
Lecture 8:
Sorting (1997)

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena

Show that anyn-node tree can be transformed to any other
usingO(n) rotations (hint: convert to a right going chain).

I will start by showing weaker bounds - thatO(n2) and
O(n log n) rotations suffice - because that is how I proceeded
when I first saw the problem.
First, observe that creating a right-going, fort2 path fromt1
¡ and reversing the same construction gives a path fromt1 to
t2.
Note that it will take at mostn rotations to make the lowest
valued key the root. Once it is root, all keys are to the right of
it, so no more rotations need go through it to create a right-
going chain. Repeating with the second lowest key, third, etc.

gives thatO(n2) rotations suffice.
Now that if we try to create a completely balanced tree
instead. To get then/2 key to the root takes at mostn
rotations. Now each subtree has half the nodes and we can
recur...

N

N/2 N/2

N/4 N/4 N/4 N/4

To get a linear algorithm, we must beware of trees like:

1

2

3

4

5

6

7

8

9

10

11

12 1

2

3

4

5

6

7

8

9

The correct answer is thatn − 1 rotations suffice to get to a
rightmost chain.
By picking the lowest node on the rightmost chain which has
a left ancestor, we can add one nodeper rotation to the right
most chain!

y

x z

x

y

zz

z

zz

Initially, the rightmost chain contained at least 1 node, soafter
n − 1 rotations it contains alln. Slick!

Given an elementx in an n-node order-statistic binary tree
and a natural numberi, how can theith successor ofx be
determined inO(lg n) time.

This problem can be solved if our data structure supports two
operations:

• Rank(x) – what is the position ofx in the total order of
keys?

• Get(i) – what is the key in theith position of the total order
of keys?

What we are interested in isGet(Rank(x) + i).
In an order statistic tree, each nodex is labeled with the
number of nodes contained in the subtree rooted inx.

8 7

3 3

1111

3

11

4

2

1

1

16

Implementing both operations involves keeping track of how
many nodes lie to the left of our path.

Why don’t CS profs ever stop talking about
sorting?!

1. Computers spend more time sorting than anything else,
historically 25% on mainframes.

2. Sorting is the best studied problem in computer science,
with a variety of different algorithms known.

3. Most of the interesting ideas we will encounter in the
course can be taught in the context of sorting, such as
divide-and-conquer, randomized algorithms, and lower
bounds.

You should have seen most of the algorithms - we will
concentrate on the analysis.

Applications of Sorting

One reason why sorting is so important is that once a set of
items is sorted, many other problems become easy.

Searching

Binary search lets you test whether an item is in a dictionary
in O(lg n) time.
Speeding up searching is perhaps the most important
application of sorting.

Closest pair

Givenn numbers, find the pair which are closest to each other.
Once the numbers are sorted, the closest pair will be next to
each other in sorted order, so anO(n) linear scan completes
the job.

Element uniqueness

Given a set ofn items, are they all unique or are there any
duplicates?
Sort them and do a linear scan to check all adjacent pairs.
This is a special case of closest pair above.

Frequency distribution – Mode

Given a set ofn items, which element occurs the largest
number of times?
Sort them and do a linear scan to measure the length of all
adjacent runs.

Median and Selection

What is thekth largest item in the set?
Once the keys are placed in sorted order in an array, thekth
largest can be found in constant time by simply looking in the
kth position of the array.

Convex hulls

Given n points in two dimensions, find the smallest area
polygon which contains them all.

The convex hull is like a rubber band stretched over the
points.
Convex hulls are the most important building block for more
sophisticated geometric algorithms.
Once you have the points sorted by x-coordinate, they can be

inserted from left to right into the hull, since the rightmost
point is always on the boundary.
Without sorting the points, we would have to check whether
the point is inside or outside the current hull.
Adding a new rightmost point might cause others to be
deleted.

Huffman codes

If you are trying to minimize the amount of space a text file is
taking up, it is silly to assign each letter the same length (ie.
one byte) code.
Example:e is more common thanq, a is more common than
z.
If we were storing English text, we would wanta ande to
have shorter codes thanq andz.
To design the best possible code, the first and most important
step is to sort the characters in order of frequency of use.

CharacterFrequencyCode
f 5 1100
e 9 1101
c 12 100
b 13 101
d 16 111
a 45 0

Selection Sort

A simpleO(n2) sorting algorithm is selection sort.
Sweep through all the elements to find the smallest item, then
the smallest remaining item, etc. until the array is sorted.

Selection-sort(A)
for i = 1 to n

for j = i + 1 to n
if (A[j] < A[i]) then swap(A[i],A[j])

It is clear this algorithm must be correct from an inductive
argument, since theith element is in its correct position.
It is clear that this algorithm takesO(n2) time.
It is clear that the analysis of this algorithm cannot be
improved because there will ben/2 iterations which will

require at leastn/2 comparisons each, so at leastn2/4
comparisons will be made. More careful analysis doubles
this.
Thus selection sort runs inΘ(n2) time.

Binary Heaps

A binary heapis defined to be a binary tree with a key in each
node such that:

1. All leaves are on, at most, two adjacent levels.

2. All leaves on the lowest level occur to the left, and all
levels except the lowest one are completely filled.

3. The key in root is≥ all its children, and the left and right
subtrees are again binary heaps.

Conditions 1 and 2 specify shape of the tree, and condition 3
the labeling of the tree.

1/1

7/4 2/2

12/7 10/30 12/25

The ancestor relation in a heap defines apartial order on its
elements, which means it is reflexive, anti-symmetric, and
transitive.

1. Reflexive:x is an ancestor of itself.

2. Anti-symmetric: if x is an ancestor ofy and y is an
ancestor ofx, thenx = y.

3. Transitive: if x is an ancestor ofy andy is an ancestor of
z, x is an ancestor ofz.

Partial orders can be used to model heirarchies with
incomplete information or equal-valued elements. One of
my favorite games with my parents is fleshing out the partial
order of “big” old-time movie stars.

The partial order defined by the heap structure is weaker than
that of the total order, which explains

1. Why it is easier to build.

2. Why it is less useful than sorting (but still very important).

Constructing Heaps

Heaps can be constructed incrementally, by inserting new
elements into the left-most open spot in the array.
If the new element is greater than its parent, swap their
positions and recur.
Since at each step, we replace the root of a subtree by a larger
one, we preserve the heap order.
Since all but the last level is always filled, the heighth of an
n element heap is bounded because:

h∑

i=1
2i = 2h+1 − 1 ≥ n

soh = ⌊lg n⌋.

Doing n such insertions takesΘ(n log n), since the lastn/2
insertions requireO(log n) time each.

Heapify

The bottom up insertion algorithm gives a good way to build
a heap, but Robert Floyd found a better way, using amerge
procedure calledheapify.
Given two heaps and a fresh element, they can be merged into
one by making the new one the root and trickling down.

Build-heap(A)
n = |A|
For i = ⌊n/2⌋ to 1 do

Heapify(A,i)

Heapify(A,i)

left = 2i
right = 2i + 1
if (left ≤ n) and(A[left] > A[i]) then

max = left
else max = i

if (right ≤ n) and(A(right] > A[max]) then
max = right

if (max 6= i) then
swap(A[i],A[max])
Heapify(A,max)

Rough Analysis of Heapify

Heapify on a subtree containingn nodes takes

T (n) ≤ T (2n/3) + O(1)

The 2/3 comes from merging heaps whose levels differ by
one. The last row could be exactly half filled. Besides, the
asymptotic answer won’t change so long the fraction is less
than one.
Solve the recurrence using the Master Theorem.
Let a = 1, b = 3/2 andf (n) = 1.
Note thatΘ(nlog3/2 1) = Θ(1), sincelog3/2 1 = 0.
Thus Case 2 of the Master theorem applies.

The Master Theorem:Let a ≥ 1 andb > 1 be constants, letf(n) be a function, and letT (n) be defined on the nonnegative integers by the recurrence

T (n) = aT (n/b) + f(n)

where we interpretn/b to mean either⌊n/b⌋ or ⌈n/b⌉. ThenT (n) can be bounded asymptotically as follows:

1. If f(n) = O(nlogb a−ǫ) for some constantǫ > 0, thenT (n) = Θ(nlogb a).

2. If f(n) = Θ(nlogb a), thenT (n) = Θ(nlogb a lg n).

3. If f(n) = Ω(nlog
b

a+ǫ) for some constantǫ > 0, and ifaf(n/b) ≤ cf(n) for some constantc < 1, and all sufficiently largen, thenT (n) = Θ(f(n)).

Exact Analysis of Heapify

In fact, Heapify performs better thanO(n log n), because
most of the heaps we merge are extremely small.

A

Z T

M

C D

Y

B X

 R J

 L P F H

In a full binary tree onn nodes, there aren/2 nodes which
are leaves (i.e. height 0),n/4 nodes which are height 1,n/8

nodes which are height 2, . . .
In general, there are at most⌈n/2h+1⌉ nodes of heighth, so
the cost of building a heap is:

⌊lgn⌋∑

h=0
⌈n/2h+1⌉O(h) = O(n

⌊lg n⌋∑

h=0
h/2h)

Since this sum is not quite a geometric series, we can’t apply
the usual identity to get the sum. But it should be clear that
the series converges.

Proof of Convergence

Series convergence is the “free lunch” of algorithm analysis.
The identify for the sum of a geometric series is

∞∑

k=0
xk =

1

1 − x

If we take the derivative of both sides, . . .
∞∑

k=0
kxk−1 =

1

(1 − x)2

Multiplying both sides of the equation byx gives the identity
we need:

∞∑

k=0
kxk =

x

(1 − x)2

Substitutingx = 1/2 gives a sum of 2, so Build-heap uses at
most2n comparisons and thus linear time.

The Lessons of Heapsort, I

”Are we doing a careful analysis? Might our algorithm be
faster than it seems?”
Typically in our analysis, we will say that since we are doing
at mostx operations of at mosty time each, the total time is
O(xy).
However, if we overestimate too much, our bound may not be
as tight as it should be!

Heapsort

Heapify can be used to construct a heap, using the observation
that an isolated element forms a heap of size 1.

Heapsort(A)
Build-heap(A)
for i = n to 1 do

swap(A[1],A[i])
n = n − 1
Heapify(A,1)

If we construct our heap from bottom to top using Heapify,
we do not have to do anything with the lastn/2 elements.

With the implicit tree defined by array positions, (i.e. theith
position is the parent of the2ith and(2i + 1)st positions) the
leaves start out as heaps.
Exchanging the maximum element with the last element
and calling heapify repeatedly gives anO(n lg n) sorting
algorithm, namedHeapsort.

Heapsort Animations

The Lessons of Heapsort, II

Always ask yourself, “Can we use a different data structure?”
Selection sort scans throught the entire array, repeatedly
finding the smallest remaining element.

For i = 1 to n
A: Find the smallest of the firstn − i + 1 items.
B: Pull it out of the array and put it first.

Using arrays or unsorted linked lists as the data structure,
operationA takesO(n) time and operationB takesO(1).
Using heaps, both of these operations can be done within
O(lg n) time, balancing the work and achieving a better
tradeoff.

Priority Queues

A priority queueis a data structure on sets of keys supporting
the following operations:

• Insert(S, x)- insertx into setS

• Maximum(S)- return the largest key inS

• ExtractMax(S)- return and remove the largest key inS

These operations can be easily supported using a heap.

• Insert- use the trickle up insertion inO(log n).

• Maximum- read the first element in the array inO(1).

• Extract-Max- delete first element, replace it with the last,
decrement the element counter, then heapify inO(log n).

Applications of Priority Queues

Heaps as stacks or queues

• In a stack,pushinserts a new item andpop removes the
most recently pushed item.

• In a queue,enqueueinserts a new item anddequeue
removes the least recently enqueued item.

Both stacks and queues can be simulated by using a heap,
when we add a newtimefield to each item and order the heap
according it this time field.

• To simulate the stack, increment the time with each
insertion and put the maximum on top of the heap.

• To simulate the queue, decrement the time with each
insertion and put the maximum on top of the heap (or
increment times and keep the minimum on top)

This simulation is not as efficient as a normal stack/queue
implementation, but it is a cute demonstration of the
flexibility of a priority queue.

Discrete Event Simulations

In simulations of airports, parking lots, and jai-alai – priority
queues can be used to maintain who goes next.
The stack and queue orders are just special cases of orderings.
In real life, certain people cut in line.

Sweepline Algorithms in Computational
Geometry

In the priority queue, we will store the points we have not
yet encountered, ordered byx coordinate. and push the line
forward one stop at a time.

Greedy Algorithms

In greedy algorithms, we always pick the next thing which
locally maximizes our score. By placing all the things in a
priority queue and pulling them off in order, we can improve
performance over linear search or sorting, particularly ifthe
weights change.
Example: Sequential strips in triangulations.

Danny Heep

