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Standard Error 
 A particular kind of standard deviation 

 Standard Error := standard deviation of the sampling 
distribution of a statistic 

 Statistic := a function of a dataset (e.g., mean, median, 
variance, correlations, accuracy, f-score, ROUGE, BLEU) 

 

 There is a nice closed form for computing standard 
error for sample mean (via Central Limit Theorem), but 
for most other statistics (e.g., median, variances, 
correlations, accuracy, f-score, ROUGE, BLEU), no 
general closed form formula available 



Bootstrap Estimate of Standard Error 
 proposed by Efron (1979) 

 an instance of “plug-in principle”: plug-in sample 
statistics for unknown parameter values 

 Bootstrap Samples: Using the empirical distribution 
(i.e., distribution of the dataset), randomly generate a 
number of new samples (a number of new datasets), 
where each sample (dataset) is of the same size as the 
original dataset. 

 

 

 



Bootstrap Estimate of Standard Error 
 Bootstrap Samples: Using the empirical distribution (i.e., 

distribution of the dataset), randomly generate a number 
of new samples (a number of new datasets), where each 
sample (dataset) is of the same size as the original dataset. 

 Compute the standard error of your statistic from these 
bootstrap samples. Recall sample standard deviation is 
defined by 

 

 

 

 Don’t forget to use N − 1 instead of N! This correction is 
known as Bessel’s correction. 

 

 



Confidence Interval 
 Given confidence level (confidence co-efficient) 0 <= a 

<= 1, we want to compute confidence interval [l, u] of a 
parameter x (a quantity we want to estimate) such that 

 p(l < x < u) >= 1 – a 

 



Confidence Interval 



Confidence Interval 
 Given confidence level (confidence co-efficient) 0 <= a 

<= 1, we want to compute confidence interval [l, u] of a 
parameter x (a quantity we want to estimate) such that 

 p(l < x < u) >= 1 – a 

 

 Bootstrap Percentile Interval:  

1. Generate bootstrap samples 

2. Sort the statistics computed from bootstrap 
samples 

3. Find the a/2 and 1-a/2 quantiles 



Hypothesis Testing 
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Null Hypothesis / Alternative Hypothesis 

 You have a baseline A and your own invention B 

 B performs better than A by 1 % based on 10-fold cross 
validation 

 How good is it? 

 

 Ho Null Hypothesis: A and B have the same performance.  

 that is, 1% difference is only a fluke 

 Skeptic’s point of view 

 Ha Alternative Hypothesis: B is indeed better than A 

 

 



Statistical Test  

 A number of choices: 

 Paired Student t-test 

 Sign test 

 Wilcoxon test 

 McNemar test 

 Permutation test 

 Bootstrap test 

 They all try to answer the following question:  

 should we reject Null Hypothesis (Ho) or not? 
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Statistical Test  

 They all try to answer the following question:  
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Statistical Test  

 They all try to answer the following question:  

 should we reject Null Hypothesis (Ho) or not? 

 

 whether we should accept null hypothesis? 

 whether we accept alternative hypothesis? 

 which hypothesis is better? 

 

 Not rejecting Null Hypothesis… is the same as accepting 
Null Hypothesis? 

     NO! (it just means neither accepting nor rejecting) 

 



P-value  
 They all try to answer the following question:  

 should we reject Null Hypothesis (Ho) or not? 

 We reject Null based on a threshold called p-value 

 p-value: conditional probability of seeing MORE 
extreme results that what have been observed, 
conditional on the assumption that Null Hypothesis is 
true. 

 typical p-value threshold is 0.05 (5%) 

 very small p-value == observation unlikely if Null is true 

 



Type I & II Error 
 Type I Error:  

 When a test rejects a true null hypothesis 
 aka, False Positive 

 Type II Error:  
 When a test fails to reject a false null hypothesis 
 aka, False Negative 
 

 p-value bounds Type I error  

 p-value: conditional probability of seeing MORE extreme 
results that what have been observed, conditional on the 
assumption that Null Hypothesis is true. 

 

 



Type I & II Error 
 Type I Error:  

 When a test rejects a true null hypothesis 
 aka, False Positive 

 Type II Error:  
 When a test fails to reject a false null hypothesis 
 aka, False Negative 
 

 p-value bounds Type I error  

 With typical p-value = 0.05 (5%), 1 out of 20 papers 
claims a scientific advance that is not there! 

 



Paired Student t-test 
 Assumption: Di are independent and normally 

distributed 

 Di is the difference between statistics of two different 
studies. For instance, the difference of accuracy (or f-
score) of baseline and the proposed approach.  

 Typically, we obtain N number of differences from N-
fold cross validation. 

 “paired” test in that the difference is computed from 
paired numbers that belong to the same evaluation 
setting (e.g., same fold in the N-fold cross validation) 

 Null hypothesis := 
¹D = 0



Paired Student t-test 

tD =

p
NmD

sD

 D is the set of differences of statistics (e.g., N difference in 
accuracies between 2 approaches with N-fold cross validation) 

 mD is the sample mean of D 

 sD is the sample standard deviation of D (with N-1 instead of 
N!) 

 Above tD score follows t-distribution with N-1 degree of 
freedom, using which we can find the confidence interval 
efficiently. 

 



Paired Student t-test 

 Above tD score follows t-distribution with N-1 degree of 
freedom (== º), using which we can find the confidence 
interval efficiently.  

 

 

 

 Many tools available for which you only need to provide 
an array of paired numbers (R, various websites etc) 

 

 

tD =

p
NmD

sD



Paired Student t-test: Issues to consider 

 The power of a test is the probability of (correctly) rejecting 
the null hypothesis when it is in fact false.  

 If D indeed satisfies the normality assumption, than T-test is 
very powerful in detecting statistical differences that other 
approaches may not able to detect. 

 If D violates the normality assumption, or D is not 
independently distributed, or D has outliers or noises, then 
T-test is not powerful in detecting statistical differences. For 
those cases, consider non-parametric approaches instead. 

 Non-parametric approaches: sign-test, Wilcoxson test, 
NcNemar test, permutation test, bootstrap test 



Parametric test 
 Student t-test 

 Paired Student t-test 

 Wald test 

 

 Assumes the data follows certain probabilistic 
distribution that are parameterized (e.g., normal 
distribution) 



Non-parametric test 
 Sign test 

 Wilcoxon signed-rank test 

 NcNemar test 

 permutation test 

 bootstrap test 

 

All of these assumes the data is independently 
distributed, but do not make assumptions based on 
well-known parametric distributions. 

More powerful if the data do not follow certain 
parametric distributions (e.g., normal distribution) 



Sign Test & Wilcoxon test 
 Let V=v1, …, vN and U=u1, … uN be the set of statistics of 

method A and method B respectively 

 E.g., they are prediction accuracy from N-fold cross validation. 

 Let D=d1, …, dN be the difference between these paired 
statistics so that di = vi – ui 

Student t-test & Wald test: whether the mean of di is 0 

Sign test: whether the number of cases where di > 0 is 
different from the number of cases where di < 0 

Wilcoxon test: whether the median of the difference di is 0. 

This means, Sign test and Wilcoxon test depend only on the 
sign of the differences, not the magnitude! 



Sign Test 
 Let D=d1, …, dN be the difference between these paired 

statistics so that di = vi – ui 

 The null hypothesis H_0 of Sign Test := the sign of each di is 
drawn from a bernoulli distribution so that 
 p(di > 0) = 0.5 

 p(di < 0) = 0.5 
 Cases such that di = 0 are ignored in this test 

 Then pdf of k = the number of cases where di > 0 is 
 

 
 

 where M is the number of non-zero cases in D, and p = 0.5 

 can compute p-value using cdf of binomial distribution 
 

P(K = k) =
¡
M

k

¢
pk(1 ¡ p)M¡ k



McNemar Test 
 Let V=v1, …, vN and U=u1, … uN be the set of statistics 

of method A and method B respectively. 

 McNemar test is applicable when v_i and u_i are 
binary values: 0 or 1 

 need to compute the “contingency table”: 

vi = 0 vi = 1 marginal 

ui = 0 freq(0, 0) freq(1, 0) freq (*, 0) 

ui = 1 freq(0, 1) freq(1, 1) freq(*, 1) 

marginal freq(0, *) freq(1, *) N 



McNemar  
Test  

 

 The null hypothesis of McNemar test := marginal probabilities 
of each outcome (0 or 1) is the same over V and U. That is,  
 p(*, 0) = p(0, *) 
 p(1, *) = p(*, 1) 

Intuitively, null hypothesis means freq(0, 1) and freq(1, 0) 
are close 

Can map to binomial distribution with n = freq(0, 1) + 
freq (1, 0) and p=0.5 

can also use chi-squared distribution, but not as exact as 
binomial if either freq(0, 1) or freq(1, 0) is small 

vi = 0 vi = 1 marginal 

ui = 0 freq(0, 0) freq(1, 0) freq (*, 0) 

ui = 1 freq(0, 1) freq(1, 1) freq(*, 1) 

marginal freq(0, *) freq(1, *) N 



Bootstrap test 
 Generate “bootstrap samples” 

 Compute the confidence interval from the sorted list 
of statistics 

 Reject the null hypothesis if the measured statistic is 
outside this confidence interval 

 



Bootstrap samples 

Original Dataset 
x_1, x_2, x_3, x_4, x_5 

Bootstrap Sample 3 
x_1, x_3, x_3, x_4, x_5 

Bootstrap Sample 4 
x_1, x_2, x_3, x_4, x_5 

Bootstrap Sample 5 
x_1, x_1, x_3, x_5, x_5 

Bootstrap Sample 6 
x_2, x_2, x_3, x_3, x_3 

Bootstrap Sample 7 
x_1, x_1, x_3, x_4, x_5 

Bootstrap Sample 1 
x_1, x_1, x_3, x_4, x_5 

Bootstrap Sample 2 
x_1, x_2, x_3, x_4, x_5 

 Generate N bootstrap samples, 
where each bootstrap sample is 
the same size as the original 
dataset  

 Each bootstrap sample contains 
data points that are randomly 
sampled with replacement from 
the original dataset 



Bootstrap samples 

Original Dataset 
x_1, x_2, x_3, x_4, x_5 

Bootstrap Sample 3 
x_1, x_3, x_3, x_4, x_5 

Bootstrap Sample 4 
x_1, x_2, x_3, x_4, x_5 

Bootstrap Sample 5 
x_1, x_1, x_3, x_5, x_5 

Bootstrap Sample 6 
x_2, x_2, x_3, x_3, x_3 

Bootstrap Sample 7 
x_1, x_1, x_3, x_4, x_5 

Bootstrap Sample 1 
x_1, x_1, x_3, x_4, x_5 

Bootstrap Sample 2 
x_1, x_2, x_3, x_4, x_5 

 Compute N different statistics 
V=v1, …, vN using these N samples 

 Compute the confidence interval 
(e.g., 95%) from the sorted list of V 

 If the (assumed) statistic of null 
hypothesis is outside this 
confidence interval, reject the null 
hypothesis 



permutation test 
 Generate a number of new samples (similarly as 

bootstrapping) 

 By randomly permuting the predicted labels between 
the two approaches (baseline V.S. the proposed 
approach) == permutation on prediction 

 How many different permutations?  

 2N 

too many to enumerate all. Therefore, sample a subset 
using binomial distribution with p=0.5 and n=N 

confidence interval is computed from the sorted list of 
statistics 



permutation test V.S. bootstrapping test: 

 permutation test:  

 sampling without replacement 

 sampling operates on the statistics (e.g. 
prediction) directly 

 

 bootstrapping test:  

 sampling with replacement 

 sampling operates on the dataset 
 statistics are computed later on the generated bootstrap 

samples 



Parametric test (Recap) 
 Student t-test 

 Paired Student t-test 

 Wald test 

 

 Assumes the data follows certain probabilistic 
distribution that are parameterized (e.g., normal 
distribution) 



Non-parametric test (Recab) 
 Sign test 

 Wilcoxon signed-rank test 

 NcNemar test 

 permutation test 

 bootstrap test 

 

All of these assumes the data is independently 
distributed, but do not make assumptions based on 
well-known parametric distributions. 

More powerful if the data do not follow certain 
parametric distributions (e.g., normal distribution) 


