
Lecture 22:
Introduction to NP-completeness (1997)

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena

Amongn people, a celebrity is defined as someone who is
known by everyone but does not know anyone. We seek to
identify the celebrity (if one is present) by asking questions of
the form “Hey,x, do you know persony?”. Show how to find
the celebrity usingO(n) questions.

Note that there aren2 possible questions to ask, so we cannot
ask them all.
What if we ask 1 if she knows 2, and 2 if she knows 1? If both
know each other neither can be a celebrity. If neither know
each other, neither can be a celebrity. If one of them knows
the other, the former cannot be a celebrity.
Thus in two questions we can eliminate at least one person

from celebrity status. Thus in2(n−1) questions, we have only
one possible celebrity. It is now possible to check whether the
survivor is really a celebrity usingn − 1 additional queries,
by checking whether everyone else knows them.

An Eulerian cycle in a graph visits each edge exactly once. A
graph contains an Eulerian cycle iff it is connected and the
degree of each vertex is even. Give anO(|E|) algorithm to
find an Eulerian cycle if one exists.

Observe that an cycle of edges defines a graph where each
vertex is of degree 2. Thus deleting a cycle from an Eulerian
graph leaves each vertex with even degree, although the graph
may not be connected.
We can use depth-first search to decompose the edges of a
graph into cycles. If the graph was connected, these cycles
must link together. Splicing them together gives an Eulerian
cycle. For example, the cycle(1, 2, 3, 1) and(4, 5, 6, 1, 4) can
be spliced together as(4, 5, 6, 1, 2, 3, 1, 4).

Although Eulerian cycle has an efficient algorithm, the
Hamiltonian cycle problem (visit each vertex exactly once)
is NP-complete.

The Theory of NP-Completeness

Several times this semester we have encountered problems
for which we couldn’t find efficient algorithms, such as the
traveling salesman problem. We also couldn’t prove an
exponential time lower bound for the problem.
By the early 1970s, literally hundreds of problems were stuck
in this limbo. The theory of NP-Compleness, developed by
Stephen Cook and Richard Karp, provided the tools to show
that all of these problems were really the same problem.

Polynomial vs. Exponential Time

n f(n) = n f(n) = n2 f(n) = 2n f(n) = n!
10 0.01µs 0.1µs 1 µs 3.63 ms
20 0.02µs 0.4µs 1 ms 77.1 years
30 0.03µs 0.9µs 1 sec 8.4 × 1015 years
40 0.04µs 1.6µs 18.3 min
50 0.05µs 2.5µs 13 days
100 0.1µs 10µs 4× 1013 years
1,000 1.00µs 1 ms

The Main Idea
Suppose I gave you the following algorithm to solve the
bandersnatchproblem:

Bandersnatch(G)
ConvertG to an instance of the Bo-billy problemY .
Call the subroutine Bo-billy onY to solve this instance.
Return the answer of Bo-billy(Y) as the answer toG.

Such a translation from instances of one type of problem to
instances of another type such that answers are preserved is
called areduction.
Now suppose my reduction translatesG to Y in O(P (n)):

1. If my Bo-billy subroutine ran inO(P ′(n)) I can solve the
Bandersnatch problem inO(P (n) + P ′(n))

2. If I know that Ω(P ′(n)) is a lower-bound to compute
Bandersnatch, thenΩ(P ′(n) − P (n)) must be a lower-
bound to compute Bo-billy.

The second argument is the idea we use to prove problems
hard!

Convex Hull and Sorting

A nice example of a reduction goes from sorting numbers to
the convex hull problem:

We must translate each number to a point. We can mapx to
(x, x2).

5 11 13 17

Why? That means each integer is mapped to a point on the
parabolay = x2.

Since this parabola is convex, every point is on the convex
hull. Further since neighboring points on the convex hull have
neighboringx values, the convex hull returns the points sorted
by x-coordinate, ie. the original numbers.

Sort(S)
For eachi ∈ S, create point(i, i2).
Call subroutine convex-hull on this point set.
From the leftmost point in the hull,

read off the points from left to right.

Creating and reading off the points takesO(n) time.
What does this mean? Recall the sorting lower bound of
Ω(n lg n). If we could do convex hull in better thann lg n,
we could sort faster thanΩ(n lg n) – which violates our lower

bound.
Thus convex hull must takeΩ(n lg n) as well!!!
Observe that anyO(n lg n) convex hull algorithm also gives
us a complicated but correctO(n lg n) sorting algorithm as
well.

What is a problem?

A problemis a general question, with parameters for the input
and conditions on what is a satisfactory answer or solution.
An instance is a problem with the input parameters specified.
Example: The Traveling Salesman
Problem: Given a weighted graphG, what tour{v1, v2, ..., vn}
minimizes∑n−1

i=1 d[vi, vi+1] + d[vn, v1].
Instance: d[v1, d2] = 10, d[v1, d3] = 5, d[v1, d4] = 9,
d[v2, d3] = 6, d[v2, d4] = 9, d[v3, d4] = 3

3

42

1

10 5

3

9

6

9

Solution:{v1, v2, v3, v4} cost=27
A problem with answers restricted toyes and no is called
a decision problem. Most interesting optimization problems
can be phrased as decision problems which capture the
essence of the computation.
Example: The Traveling Salesman Decision Problem.
Given a weighted graphG and integerk, does there exist a

traveling salesman tour with cost≤ k?
Using binary search and the decision version of the problem
we can find the optimal TSP solution.
For convenience, from now on we will talkonly about
decision problems.
Note that there are many possible ways to encode the input
graph: adjacency matrices, edge lists, etc. All reasonable
encodings will be within polynomial size of each other.
The fact that we can ignore minor differences in encoding
is important. We are concerned with the difference between
algorithms which are polynomial and exponential in the size
of the input.

Satisfiability

Consider the following logic problem:
Instance: A setV of variables and a set of clausesC overV .
Question: Does there exist a satisfying truth assignment for
C?
Example 1:V = v1, v2 andC = {{v1, v2}, {v1, v2}}
A clause is satisfied when at least one literal in it is TRUE.C
is satisfied whenv1 = v2 =TRUE.
Example 2:V = v1, v2,

C = {{v1, v2}, {v1, v2}, {v1}}

Although you try, and you try, and you try and you try, you
can get no satisfaction.

There is no satisfying assigment sincev1 must be FALSE
(third clause), sov2 must be FALSE (second clause), but then
the first clause is unsatisfiable!
For various reasons, it is known that satisfiability is a hard
problem. Every top-notch algorithm expert in the world (and
countless other, lesser lights) have tried to come up with a fast
algorithm to test whether a given set of clauses is satisfiable,
but all have failed. Further, many strange and impossible-
to-believe things have been shown to be true if someone in
fact did find a fast satisfiability algorithm.
Clearly, Satisfiability is inNP , since we can guess an
assignment of TRUE, FALSE to the literals and check it in
polynomial time.

P versus NP

The precise distinction between whether a problem is inP or
NP is somewhat technical, requiring formal language theory
and Turing machines to state correctly.
However, intuitively a problem is inP , (ie. polynomial) if it
can be solved in time polynomial in the size of the input.
A problem is inNP if, given the answer, it is possible to verify
that the answer is correct within time polynomial in the size
of the input.
ExampleP – Is there a path froms to t in G of length less
thank.
ExampleNP – Is there a TSP tour inG of length less thank.
Given the tour, it is easy to add up the costs and convince me

it is correct.
Examplenot NP – How many TSP tours are there inG of
length less thank. Since there can be an exponential number
of them, we cannot count them all in polynomial time.
Don’t let this issue confuse you – the important idea here is
of reductions as a way of proving hardness.

3-Satisfiability

Instance: A collection of clauseC where each clause contains
exactly3 literals, boolean variablev.
Question: Is there a truth assignment tov so that each clause
is satisfied?
Note that this is a more restricted problem than SAT. If3-SAT
is NP-complete, it implies SAT is NP-complete but not visa-
versa, perhaps long clauses are what makes SAT difficult?!
After all, 1-Sat is trivial!
Theorem: 3-SAT is NP-Complete
Proof: 3-SAT is NP – given an assignment, just check that
each clause is covered. To prove it is complete, a reduction
from Sat ∝ 3 − Sat must be provided. We will transform

each clause independantly based on itslength.
Suppose the clauseCi containsk literals.

• If k = 1, meaningCi = {z1}, create two new variables
v1, v2 and four new3-literal clauses:

{v1, v2, z1}, {v1, v2, z1}, {v1, v2, z1}, {v1, v2, z1}.

Note that the only way all four of these can be satisfied is
if z is TRUE.

• If k = 2, meaning{z1, z2}, create one new variablev1 and
two new clauses:{v1, z1, z2}, {v1, z1, z2}

• If k = 3, meaning{z1, z2, z3}, copy into the3-SAT
instance as it is.

• If k > 3, meaning{z1, z2, ..., zn}, createn − 3 new

variables andn − 2 new clauses in a chain:{vi, zi, vi},
. . .

If none of the original variables in a clause are TRUE, there
is no way to satisfy all of them using the additional variable:

(F, F, T), (F, F, T), . . . , (F, F, F)

But if any literal is TRUE, we haven − 3 free variables and
n − 3 remaining3-clauses, so we can satisfy each of them.
(F, F, T), (F, F, T), . . . , (F, T,F), . . . , (T, F, F), (T, F, F)
Since any SAT solution will also satisfy the3-SAT instance
and any3-SAT solution sets variables giving a SAT solution
– the problems are equivallent. If there weren clauses andm
total literals in the SAT instance, this transform takesO(m)
time, so SAT and3-SAT.

Note that a slight modification to this construction would
prove 4-SAT, or 5-SAT,... also NP-complete. However, it
breaks down when we try to use it for2-SAT, since there is
no way to stuff anything into the chain of clauses. It turns out
that resolution gives a polynomial time algorithm for2-SAT.
Having at least3-literals per clause is what makes the problem
difficult. Now that we have shown3-SAT is NP-complete,
we may use it for further reductions. Since the set of3-
SAT instances is smaller and more regular than theSAT
instances, it will be easier to use3-SAT for future reductions.
Remember the direction to reduction!

Sat ∝ 3 − Sat ∝ X

A Perpetual Point of Confusion

Note carefully the direction of the reduction.
We must transformeveryinstance of a known NP-complete
problem to an instance of the problem we are interested in. If
we do the reduction the other way, all we get is a slow way
to solvex, by using a subroutine which probably will take
exponential time.
This always is confusing at first - it seems bass-ackwards.
Make sure you understand the direction of reduction now -
and think back to this when you get confused.

Integer Programming

Instance: A setv of integer variables, a set of inequalities
over these variables, a functionf (v) to maximize, and integer
B.
Question: Does there exist an assignment of integers tov such
that all inequalities are true andf (v) ≥ B?
Example:

v1 ≥ 1, v2 ≥ 0

v1 + v2 ≤ 3

f (v) : 2v2, B = 3

A solution to this isv1 = 1, v2 = 2.
Example:

v1 ≥ 1, v2 ≥ 0

v1 + v2 ≤ 3

f (v) : 2v2, B = 5

Since the maximum value off (v) given the constraints is
2 × 2 = 4, there is no solution.
Theorem: Integer Programming is NP-Hard
Proof: By reduction from Satisfiability
Any set instance has boolean variables and clauses. Our
Integer programming problem will have twice as many
variables as the SAT instance, one for each variable and its
compliment, as well as the following inequalities:
For each variablevi in the set problem, we will add the
following constraints:

• 1 ≤ Vi ≤ 0 and1 ≤ V i ≤ 0

Both IP variables are restricted to values of 0 or 1, which
makes them equivalent to boolean variables restricted to
true/false.

• 1 ≤ Vi + V i ≤ 1

Exactly one of the IP variables associated with a given sat
variable is 1. This means that exactly one ofVi andV i are
true!

• for each clauseCi = {v1, v2, v3 . . . vn} in the sat instance,
construct a constraint:

v1 + v2 + v3 + . . . vn ≥ 1

Thus at least one IP variable must be one in each clause!
Thus satisfying the constraint is equivalent to satisfying

the clause!

Our maximization function and bound are relatively unimpor-
tant: f (v) = V1 B = 0.
Clearly this reduction can be done in polynomial time.

We must show:

1. Any SAT solution gives a solution to the IP problem.
In any SAT solution, a TRUE literal corresponds to a1 in
the IP, since if the expression is SATISFIED, at least one
literal per clause in TRUE, so the sum in the inequality is
≥ 1.

2. Any IP solution gives a SAT solution.

Given a solution to this IP instance, all variables will be0
or 1. Set the literals correspondly to1 variable TRUE and
the0 to FALSE. No boolean variable and its complement
will both be true, so it is a legal assignment with also must
satisfy the clauses.

Neat, sweet, and NP-complete!

Things to Notice

1. The reduction preserved the structure of the problem.
Note that the reduction did notsolvethe problem – it just
put it in a different format.

2. The possible IP instances which result are a small subset
of the possible IP instances, but since some of them are
hard, the problem in general must be hard.

3. The transformation captures the essence of why IP is hard
- it has nothing to do with big coefficients or big ranges on
variables; for restricting to0/1 is enough. A careful study
of what properties we do need for our reduction tells us a
lot about the problem.

4. It is not obvious that IP≤ NP, since the numbers assigned
to the variables may be too large to write in polynomial
time - don’t be too hasty!

