
Lecture 20:
Satisfiability

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena

Problem of the Day

Suppose we are given a subroutine which can solve the
traveling salesman decision problem in, say, linear time. Give
an efficient algorithm to find the actual TSP tour by making a
polynomial number of calls to this subroutine.

The Main Idea

Suppose I gave you the following algorithm to solve the
bandersnatch problem:

Bandersnatch(G)
Convert G to an instance of the Bo-billy problem Y .
Call the subroutine Bo-billy on Y to solve this instance.
Return the answer of Bo-billy(Y) as the answer to G.

Such a translation from instances of one type of problem to
instances of another type such that answers are preserved is
called a reduction.

What Does this Imply?

Now suppose my reduction translates G to Y in O(P (n)):

1. If my Bo-billy subroutine ran in O(P ′(n)) I can solve the
Bandersnatch problem in O(P (n) + P ′(n′))

2. If I know that Ω(P ′(n)) is a lower-bound to compute
Bandersnatch, then Ω(P ′(n) − P (n′)) must be a lower-
bound to compute Bo-billy.

The second argument is the idea we use to prove problems
hard!

Satisfiability

Consider the following logic problem:
Instance: A set V of variables and a set of clauses C over V .
Question: Does there exist a satisfying truth assignment for
C?
Example 1: V = v1, v2 and C = {{v1, v2}, {v1, v2}}
A clause is satisfied when at least one literal in it is TRUE. C

is satisfied when v1 = v2 =TRUE.

Not Satisfiable

Example 2: V = v1, v2,

C = {{v1, v2}, {v1, v2}, {v1}}

Although you try, and you try, and you try and you try, you
can get no satisfaction.
There is no satisfying assigment since v1 must be FALSE
(third clause), so v2 must be FALSE (second clause), but then
the first clause is unsatisfiable!

Satisfiability is Hard

Satisfiability is known/assumed to be a hard problem.
Every top-notch algorithm expert in the world has tried and
failed to come up with a fast algorithm to test whether a given
set of clauses is satisfiable.
Further, many strange and impossible-to-believe things have
been shown to be true if someone in fact did find a fast
satisfiability algorithm.

3-Satisfiability

Instance: A collection of clause C where each clause contains
exactly 3 literals, boolean variable v.
Question: Is there a truth assignment to v so that each clause
is satisfied?
Note that this is a more restricted problem than SAT. If 3-SAT
is NP-complete, it implies SAT is NP-complete but not visa-
versa, perhaps long clauses are what makes SAT difficult?!
After all, 1-Sat is trivial!

3-SAT is NP-Complete

To prove it is complete, we give a reduction from
Sat ∝ 3−Sat. We will transform each clause independantly
based on its length.
Suppose the clause Ci contains k literals.

• If k = 1, meaning Ci = {z1}, create two new variables
v1, v2 and four new 3-literal clauses:

{v1, v2, z1}, {v1, v2, z1}, {v1, v2, z1}, {v1, v2, z1}.

Note that the only way all four of these can be satisfied is
if z is TRUE.

• If k = 2, meaning {z1, z2}, create one new variable v1 and
two new clauses: {v1, z1, z2}, {v1, z1, z2}

• If k = 3, meaning {z1, z2, z3}, copy into the 3-SAT
instance as it is.

• If k > 3, meaning {z1, z2, ..., zn}, create n − 3 new
variables and n − 2 new clauses in a chain: {vi, zi, vi},
. . .

Why does the Chain Work?

If none of the original variables in a clause are TRUE, there
is no way to satisfy all of them using the additional variable:

(F, F, T), (F, F, T), . . . , (F, F, F)

But if any literal is TRUE, we have n − 3 free variables and
n − 3 remaining 3-clauses, so we can satisfy each of them.
(F, F, T), (F, F, T), . . . , (F, T,F), . . . , (T, F, F), (T, F, F)
Any SAT solution will also satisfy the 3-SAT instance and
any 3-SAT solution sets variables giving a SAT solution, so
the problems are equivallent.

4-Sat and 2-Sat

A slight modification to this construction would prove 4-SAT,
or 5-SAT,... also NP-complete.
However, it breaks down when we try to use it for 2-SAT,
since there is no way to stuff anything into the chain of
clauses.
Now that we have shown 3-SAT is NP-complete, we may use
it for further reductions. Since the set of 3-SAT instances
is smaller and more regular than the SAT instances, it will
be easier to use 3-SAT for future reductions. Remember the
direction to reduction!

Sat ∝ 3 − Sat ∝ X

A Perpetual Point of Confusion

Note carefully the direction of the reduction.
We must transform every instance of a known NP-complete
problem to an instance of the problem we are interested in. If
we do the reduction the other way, all we get is a slow way
to solve x, by using a subroutine which probably will take
exponential time.
This always is confusing at first - it seems bass-ackwards.
Make sure you understand the direction of reduction now -
and think back to this when you get confused.

Vertex Cover
Instance: A graph G = (V, E), and integer k ≤ V

Question: Is there a subset of at most k vertices such that
every e ∈ E has at least one vertex in the subset?

Here, four of the eight vertices suffice to cover.
It is trivial to find a vertex cover of a graph – just take all
the vertices. The tricky part is to cover with as small a set as
possible.

Vertex cover is NP-complete

To prove completeness, we show reduce 3-SAT to VC. From
a 3-SAT instance with n variables and C clauses, we construct
a graph with 2N + 3C vertices.
For each variable, we create two vertices connected by an
edge:

......

v1 v1 v2 v2 v3 v3 vn vn

To cover each of these edges, at least n vertices must be in
the cover, one for each pair.

Clause Gadgets

For each clause, we create three new vertices, one for each
literal in each clause. Connect these in a triangle.
At least two vertices per triangle must be in the cover to take
care of edges in the triangle, for a total of at least 2C vertices.
Finally, we will connect each literal in the flat structure to the
corresponding vertices in the triangles which share the same
literal.

v1 v1 v2 v2 v3 v3 v4 v4

v2v3

v1 v4 v1 v4

Claim: G has a vertex cover of size N + 2C iff S
is Satisfiable

Any cover of G must have at least N + 2C vertices. To show
that our reduction is correct, we must show that:

1. Every satisfying truth assignment gives a cover.

Select the N vertices cooresponding to the TRUE literals
to be in the cover. Since it is a satisfying truth assignment,
at least one of the three cross edges associated with each
clause must already be covered - pick the other two
vertices to complete the cover.

2. Every vertex cover gives a satisfying truth assignment.

Every vertex cover must contain n first stage vertices and
2C second stage vertices. Let the first stage vertices define
the truth assignment.

To give the cover, at least one cross-edge must be covered,
so the truth assignment satisfies.

Example Reduction

Every SAT defines a cover and Every Cover Truth values for
the SAT!
Example: V1 = V2 = True, V3 = V4 = False.

v1 v1 v2 v2 v3 v3 v4 v4

v2v3

v1 v4 v1 v4

Starting from the Right Problem

As you can see, the reductions can be very clever and very
complicated. While theoretically any NP -complete problem
can be reduced to any other one, choosing the correct one
makes finding a reduction much easier.

3 − Sat ∝ V C

As you can see, the reductions can be very clever and
complicated. While theoretically any NP-complete problem
will do, choosing the correct one can make it much easier.

Maximum Clique

Instance: A graph G = (V, E) and integer j ≤ v.
Question: Does the graph contain a clique of j vertices, ie. is
there a subset of v of size j such that every pair of vertices in
the subset defines an edge of G?
Example: this graph contains a clique of size 5.

Clique is NP-complete

When talking about graph problems, it is most natural to work
from a graph problem - the only NP-complete one we have is
vertex cover!
If you take a graph and find its vertex cover, the remaining
vertices form an independent set, meaning there are no edges
between any two vertices in the independent set, for if there
were such an edge the rest of the vertices could not be a vertex
cover.

vertex in cover

vertex in independant
set

Clearly the smallest vertex cover gives the biggest indepen-
dent set, and so the problems are equivallent – Delete the
subset of vertices in one from the total set of vertices to get
the order!
Thus finding the maximum independent set must be NP-
complete!

From Independent Set

In an independent set, there are no edges between two
vertices. In a clique, there are always between two vertices.
Thus if we complement a graph (have an edge iff there was no
edge in the original graph), a clique becomes an independent
set and an independent set becomes a Clique!

Max Clique = 5 Max Clique = 2
Max IS = 2 Max IS = 5

Punch Line

Thus finding the largest clique is NP-complete:
If V C is a vertex cover in G, then V − V C is a clique in G′.
If C is a clique in G, V − C is a vertex cover in G′.

