pages 103–116, Chateau Lake Louise,
Banff, Canada, 2001.

24

[8] Gong Chen, Wenbo He, Jie Liu, Suman Nath, Leonidas Rigas, Lin Xiao, and Feng Zhao.
Energy-aware server provisioning and load dispatching for connection-intensive internet ser-
vices. In Proceedings of the 5th USENIX Symposium on Networked Systems Design and
Implementation, NSDI ’08, pages 337–350, San Francisco, CA, 2008.

[9] Yiyu Chen, Amitayu Das, Wubi Qin, Anand Sivasubramaniam, Qian Wang, and Natarajan
Gautam. Managing server energy and operational costs in hosting centers. In Proceedings
of the ACM SIGMETRICS International Conference on Measurement and Modeling of Com-
puter Systems, SIGMETRICS ’05, pages 303–314, Banff, Alberta, Canada, 2005.

[10] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash
Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels.
Dynamo: amazon’s highly available key-value store. In Proceedings of twenty-first ACM
SIGOPS Symposium on Operating Systems Principles, SOSP ’07, pages 205–220, Stevenson,
WA, 2007.

[11] E.N. Elnozahy, Michael Kistler, and Ramakrishnan Rajamony. Energy-efficient server clus-
ters. In Proceedings of the 2nd Workshop on Power-Aware Computing Systems, WPACS ’02,
pages 179–196, Cambridge, MA, 2002.

[12] Facebook. Personal communication with Facebook., 2011.

[13] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. Power provisioning for a
warehouse-sized computer. In Proceedings of the 34th Annual International Symposium on
Computer Architecture, ISCA ’07, pages 13–23, San Diego, CA, 2007.

[14] A. Gandhi, Y. Chen, D. Gmach, M. Arlitt, and M. Marwah. Minimizing data center sla
violations and power consumption via hybrid resource provisioning. In Proceedings of the
2nd International Green Computing Conference, IGCC ’11, Orlando, FL, 2011.

[15] Daniel Gmach, Stefan Krompass, Andreas Scholz, Martin Wimmer, and Alfons Kemper.
Adaptive quality of service management for enterprise services. ACM Trans. Web, 2(1):1–46,
2008.

[16] Dirk Grunwald, Charles B. Morrey, III, Philip Levis, Michael Neufeld, and Keith I. Farkas.
Policies for dynamic clock scheduling. In Proceedings of the 4th Conference on Symposium
of Operating System Design and Implementation, OSDI ’00, San Diego, CA, 2000.

[17] Tibor Horvath and Kevin Skadron. Multi-mode energy management for multi-tier server
clusters. In Proceedings of the 17th International Conference on Parallel Architectures and
Compilation Techniques, PACT ’08, pages 270–279, Toronto, Ontario, Canada, 2008.

[18] ita. The internet traffic archives: WorldCup98. http://ita.ee.lbl.gov/html/contrib/WorldCup.html,
1998.

25

[19] Sitaram Iyer and Peter Druschel. Anticipatory scheduling: a disk scheduling framework to
overcome deceptive idleness in synchronous I/O. In Proceedings of the eighteenth ACM
Symposium on Operating Systems Principles, SOSP ’01, pages 117–130, Banff, Alberta,
Canada, 2001.

[20] J. Kim and T. S. Rosing. Power-aware resource management techniques for low-power em-
bedded systems. In S. H. Son, I. Lee, and J. Y-T Leung, editors, Handbook of Real-Time and
Embedded Systems. Taylor-Francis Group LLC, 2006.

[21] Avi Kivity. kvm: the Linux virtual machine monitor. In Proceedings of the 2007 Ottawa
Linux Symposium, OLS ’07, pages 225–230, Ottawa, Canada, 2007.

[22] Leonard Kleinrock. Queueing Systems, Volume I: Theory. Wiley-Interscience, 1975.

[23] Andrew Krioukov, Prashanth Mohan, Sara Alspaugh, Laura Keys, David Culler, and Randy
Katz. Napsac: Design and implementation of a power-proportional web cluster. In Proceed-
ings of the First ACM SIGCOMM Workshop on Green Networking, Green Networking ’10,
pages 15–22, New Delhi, India, 2010.

[24] Julius C.B. Leite, Dara M. Kusic, and Daniel Mossé. Stochastic approximation control of
power and tardiness in a three-tier web-hosting cluster. In Proceeding of the 7th International
Conference on Autonomic Computing, ICAC ’10, pages 41–50, Washington, DC, 2010.

[25] Seung-Hwan Lim, Bikash Sharma, Byung Chul Tak, and Chita R. Das. A dynamic energy
management in multi-tier data centers. In Proceedings of the IEEE International Symposium
on Performance Analysis of Systems and Software, ISPASS ’11, pages 257–266, Austin, TX,
2011.

[26] Yung-Hsiang Lu, Eui-Young Chung, Tajana Šimunić, Luca Benini, and Giovanni De Micheli.
Quantitative comparison of power management algorithms. In Proceedings of the conference
on Design, Automation and Test in Europe, DATE ’00, pages 20–26, Paris, France, 2000.

[27] David Meisner, Christopher M. Sadler, Luiz André Barroso, Wolf-Dietrich Weber, and
Thomas F. Wenisch. Power management of online data-intensive services. In Proceedings
of the 38th Annual International Symposium on Computer Architecture, ISCA ’11, pages
319–330, 2011.

[28] David Mosberger and Tai Jin. httperf—A Tool for Measuring Web Server Performance. ACM
Sigmetrics: Performance Evaluation Review, 26(3):31–37, 1998.

[29] Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. Q-clouds: Managing performance
interference effects for qos-aware clouds. In Proceedings of the 5th European Conference on
Computer Systems, EuroSys ’10, pages 237–250, Paris, France, 2010.

[30] M. E. J. Newman. Power laws, pareto distributions and zipf’s law. Contemporary Physics,
46:323–351, December 2005.

26

[31] nlanr. National Laboratory for Applied Network Research. Anonymized access logs.
ftp://ftp.ircache.net/Traces/, 1995.

[32] Trevor Pering, Tom Burd, and Robert Brodersen. The simulation and evaluation of dynamic
voltage scaling algorithms. In Proceedings of the International Symposium on Low Power
Electronics and Design, ISLPED ’98, pages 76–81, Monterey, CA, 1998.

[33] W. Qin and Q. Wang. Modeling and control design for performance management of web
servers via an IPV approach. IEEE Transactions on Control Systems Technology, 15(2):259–
275, March 2007.

[34] sap. SAP application trace from anonymous source., 2011.

[35] Bill Snyder. Server virtualization has stalled, despite the hype.
http://www.infoworld.com/print/146901, December 2010.

[36] Bhuvan Urgaonkar and Abhishek Chandra. Dynamic provisioning of multi-tier internet ap-
plications. In Proceedings of the Second International Conference on Automatic Computing,
ICAC ’05, pages 217–228, Seattle, WA, 2005.

[37] Bhuvan Urgaonkar, Giovanni Pacifici, Prashant Shenoy, Mike Spreitzer, and Asser Tantawi.
An analytical model for multi-tier internet services and its applications. In Proceedings of
the 2005 ACM SIGMETRICS International Conference on Measurement and Modeling of
Computer Systems, SIGMETRICS ’05, pages 291–302, Banff, Alberta, Canada, 2005.

[38] Akshat Verma, Gargi Dasgupta, Tapan Kumar Nayak, Pradipta De, and Ravi Kothari. Server
workload analysis for power minimization using consolidation. In Proceedings of the 2009
Conference on USENIX Annual Technical Conference, USENIX ’09, San Diego, CA, 2009.

[39] X. Wang and M. Chen. Cluster-level feedback power control for performance optimization.
In Proceeding of the 14th IEEE International Symposium on High-Performance Computer
Architecture, HPCA ’08, pages 101–110, Salt Lake City, UT, 2008.

[40] Timothy Wood, Prashant J. Shenoy, Arun Venkataramani, and Mazin S. Yousif. Black-box
and gray-box strategies for virtual machine migration. In Proceedings of the 4th USENIX
conference on Networked Systems Design and Implementation, NSDI ’07, pages 229–242,
Cambridge, MA, 2007.

27

