
Lecture 13:
Divide and Conquer (1997)

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena

Problem Solving Techniques

Most important: make sure you understand exactly what the
question is asking – if not, you have no hope of answer it!!
Never be afraid to ask for another explanation of a problem
until it is clear.
Play around with the problem by constructing examples to get
insight into it.
Ask yourself questions. Does the first idea which comes into
my head work? If not, why not?
Am I using all information that I am given about the problem?
Read Polya’s bookHow to Solve it.

The Euclidean traveling-salesman problem is the problem of
determining the shortest closed tour that connects a given set
of n points in the plane.
Bentley suggested simplifying the problem by restricting
attention tobitonic tours, that is tours which start at the
leftmost point, go strictly left to right to the rightmost point,
and then go strictly right back to the starting point.

non-bitonic bitonic

Describe anO(n2) algorithm for finding the optimal bitonic
tour. You may assume that no two points have the samex-
coordinate. (Hint: scan left to right, maintaining optimal
possibilities for the two parts of the tour.)

Make sure you understand what a bitonic tour is, or else it is
hopeless.
First of all, play with the problem. Why isn’t it trivial?

" Hey, I guess I can’t tell an

upper point from a lower point"

"Hey, i guess that I can have

an arbitrary number of upper

or lower points in a row."

"Hey, I guess this tour

can zig-zag a lot."

Am I using all the information?
Why will they let us assume that no twox-coordinates are
the same? What does the hint mean? What happens if I scan
from left to right?
If we scan from left to right, we get an open tour which uses
all points to the left of our scan line.

In the optimal tour, thekth point is connected to exactly one
point to the left ofk. (k 6= n) Once I decide which point
that is, sayx. I need the optimal partial tour where the two
endpoints arex andk − 1, because if it isn’t optimal I could
come up with a better one. Hey, I have got a recurrence!
And look, the two parameters which describe my optimal tour
are the two endpoints.
Let c[k, n] be the optimal cost partial tour where the two

endpoints arek < n.
c[k, n] ≤ c[k, n − 1] + d[n, n − 1] (whenk < n − 1)
c[n − 1, n] ≤ c[k, n − 1] + d[k, n]
c[0, 1] = d[0, 1]

0 1 2 3

0

1

2

3

N

K

d(0, 1)

Filling the entities in from N=1 to N’, k=1 to N, means we

always have what we need waiting for us.

c[n− 1, n] takesO(n) to update,c[k, n] k < n− 1 takesO(1)

to update. Total time isO(n2).
But this doesn’t quite give the tour, but just an open tour. We
simply must figure where the last edge ton must go.

Tourcost =
n

min
k=1

C[k, n] + dkn

Divide and Conquer

Divide and conquer was a successful military strategy long
before it became an algorithm design paradigm. The wise
general would attack so as to divide the enemy army into two
forces and then mop up one after the other.
To use divide and conquer as an algorithm design technique,
we must divide the problem into two smaller subproblems,
solve each of them recursively, and then meld the two partial
solutions into one solution to the full problem. Whenever the
merging takes less time than solving the two subproblems, we
get an efficient algorithm.
Mergesort is the classic example of a divide-and-conquer
algorithm. It takes only linear time to merge two sorted lists

of n/2 elements each of which was obtained inO(n lg n)
time.
Divide and conquer is a design technique with many
important algorithms to its credit, including mergesort, the
fast Fourier transform, and Strassen’s matrix multiplication
algorithm.

Fast Exponentiation

Suppose that we need to compute the value ofan for some
reasonably largen. Such problems occur in primality testing
for cryptography.
The simplest algorithm performsn − 1 multiplications, by
computinga × a × . . . × a.
However, we can do better by observing thatn =
⌊n/2⌋ + ⌈n/2⌉. If n is even, thenan = (an/2)2. If n is odd,
thenan = a(a⌊n/2⌋)2. In either case, we have halved the size
of our exponent at the cost of at most two multiplications, so
O(lg n) multiplications suffice to compute the final value.

function power(a, n)
if (n = 0) return(1)

x = power(a, ⌊n/2⌋)
if (n is even) then return(x2)

else return(a × x2)

This simple algorithm illustrates an important principle of
divide and conquer. It always pays to divide a job as evenly
as possible.

Twenty Questions

In Twenty questionsone player selects a word, and the other
repeatedly asks true/false questions in an attempt to identify
the word. If the word remains unidentified after 20 questions,
the first party wins; otherwise, the second player wins.
In fact, the second player always has a winning strategy,
based on binary search. Given a printed dictionary, the player
opens it in the middle, selects a word (say “move”), and asks
whether the unknown word is before “move” in alphabetical
order.
Since standard dictionaries contain 50,000 to 200,000 words,
we can be certain that the process will always terminate
within twenty questions.

Finding a Transition

Other interesting algorithms follow from simple variants of
binary search.
Suppose we have an arrayA consisting of a run of 0’s,
followed by an unbounded run of 1’s, and would like to
identify the exact point of transition between them:

0000000000000000000000011111111111

Binary search on the array would provide the transition point
in ⌈lg n⌉ tests.
Clearly there is no way to solve this problem any faster.

One-Sided Binary Search

Suppose that we want to search in a sorted array, but we do
not know how large the array is. All we know is the starting
point.

{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, . . .}

How can we use binary search without both boundaries?
In the absence of such a bound, we can test repeatedly at
larger intervals (A[1], A[2], A[4], A[8], A[16], . . .) until we
find a first nonzero value. Now we have a window containing
the target and can proceed with binary search.
Thisone-sided binary searchfinds the transition pointp using
at most2⌈lg p⌉ comparisons, regardless of how large the array
actally is.

One-sided binary search is most useful whenever we are
looking for a key that probably lies close to our current
position.

Square and Other Roots

The square root ofn is the numberr such thatr2 = n.
Square root computations are performed inside every pocket
calculator – but how?
Observe that the square root ofn ≥ 1 must be at least1 and
at mostn. Let l = 1 andr = n. Consider the midpoint of this
interval,m = (l + r)/2. How doesm2 compare ton?
If n ≥ m2, then the square root must be greater thanm, so the
algorithm repeats withl = m. If n < m2, then the square root
must be less thanm, so the algorithm repeats withr = m.
Either way, we have halved the interval with only one
comparison. Therefore, after onlylg n rounds we will have
identified the square root to within±1.

This bisection method, as it is called in numerical analysis,
can also be applied to the more general problem of finding the
roots of an equation. We say thatx is aroot of the functionf
if f (x) = 0.

