
Lecture 23:
Reductions (1997)

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena

Give a polynomial-time algorithm to satisfy Boolean formu-
las in disjunctive normal form.

Satisfying one clause in DFS satisfied the whole formula.
One clause can always be satisfied iff it does not contain both
a variable and its complement.
Why not use this reduction to give a polynomial-time
algorithm for 3-SAT? The DNF formula can become expo-
nentially large and hence the reduction cannot be done in
polynomial time.

Given an integerm × n matrixA, and in integerm-vectorb,
the 0-1 integer programming problem asks whether there is
an integern-vectorx with elements in the set(0, 1) such that
A× ≤ b. Prove that 0-1 integer programming is NP-hard
(hint: reduce from 3-SAT).

This is really the exact same problem as the previous integer
programming problem, slightly concealed by:

• The linear algebra notation – each row is one constraint.

• All inequalities are≤ – multiply both sides by -1 to
reverse the constraint from≥ to≤ if necessary.

Vertex Cover

Instance: A graphG = (V, E), and integerk ≤ V

Question: Is there a subset of at mostk vertices such that
everye ∈ E has at least one vertex in the subset?

Here, four of the eight vertices are enough to cover. It is trivial
to find a vertex cover of a graph – just take all the vertices.
The tricky part is to cover with as small a set as possible.
Theorem: Vertex cover is NP-complete.
Proof: VC in in NP – guess a subset of vertices, count them,
and show that each edge is covered.
To prove completeness, we show3-SAT and VC. From a3-
SAT instance withn variables andC clauses, we construct a
graph with2N + 3C vertices.
For each variable, we create two vertices connected by an
edge:

......

v1 v1 v2 v2 v3 v3 vn vn

To cover each of these edges, at leastn vertices must be in the

cover, one for each pair. For each clause, we create three new
vertices, one for each literal in each clause. Connect thesein
a triangle.
At least two vertices per triangle must be in the cover to take
care of edges in the triangle, for a total of at least2C vertices.
Finally, we will connect each literal in the flat structure tothe
corresponding vertices in the triangles which share the same
literal.

v1 v1 v2 v2 v3 v3 v4 v4

v2v3

v1 v4 v1 v4

Claim: This graph will have a vertex cover of sizeN + 2C if
and only if the expression is satisfiable.
By the earlier analysis, any cover must have at leastN + 2C
vertices. To show that our reduction is correct, we must show
that:

1. Every satisfying truth assignment gives a cover.

Select theN vertices cooresponding to the TRUE literals
to be in the cover. Since it is a satisfying truth assignment,
at least one of the three cross edges associated with each
clause must already be covered - pick the other two
vertices to complete the cover.

2. Every vertex cover gives a satisfying truth assignment.

Every vertex cover must containn first stage vertices and

2C second stage vertices. Let the first stage vertices define
the truth assignment.

To give the cover, at least one cross-edge must be covered,
so the truth assignment satisfies.

For a cover to haveN + 2C vertices, all the cross edges must
be incident on a selected vertex.
Let theN selected vertices from the first stage coorespond to
TRUE literals. If there is a satisfying truth assignment, that
means at least one of the three cross edges from each triangle
is incident on a TRUE vertex.
By adding the other two vertices to the cover, we cover all
edges associated with the clause.
Every SAT defines a cover and Every Cover Truth values for

the SAT!
Example:V1 = V2 = True, V3 = V4 = False.

v1 v1 v2 v2 v3 v3 v4 v4

v2v3

v1 v4 v1 v4

Starting from the Right Problem

As you can see, the reductions can be very clever and very
complicated. While theoretically anyNP -complete problem
can be reduced to any other one, choosing the correct one
makes finding a reduction much easier.

3 − Sat ∝ V C

As you can see, the reductions can be very clever and
complicated. While theoretically any NP-complete problem
will do, choosing the correct one can make it much easier.

Maximum Clique

Instance: A graphG = (V, E) and integerj ≤ v.
Question: Does the graph contain a clique ofj vertices, ie. is
there a subset ofv of sizej such that every pair of vertices in
the subset defines an edge ofG?
Example: this graph contains a clique of size 5.

When talking about graph problems, it is most natural to work
from a graph problem - the onlyNP-complete one we have is

vertex cover!
Theorem: Clique is NP-complete
Proof: If you take a graph and find its vertex cover, the
remaining vertices form an independent set, meaning there
are no edges between any two vertices in the independent set,
for if there were such an edge the rest of the vertices could
not be a vertex cover.

vertex in cover

vertex in independant
set

Clearly the smallest vertex cover gives the biggest indepen-
dent set, and so the problems are equivallent – Delete the
subset of vertices in one from the total set of vertices to get
the order!
Thus finding the maximum independent set must be NP-
complete!

In an independent set, there are no edges between two
vertices. In a clique, there are always between two vertices.
Thus if we complement a graph (have an edge iff there was no
edge in the original graph), a clique becomes an independent
set and an independent set becomes a Clique!

Max Clique = 5 Max Clique = 2
Max IS = 2 Max IS = 5

Thus finding the largest clique is NP-complete:
If V C is a vertex cover inG, thenV − V C is a clique inG′.
If C is a clique inG, V − C is a vertex cover inG′.

Integer Partition (Subset Sum)

Instance: A set of integersS and a target integert.
Problem: Is there a subset ofS which adds up exactly tot?
Example:S = {1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344}
andT = 3754
Answer:1 + 16 + 64 + 256 + 1040 + 1093 + 1284 = T

Observe that integer partition is a number problem, as
opposed to the graph and logic problems we have seen to date.
Theorem: Integer Partition isNP-complete.
Proof: First, we note that integer partition is inNP. Guess a
subset of the input number and simply add them up.
To prove completeness, we show that vertex cover∝ integer
partition. We use a data structure called an incidence matrix

to represent the graphG.
e4 e3 e2 e1 e0

v0

v4

v3

v2

v1

0 1 1 1 1

0 1 0 0 0

 1 0 1 0 0

1 0 0 1 0

0 0 0 0 1

e0

0

1

e3

e2e1

23 e4

How many1′s are there in each column? Exactly two.
How many1′s in a particular row? Depends on the vertex
degree.
The reduction from vertex cover will createn + m numbers
from G.
The numbers from the vertices will be a base-4 realization of
rows from the incidence matrix, plus a high order digit:

xi = 4|E| + ∑|E|−1

j=0 b[i, j] × 4j

ie. V2 = 10100 becomes45 + (44 + 42).
The numbers from the edges will beyi = 4j.
The target integer will be

t = k × 4|E| +
|E|−1∑

j=0

2 × 4j

Why? Each column (digit) represents an edge. We want a
subset of vertices which covers each edge. We can only use
k x vertex/numbers, because of the high order digit of the
target.
x0 = 100101 = 1041 x2 = 111000 = 1344 y1 = 000010 = 4
We might get only one instance of each edge in a cover - but
we are free to take extra edge/numbers to grab an extra1 per

column.

V C in G → Integer Partition in S

Given k vertices coveringG, pick the k cooresponding
vertex/numbers. Each edge inG is incident on one or two
cover vertices. If it is one, includes the cooresponding
edge/number to give two per column.

Integer Partition in S → V C in G

Any solution toS must containexactlyk vertex/numbers.
Why? It cannot be more because the target in that digit
is k and it cannot be less because, with at most3 1′s per
edge/digit-column, no sum of these can carry over into the
next column. (This is why base-4 number were chosen).
This subset ofk vertex/numbers must contain at least one
edge-list per column, since if not there is no way to account
for the two in each column of the target integer, given that
we can pick up at most one edge-list using the edge number.
(Again, the prevention of carrys across digits prevents any
other possibilites).
Neat, sweet, andNP-complete!

Notice that this reduction could not be performed in polyno-
mial time if the number were written in unary5 = 11111. Big
numbers is what makes integer partition hard!

