
Lecture 3:
Recurrence Relations (1997)

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena

Argue the solution to

T (n) = T (n/3) + T (2n/3) + n

is Ω(n lg n) by appealing to the recursion tree.

Draw the recursion tree.
T(n)

T(n/3) T(2n/3)

T(n/9) T(2n/9) T(2n/9) T(4n/9)

n

n

n

n

2n/3

2n/9

n/3

n/9 2n/9 4n/9

How many levels does the tree have? This is equal to the
longest path from the root to a leaf.
The shortest path to a leaf occurs when we take the heavy

branch each time. The heightk is given byn(1/3)k ≤ 1,
meaningn ≤ 3k or k ≥ lg3 n.
The longest path to a leaf occurs when we take the light
branch each time. The heightk is given byn(2/3)k ≤ 1,
meaningn ≤ (3/2)k or k ≥ lg3/2 n.
The problem asks to show thatT (n) = Ω(n lg n), meaning
we are looking for a lower bound
On any full level, the additive terms sums ton. There are
log3 n full levels. ThusT (n) ≥ n log3 n = Ω(n lg n)

Use iteration to solve T (n) = T (n − a) + T (a) + n, where
a ≥ 1 is a constant.

Note iteration is backsubstitution.

T (n) = T (n − a) + T (a) + n

= (T (n − 2a) + T (a) + n − a) + T (a) + n

= (T (n − 3a) + T (a) + n − 2a) + 2T (a) + 2n − 3a
...

≈
n/a
∑

i=0
T (a) +

n/a
∑

i=0
n − ia

≈ (n/a)T (a) +
n/a
∑

i=0
n − a

n/a
∑

i=0
i

≈ (n/a)T (a) + n
n/a
∑

i=0
1 − a

n/a
∑

i=0
i

≈ (n/a)T (a) + n(n/a) − a(n/a)2/2

Recurrence Relations

Many algorithms, particularly divide and conquer algorithms,
have time complexities which are naturally modeled by
recurrence relations.
A recurrence relation is an equation which is defined in terms
of itself.
Why are recurrences good things?

1. Many natural functions are easily expressed as recur-
rences:

an = an−1 + 1, a1 = 1 −→ an = n (polynomial)

an = 2an−1, a1 = 1 −→ an = 2n−1 (exponential)

an = nan−1, a1 = 1 −→ an = n! (weird function)

2. It is often easy to find a recurrence as the solution of a
counting problem.Solving the recurrence can be done for
many special cases as we will see, although it is somewhat
of an art.

Recursionis Mathematical Induction!

In both, we have general and boundary conditions, with
the general condition breaking the problem into smaller and
smaller pieces.
Theinitial or boundary condition terminate the recursion.
As we will see, induction provides a useful tool to solve
recurrences – guess a solution and prove it by induction.

Tn = 2Tn−1 + 1, T0 = 0

n 0 1 2 3 4 5 6 7
Tn 0 1 3 7 15 31 63 127

Guess what the solution is?

ProveTn = 2n − 1 by induction:

1. Show that the basis is true:T0 = 20 − 1 = 0.

2. Now assume true forTn−1.

3. Using this assumption show:

Tn = 2Tn−1 + 1 = 2(2n−1 − 1) + 1 = 2n − 1

Solving Recurrences

No general procedure for solving recurrence relations is
known, which is why it is an art. My approach is:

Realize that linear, finite history, constant
coefficient recurrences always can be solved

Check out any combinatorics or differential equations book
for a procedure.
Consideran = 2an−1 + 2an−2 + 1, a1 = 1, a2 = 1
It has history = 2, degree = 1, and coefficients of 2 and 1.
Thus it can be solved mechanically! Proceed:

• Find the characteristic equation, eg.

α2 − 2α = 2 = 0

• Solve to get roots, which appear in the exponents.

• Take care of repeated roots and inhomogeneous parts.

• Find the constants to finish the job.

an = −1/3 + (1−
√

3)n(1 +
√

3)/3 + (1 +
√

3)n(−1 +
√

3)/3

Systems like Mathematica and Maple have packages for
doing this.

Guess a solution and prove by induction

To guess the solution, play around with small values for
insight.
Note that you can do inductive proofs with the big-O’s
notations - just be sure you use it right.
Example: T (n) ≤ 2c⌊n/2⌋ lg(⌊n/2⌋) + n.
Show thatT (n) ≤ c ·n lg n for large enoughc andn. Assume
that it is true forn/2, then

T (n) ≤ 2c⌊n/2⌋ lg(⌊n/2⌋) + n

≤ c · n lg(⌊n/2⌋) + n dropping floors makes it bigger
= c · n(lg n − (lg 2 = 1)) + n log of division
= c · n lg n − cn + n

≤ c · n lg n wheneverc > 1

Starting with basis casesT (2) = 4, T (3) = 5, lets us complete
the proof forc ≥ 2.

Try backsubstituting until you know what is
going on

Also known as the iteration method. Plug the recurrence back
into itself until you see a pattern.
Example: T (n) = 3T (⌊n/4⌋) + n.
Try backsubstituting:

T (n) = n + 3(⌊n/4⌋ + 3T (⌊n/16⌋)
= n + 3⌊n/4⌋ + 9(⌊n/16⌋ + 3T (⌊n/64⌋))
= n + 3⌊n/4⌋ + 9⌊n/16⌋ + 27T (⌊n/64⌋)

The(3/4)n term should now be obvious.
Although there are onlylog4 n terms before we get toT (1),

it doesn’t hurt to sum them all since this is a fast growing
geometric series:

T (n) ≤ n
∞
∑

i=0
(
3

4
)
i

+ Θ(nlog4 3 × T (1))

T (n) = 4n + o(n) = O(n)

Recursion Trees

Drawing a picture of the backsubstitution process gives youa
idea of what is going on.
We must keep track of two things – (1) the size of the
remaining argument to the recurrence, and (2) the additive
stuff to be accumulated during this call.
Example: T (n) = 2T (n/2) + n2

T(n/2)

T(n/4) T(n/4) T(n/4) T(n/4)

T(n/2)

T(n)

n
2

(n/2)
2

(n/4)
2

(n/4)
2

(n/4)
2

(n/4)
2

(n/2)
2

n
2

n/2
2

n/4
2

The remaining arguments are on the left, the additive terms
on the right.
Although this tree has heightlg n, the total sum at each level
decreases geometrically, so:

T (n) =
∞
∑

i=0
n2/2i = n2

∞
∑

i=0
1/2i = Θ(n2)

The recursion tree framework made this much easier to see
than with algebraic backsubstitution.

See if you can use the Master theorem to
provide an instant asymptotic solution

The Master Theorem: Let a ≥ 1 andb > 1 be constants, let
f (n) be a function, and letT (n) be defined on the nonnegative
integers by the recurrence

T (n) = aT (n/b) + f (n)

where we interpretn/b as⌊n/b⌋ or ⌈n/b⌉. ThenT (n) can be
bounded asymptotically as follows:

1. If f (n) = O(nlogb a−ǫ) for some constantǫ > 0, then
T (n) = Θ(nlogb a).

2. If f (n) = Θ(nlogb a), thenT (n) = Θ(nlogb a lg n).

3. If f (n) = Ω(nlogb a+ǫ) for some constantǫ > 0, and
if af (n/b) ≤ cf (n) for some constantc < 1, and all
sufficiently largen, thenT (n) = Θ(f (n)).

Examples of the Master Theorem

Which case of the Master Theorem applies?

• T (n) = 4T (n/2) + n

Reading from the equation,a = 4, b = 2, andf (n) = n.

Is n = O(nlog2 4−ǫ) = O(n2−ǫ)?

Yes, so case 1 applies andT (n) = Θ(n2).

• T (n) = 4T (n/2) + n2

Reading from the equation,a = 4, b = 2, andf (n) = n2.

Is n2 = O(nlog2 4−ǫ) = O(n2−ǫ)?

No, if ǫ > 0, but it is true ifǫ = 0, so case 2 applies and
T (n) = Θ(n2 log n).

• T (n) = 4T (n/2) + n3

Reading from the equation,a = 4, b = 2, andf (n) = n3.

Is n3 = Ω(nlog2 4+ǫ) = Ω(n2+ǫ)?

Yes, for0 < ǫ < 1, so case 3might apply.

Is 4(n/2)3 ≤ c · n3?

Yes, for c ≥ 1/2, so there exists ac < 1 to satisfy the
regularity condition, so case 3 applies andT (n) = Θ(n3).

Why should the Master Theorem be true?

ConsiderT (n) = aT (n/b) + f (n).

Supposef (n) is small enough

Sayf (n) = 0, ie. T (n) = aT (n/b).
Then we have a recursion tree where the only contribution is
at the leaves.
There will belogb n levels, withal leaves at levell.

T (n) = alogb n = nlogb a Theorem 2.9 in CLR

0

0 0

1 1 1 1

so long asf (n) is small enough that it is dwarfed by this, we
have case 1 of the Master Theorem!

Suppose f(n) is large enough

If we draw the recursion tree forT (n) = aT (n/b) + f (n).

T(n) f(n)

T(n/b) T(n/b) f(n/b) f(n/b)...

If f (n) is a big enough function, the one top call can be bigger
than the sum of all the little calls.
Example: f (n) = n3 > (n/3)3 + (n/3)3 + (n/3)3. In fact this
holds unlessa ≥ 27!
In case 3 of the Master Theorem, the additive term dominates.
In case 2, both parts contribute equally, which is why the log
pops up. It is (usually) what we want to have happen in a

divide and conquer algorithm.

Famous Algorithms and their Recurrence

Matrix Multiplication

The standard matrix multiplication algorithm for twon × n
matrices isO(n3).

2 3

3 4

4 5

2 3 4

3 4 5

13 18 23

18 25 32

23 32 41

Strassen discovered a divide-and-conquer algorithm which
takesT (n) = 7T (n/2) + O(n2) time.
SinceO(nlg 7) dwarfs O(n2), case 1 of the master theorem
applies andT (n) = O(n2.81).
This has been “improved” by more and more complicated
recurrences until the current best inO(n2.38).

Polygon Triangulation

Given a polygon in the plane, add diagonals so that each face
is a triangle None of the diagonals are allowed to cross.

Triangulation is an important first step in many geometric
algorithms.
The simplest algorithm might be to try each pair of points and
check if they see each other. If so, add the diagonal and recur

on both halves, for a total ofO(n3).
However, Chazelle gave an algorithm which runs in
T (n) = 2T (n/2) + O(

√

(n)) time. Sincen1/2 = O(n1−ǫ), by
case 1 of the Master Theorem, Chazelle’s algorithm is linear,
ie. T (n) = O(n).

Sorting

The classic divide and conquer recurrence is Mergesort’s
T (n) = 2T (n/2) + O(n), which divides the data into equal-
sized halves and spends linear time merging the halves after
they are sorted.
Sincen = O(nlog2 2) = O(n) but notn = O(n1−ǫ), Case 2 of
the Master Theorem applies andT (n) = O(n log n).
In case 2, the divide and merge steps balance out perfectly, as
we usually hope for from a divide-and-conquer algorithm.

Mergesort Animations

Approaches to Algorithms Design

Incremental

Job is partly done - do a little more, repeat until done.
A good example of this approach is insertion sort

Divide-and-Conquer

A recursive technique

• Divide problem into sub-problems of the same kind.

• For subproblems that are really small (trivial), solve them
directly. Else solve them recursively. (conquer)

• Combine subproblem solutions to solve the whole thing
(combine)

A good example of this approach is Mergesort.

