L ecture 23:
Reductions (1997)

Steven Skiena
Department of Computer Science
State University of New York
Stony Brook, NY 11794-4400

http://www.cs.sunysb.eduskiena



Give a polynomial-time algorithm to satisfy Boolean form
las in disjunctive normal form.

Satisfying one clause in DFS satisfied the whole formu
One clause can always be satisfied iff it does not contain b
a variable and its complement.

Why not use this reduction to give a polynomial-tim
algorithm for 3-SAT? The DNF formula can become exp
nentially large and hence the reduction cannot be done
polynomial time.



Given an integermn x n matrix A, and in integem-vectorb,
the O-1 integer programming problem asks whether there
an integern-vectorx with elements in the sét, 1) such that
Ax < b. Prove that 0-1 integer programming is NP-har
(hint: reduce from 3-SAT).

This is really the exact same problem as the previous inte
programming problem, slightly concealed by:

e The linear algebra notation — each row is one constrair

e All inequalities are< — multiply both sides by -1 to
reverse the constraint from to < if necessary.



Vertex Cover

Instance: A grapli- = (V, F), and integek <V
Question: Is there a subset of at maésvertices such that
everye € E has at least one vertex in the subset?
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Here, four of the eight vertices are enough to cover. Itvgali
to find a vertex cover of a graph — just take all the vertice
The tricky part is to cover with as small a set as possible.
Theorem: Vertex cover is NP-complete.

Proof: VCinin NP —guess a subset of vertices, count the
and show that each edge is covered.

To prove completeness, we shaw5AT and VC. From a-
SAT instance withn variables and’ clauses, we construct ¢
graph with2 N + 3C vertices.

For each variable, we create two vertices connected by
edge:

To cover each of these edges, at leagértices must be in the



cover, one for each pair. For each clause, we create three
vertices, one for each literal in each clause. Connect times
a triangle.

At least two vertices per triangle must be in the cover to te
care of edges in the triangle, for a total of at Ie&stvertices.
Finally, we will connect each literal in the flat structuretie
corresponding vertices in the triangles which share thees:
literal.
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Claim: This graph will have a vertex cover of si2é+ 2C' if
and only if the expression is satisfiable.

By the earlier analysis, any cover must have at |dast 2C
vertices. To show that our reduction is correct, we must sh
that:

1. Every satisfying truth assignment gives a cover.

Select theV vertices cooresponding to the TRUE litera
to be in the cover. Since it is a satisfying truth assignme
at least one of the three cross edges associated with ¢
clause must already be covered - pick the other t
vertices to complete the cover.

2. Every vertex cover gives a satisfying truth assignment
Every vertex cover must containfirst stage vertices anc



2C' second stage vertices. Letthe first stage vertices de
the truth assignment.

To give the cover, at least one cross-edge must be cove
so the truth assignment satisfies.

For a cover to havé/ + 2C vertices, all the cross edges mu:
be incident on a selected vertex.

Let the NV selected vertices from the first stage cooresponc
TRUE literals. If there is a satisfying truth assignmengttr
means at least one of the three cross edges from each trie
IS Incident on a TRUE vertex.

By adding the other two vertices to the cover, we cover

edges associated with the clause.

Every SAT defines a cover and Every Cover Truth values



the SAT!
Example:V, =V, = True, V3 =V, = False.
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Starting from the Right Problem

As you can see, the reductions can be very clever and \
complicated. While theoretically any P-complete problem
can be reduced to any other one, choosing the correct
makes finding a reduction much easier.

3—Sat xVC

As you can see, the reductions can be very clever :
complicated. While theoretically any NP-complete proble
will do, choosing the correct one can make it much easier.



Maximum Cligque

Instance: A grapli- = (V, E') and integerj < v.

Question: Does the graph contain a clique otrtices, ie. Is
there a subset af of sizej such that every pair of vertices ir
the subset defines an edge(&?

Example: this graph contains a clique of size 5.

When talking about graph problems, it is most natural to wc
from a graph problem - the onP-complete one we have is



vertex cover!

Theorem: Cliqueis NP-complete

Proof: If you take a graph and find its vertex cover, tr
remaining vertices form an independent set, meaning th
are no edges between any two vertices in the independent
for if there were such an edge the rest of the vertices co
not be a vertex cover.
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Clearly the smallest vertex cover gives the biggest indep
dent set, and so the problems are equivallent — Delete
subset of vertices in one from the total set of vertices to |
the order!
Thus finding the maximum independent set must be N
complete!



In an independent set, there are no edges between
vertices. In a cligue, there are always between two vertic
Thus if we complement a graph (have an edge iff there was
edge in the original graph), a clique becomes an indepenc
set and an independent set becomes a Clique!

.

Max Clique =5 Max Clique =2
Max IS = 2 Max IS =5

Thus finding the largest clique is NP-complete:
If VC'is a vertex cover iz, thenVV — VC'is a clique inGG'.
If C'isacliqueinG,V — C'is a vertex cover i’



Integer Partition (Subset Sum)

Instance: A set of integels and a target integet

Problem: Is there a subset 8fwhich adds up exactly tt?
Example:S = {1,4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344}
andT’ = 3754

Answer:1 + 16 + 64 4 256 + 1040 + 1093 4+ 1284 =T
Observe that integer partition is a number problem,
opposed to the graph and logic problems we have seento (
Theorem: Integer Partition is8NP-complete.

Proof: First, we note that integer partition is MP. Guess a
subset of the input number and simply add them up.

To prove completeness, we show that vertex coventeger
partition. We use a data structure called an incidence rma



to represent the gragh.
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How manyl’s are there in each column? Exactly two.
How manyl’s in a particular row? Depends on the verte
degree.

The reduction from vertex cover will create+ m numbers
from G.

The numbers from the vertices will be a base-4 realizationr
rows from the incidence matrix, plus a high order digit:



vy = AL A0, ] x 4
ie. V5 = 10100 becomest® + (4% + 42).
The numbers from the edges will he= 4’.

The target integer will be

|E|-1 |

t =k x 4F 4 x 2x4

=

Why? Each column (digit) represents an edge. We war
subset of vertices which covers each edge. We can only
k x vertex/numbers, because of the high order digit of t
target.
xo = 100101 = 1041 25 = 111000 = 1344 y; = 000010 = 4
We might get only one instance of each edge in a cover -
we are free to take extra edge/numbers to grab an éxies



column.



VC'in G — Integer Partitionin .S

Given k vertices coveringG, pick the & cooresponding
vertex/numbers. Each edge @his incident on one or two
cover vertices. If it is one, includes the coorespondi
edge/number to give two per column.



Integer Partitionin S — VC'InG

Any solution to S must containexactly £ vertex/numbers.
Why? It cannot be more because the target in that d
Is k£ and it cannot be less because, with at nibsats per
edge/digit-column, no sum of these can carry over into |
next column. (This is why basenumber were chosen).
This subset oft vertex/numbers must contain at least ol
edge-list per column, since if not there is no way to accol
for the two in each column of the target integer, given tf
we can pick up at most one edge-list using the edge num
(Again, the prevention of carrys across digits prevents &
other possibilites).

Neat, sweet, anNP-complete!



Notice that this reduction could not be performed in polyn
mial time if the number were written in unaby= 11111. Big
numbers is what makes integer partition hard!



