
Lecture 26:
Approximation Algorithms (1997)

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena



Give an efficient greedy algorithm that finds an optimal vertex
cover of a tree in linear time.

In a vertex cover we need to have at least one vertex for each
edge.
Every tree has at least two leaves, meaning that there is
always an edge which is adjacent to a leaf. Which vertex
can we never go wrong picking? The non-leaf, since it is the
only one which can also cover other edges!
After trimming off the covered edges, we have a smaller tree.
We can repeat the process until the tree as 0 or 1 edges. When
the tree consists only of an isolated edge, pick either vertex.
All leaves can be identified and trimmed inO(n) time during
a DFS.



Dealing with NP -complete Problems



Option 1: Algorithm fast in the Average case

Examples are Branch-and-bound for the Traveling Salesman
Problem, backtracking algorithms, etc.



Option 2: Heuristics

Heuristics are rules of thumb; fast methods to find a solution
with no requirement that it be the best one.
Note that the theory ofNP -completeness does not stipulate
that it is hard to get close to the answer, only that it is hard to
get the optimal answer.
Often, we can prove performance bounds on heuristics, that
the resulting answer is withinC times that of the optimal one.



Approximating Vertex Cover

As we have seen, finding the minimum vertex cover isNP -
complete. However, a very simple strategy (heuristic) can get
us a cover at most twice that of the optimal.

While the graph has edges
pick an arbitrary edgev, u
add bothu andv to the cover
delete all edges incident on eitheru andv

If the graph is represented by an adjacency list this can be
implemented inO(m + n) time.
This heuristic must always produce cover, since an edge is
only deleted when it is adjacent to a cover vertex.



Further, any cover uses at least half as many vertices as the
greedy cover.

Why? Delete all edges from the graph except the edges we
selected.
No two of these edges share a vertex. Therefore, any cover of
just these edges must include one vertex per edge, or half the



greedy cover!



Things to Notice

• Although the heuristic is simple, it is not stupid. Many
other seemingly smarter ones can give a far worse
performance in the worst case.

Example: Pick one of the two vertices instead of both
(after all, the middle edge is already covered) The optimal
cover is one vertex, the greedy heuristic is two vertices,
while the new/bad heuristic can be as bad asn − 1.



• Proving a lower bound on the optimal solution is the key
to getting an approximation result.

• Making a heuristic more complicated does not necessarily
make it better. It just makes it more difficult to analyze.

• A post-processing clean-up step (delete any unecessessary
vertex) can only improve things in practice, but might not



help the bound.



The Euclidean Traveling Salesman

In the traditional version of TSP - a salesman wants to plan
a drive to visit all his customers exactly once and get back
home.
Euclidean geometry satisfies the triangle inequality,
d(u, w) ≤ d(u, v) + d(v, w).
TSP remains hard even when the distances are Euclidean
distances in the plane.

u

v

w



Note that the cost of airfares is an example of a distance
function which violates the triangle inequality.
However, we can approximate the optimal Euclidean TSP
tour using minimum spanning trees.
Claim: the cost of a MST is a lower bound on the cost of a
TSP tour.
Why? Deleting any edge from a TSP tour leaves a path,
which is a tree of weight at least that of the MST! If we
were allowed to visit cities more than once, doing a depth-first
traversal of a MST, and then walking out the tour specified is
at most twice the cost of MST. Why? We will be using each
edge exactly twice.



1

2
3

4

7

1110
6

98

5

Every edge is used exactly twice in the DFS tour:1.
However, how can we avoid revisiting cities?
We can take a shortest path to the next unvisited vertex. The
improved tour is1−2−3−5−8−9−6−4−7−10−11−1.



Because we replaced a chain of edges by the edge, the triangle
inequality ensures the tour only gets shorter. Thus this is still
within twice optimal!



Finding the Optimal Spouse

1. There are up ton possible candidates we will see over our
lifetime, one at a time.

2. We seek to maximize our probability of getting the single
best possible spouse.

3. Our assessment of each candidate is relative to what we
have seen before.

4. We must decided either to marry or reject each candidate
as we see them. There is no going back once we reject
someone.

5. Each candidate is ranked from 1 ton, and all permutations
are equally likely.



For example, if the input permutation is

(4, 2, 3, 5, 6, 1)

we see(3, 1, 2) after three candidates.
Picking the first or last candidate gives us a probability of1/n
of getting the best.
Since we seek maximize our chances of getting the best, it
never pays to pick someone who is not the best we have seen.
The optimal strategy is clearly to sample some fraction of the
candidates, then pick the first one who is better than the best
we have seen.
But what is the fraction?



For a given fraction1/f , what is the probability of finding the
best?
Supposei + 1 is the highest ranked person in the firstn/f
candidates. We win whenever the best candidate occurs
before any number from2 to i in the lastn(1 − 1/f )/f
candidates.
There is a1/i probability of that, so,

P =
∞∑

i=1

(1

f )(1 − 1

f )i

i

In fact, the optimal is obtained by sampling the firstn/e
candidates.

Does this really work? Well, it did for me!


