Standard Error & Confidence Interval

Standard Error

- A particular kind of standard deviation
- Standard Error := <u>standard deviation</u> of the <u>sampling</u> <u>distribution</u> of a <u>statistic</u>
- Statistic := a function of a dataset (e.g., mean, median, variance, correlations, accuracy, f-score, ROUGE, BLEU)
- There is a nice closed form for computing standard error for sample mean (via Central Limit Theorem), but for most other statistics (e.g., median, variances, correlations, accuracy, f-score, ROUGE, BLEU), no general closed form formula available

Bootstrap Estimate of Standard Error

- proposed by Efron (1979)
- an instance of "plug-in principle": plug-in sample statistics for unknown parameter values
- Bootstrap Samples: Using the empirical distribution

 (i.e., distribution of the dataset), randomly generate
 a
 number of new samples (a number of new datasets),
 where each sample (dataset) is of the same size as the
 original dataset.

Bootstrap Estimate of Standard Error

- Bootstrap Samples: <u>Using the empirical distribution (i.e.,</u> <u>distribution of the dataset</u>), <u>randomly generate</u> a number of new samples (a number of new datasets), where each sample (dataset) is <u>of the same size as the original dataset</u>.
- Compute the standard error of your statistic from these bootstrap samples. Recall sample standard deviation is defined by

$$s = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2},$$

 Don't forget to use N – 1 instead of N! This correction is known as Bessel's correction.

Confidence Interval

Given confidence level (confidence co-efficient) 0 <= a <= 1, we want to compute confidence interval [l, u] of a parameter x (a quantity we want to estimate) such that p(l < x < u) >= 1 - a

Confidence Interval

Confidence Interval

Given confidence level (confidence co-efficient) 0 <= a <= 1, we want to compute confidence interval [l, u] of a parameter x (a quantity we want to estimate) such that p(l < x < u) >= 1 - a

Bootstrap Percentile Interval:

- 1. Generate bootstrap samples
- 2. Sort the statistics computed from bootstrap samples
- 3. Find the a/2 and 1-a/2 quantiles

Hypothesis Testing

Null Hypothesis / Alternative Hypothesis

- You have a baseline A and your own invention B
- B performs better than A by 1 % based on 10-fold cross validation
- How good is it?
- H_o Null Hypothesis: A and B have the same performance.
 - that is, 1% difference is only a fluke
 - Skeptic's point of view
- H_a Alternative Hypothesis: B is indeed better than A

- A number of choices:
 - Paired Student t-test
 - Sign test
 - Wilcoxon test
 - McNemar test
 - Permutation test
 - Bootstrap test
- They all try to answer the following question:
 - should we <u>reject</u> Null Hypothesis (H_o) or not?

• They all try to answer the following question:

- should we <u>reject</u> Null Hypothesis (H_o) or not?
- whether we should accept null hypothesis?
- whether we accept alternative hypothesis?
- which hypothesis is better?

• They all try to answer the following question:

- should we <u>reject</u> Null Hypothesis (H_o) or not?
- whether we should accept null hypothesis?
 whether we accept alternative hypothesis?
 which hypothesis is better?
- Not rejecting Null Hypothesis... is the same as accepting Null Hypothesis?

• They all try to answer the following question:

should we <u>reject</u> Null Hypothesis (H_o) or not?

whether we should accept null hypothesis?
 whether we accept alternative hypothesis?
 which hypothesis is better?

 Not rejecting Null Hypothesis... is the same as accepting Null Hypothesis?

→ NO! (it just means neither accepting nor rejecting)

P-value

- They all try to answer the following question:
 - should we <u>reject</u> Null Hypothesis (H_o) or not?
- We reject Null based on a threshold called p-value
- p-value: conditional probability of seeing MORE extreme results that what have been observed, conditional on the assumption that Null Hypothesis is true.
- typical p-value threshold is 0.05 (5%)
- very small p-value == observation unlikely if Null is true

Type I & II Error

- Type I Error:
 - When a test <u>rejects a true null hypothesis</u>
 - aka, False Positive
- Type II Error:
 - When a test fails to reject a false null hypothesis
 - aka, False Negative
- p-value bounds Type I error
- p-value: conditional probability of seeing MORE extreme results that what have been observed, <u>conditional on the</u> <u>assumption that Null Hypothesis is true.</u>

Type I & II Error

- Type I Error:
 - When a test <u>rejects a true null hypothesis</u>
 - aka, False Positive
- Type II Error:
 - When a test fails to reject a false null hypothesis
 - aka, False Negative
- p-value bounds Type I error
- ➔ With typical p-value = 0.05 (5%), 1 out of 20 papers claims a scientific advance that is not there!

Paired Student t-test

- Assumption: D_i are independent and normally distributed
- D_i is the difference between statistics of two different studies. For instance, the difference of accuracy (or fscore) of baseline and the proposed approach.
- Typically, we obtain N number of differences from Nfold cross validation.
- "paired" test in that the difference is computed from paired numbers that belong to the same evaluation setting (e.g., same fold in the N-fold cross validation)
- Null hypothesis :=

$$\mu_D = 0$$

Paired Student t-test

$$t_D = \frac{\sqrt{N}m_D}{s_D}$$

- D is the set of differences of statistics (e.g., N difference in accuracies between 2 approaches with N-fold cross validation)
- m_D is the sample mean of D
- s_D is the sample standard deviation of D (with N-1 instead of N!)
- Above t_D score follows t-distribution with N-1 degree of freedom, using which we can find the confidence interval efficiently.

Paired Student t-test $t_D = \frac{\sqrt{N}m_D}{s_D}$

 Above t_D score follows t-distribution with N-1 degree of freedom (== ν), using which we can find the confidence interval efficiently.

$$f(t) = \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi}\,\Gamma(\frac{\nu}{2})} \left(1 + \frac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}},$$

 Many tools available for which you only need to provide an array of paired numbers (R, various websites etc)

Paired Student t-test: Issues to consider

- The <u>power</u> of a test is the probability of (correctly) rejecting the null hypothesis when it is in fact false.
- If D indeed satisfies the normality assumption, than T-test is very powerful in detecting statistical differences that other approaches may not able to detect.
- If D violates the normality assumption, or D is not independently distributed, or D has outliers or noises, then T-test is <u>not powerful</u> in detecting statistical differences. For those cases, consider <u>non-parametric</u> approaches instead.
- Non-parametric approaches: sign-test, Wilcoxson test, NcNemar test, permutation test, bootstrap test

Parametric test

- Student t-test
- Paired Student t-test
- Wald test

➔ Assumes the data follows certain probabilistic distribution that are parameterized (e.g., normal distribution)

Non-parametric test

- Sign test
- Wilcoxon signed-rank test
- NcNemar test
- permutation test
- bootstrap test
- All of these assumes the data is *independently* distributed, but do not make assumptions based on well-known parametric distributions.
- More *powerful* if the data do not follow certain parametric distributions (e.g., normal distribution)

Sign Test & Wilcoxon test

- Let V=v₁, ..., v_N and U=u₁, ... u_N be the set of statistics of method A and method B respectively
 - E.g., they are prediction accuracy from N-fold cross validation.
- Let D=d₁, ..., d_N be the difference between these <u>paired</u> statistics so that d_i = v_i – u_i
- Student t-test & Wald test: whether the mean of d_i is 0
- Sign test: whether the <u>number of cases</u> where $d_i > 0$ is different from the number of cases where $d_i < 0$
- \rightarrow Wilcoxon test: whether the <u>median</u> of the difference d_i is 0.

This means, Sign test and Wilcoxon test depend only on the sign of the differences, not the magnitude!

Sign Test

- Let D=d₁, ..., d_N be the difference between these <u>paired</u> statistics so that d_i = v_i – u_i
- The null hypothesis H_0 of Sign Test := the sign of each d_i is drawn from a bernoulli distribution so that
 - p(d_i > 0) = 0.5
 - p(d_i < 0) = 0.5
 - Cases such that d_i = 0 are ignored in this test
- Then pdf of k = the number of cases where d_i > 0 is

$$P(K=k) = \binom{M}{k} p^k (1-p)^{M-k}$$

- where M is the number of non-zero cases in D, and p = 0.5
- can compute p-value using cdf of binomial distribution

McNemar Test

- Let V=v₁, ..., v_N and U=u₁, ... u_N be the set of statistics of method A and method B respectively.
- McNemar test is applicable when v_i and u_i are binary values: 0 or 1
- need to compute the "contingency table":

	v _i = 0	v _i = 1	marginal
u _i = 0	freq(0, 0)	freq(1, 0)	freq (*, 0)
u _i = 1	freq(0, 1)	freq(1, 1)	freq(*, 1)
marginal	freq(0, *)	freq(1, *)	Ν

McNemar		v _i = 0	v _i = 1	marginal
Test	u _i = 0	freq(0, 0)	freq(1, 0)	freq (*, 0)
	u _i = 1	freq(0, 1)	freq(1, 1)	freq(*, 1)
	marginal	freq(0, *)	freq(1, *)	Ν

 The null hypothesis of McNemar test := marginal probabilities of each outcome (0 or 1) is the same over V and U. That is,

- Intuitively, null hypothesis means freq(0, 1) and freq(1, 0) are close
- Can map to binomial distribution with n = freq(0, 1) + freq (1, 0) and p=0.5
- can also use chi-squared distribution, but not as exact as binomial if either freq(0, 1) or freq(1, 0) is small

Bootstrap test

- Generate "bootstrap samples"
- Compute the confidence interval from the sorted list of statistics
- Reject the null hypothesis if the measured statistic is outside this confidence interval

Bootstrap samples

Original Dataset x_1, x_2, x_3, x_4, x_5

- Generate N bootstrap samples, where each bootstrap sample is the same size as the original dataset
- Each bootstrap sample contains data points that are randomly sampled with replacement from the original dataset

Bootstrap Sample 1 x_1, x_1, x_3, x_4, x_5

Bootstrap Sample 2 x_1, x_2, x_3, x_4, x_5

Bootstrap Sample 3 x_1, x_3, x_3, x_4, x_5

Bootstrap Sample 4 x_1, x_2, x_3, x_4, x_5

Bootstrap Sample 5 x_1, x_1, x_3, x_5, x_5

Bootstrap Sample 6 x_2, x_2, x_3, x_3, x_3

Bootstrap Sample 7 x_1, x_1, x_3, x_4, x_5

Bootstrap samples

Original Dataset x_1, x_2, x_3, x_4, x_5

- Compute N different statistics
 V=v₁, ..., v_N using these N samples
- Compute the confidence interval (e.g., 95%) from the sorted list of V
- If the (assumed) statistic of null hypothesis is outside this confidence interval, reject the null hypothesis

Bootstrap Sample 1 x_1, x_1, x_3, x_4, x_5

Bootstrap Sample 2 x_1, x_2, x_3, x_4, x_5

Bootstrap Sample 3 x_1, x_3, x_3, x_4, x_5

Bootstrap Sample 4 x_1, x_2, x_3, x_4, x_5

Bootstrap Sample 5 x_1, x_1, x_3, x_5, x_5

Bootstrap Sample 6 x_2, x_2, x_3, x_3, x_3

Bootstrap Sample 7 x_1, x_1, x_3, x_4, x_5

permutation test

- Generate a number of new samples (similarly as bootstrapping)
- By randomly permuting the predicted labels between the two approaches (baseline V.S. the proposed approach) == permutation on prediction
- How many different permutations?
 - 2^N
 - too many to enumerate all. Therefore, sample a subset using binomial distribution with p=0.5 and n=N
 - confidence interval is computed from the sorted list of statistics

permutation test V.S. bootstrapping test:

- permutation test:
 - sampling without replacement
 - sampling operates on the statistics (e.g. prediction) directly
- bootstrapping test:
 - sampling with replacement
 - sampling operates on the dataset
 - statistics are computed later on the generated bootstrap samples

Parametric test (Recap)

- Student t-test
- Paired Student t-test
- Wald test

➔ Assumes the data follows certain probabilistic distribution that are parameterized (e.g., normal distribution)

Non-parametric test (Recab)

- Sign test
- Wilcoxon signed-rank test
- NcNemar test
- permutation test
- bootstrap test
- All of these assumes the data is *independently* distributed, but do not make assumptions based on well-known parametric distributions.
- More *powerful* if the data do not follow certain parametric distributions (e.g., normal distribution)