
Machine Learning Basics
 Classification & Text Categorization

 Features

 Overfitting and Regularization

 Perceptron Classifier

 Supervised Learning V.S. Unsupervised Learning

 Generative Learning V.S. Discriminative Learning

 Baselines

Text Categorization Examples
 Blogs

 Recommendation
 Spam filtering
 Sentiment analysis for marketing

 Newspaper Articles
 Topic based categorization

 Emails
 Organizing
 Spam filtering
 Advertising on Gmail

 General Writing
 Authorship detection
 Genre detection

Text Classification – who is lying?
 I have been best friends with Jessica for about seven years

now. She has always been there to help me out. She was
even in the delivery room with me when I had my
daughter. She was also one of the Bridesmaids in my
wedding. She lives six hours away, but if we need each
other we’ll make the drive without even thinking.

 I have been friends with Pam for almost four years now.
She’s the sweetest person I know. Whenever we need help
she’s always there to lend a hand. She always has a kind
word to say and has a warm heart. She is my inspiration.

Examples taken from Rada Mihalcea and Carlo Strapparava, The Lie Detector:
Explorations in the Automatic Recognition of Deceptive Language, ACL 2009

 How would you make feature vectors?

Classification
 𝑦 : random variable for prediction (output)

 𝑥 : random variable for observation (input)

 Training Data = Collection of (𝑥, 𝑦) pairs

 Machine Learning = Given the training data, learn a
mapping function 𝑓 𝑥 = 𝑦 that can map input
variables to output variables

 Binary classification

 Multiclass classification

Classification
 Input variable 𝑥 is defined (represented) as a feature

vector 𝑥 = (𝑓1, 𝑓2, 𝑓3, …)

 Feature vector is typically defined by human, based on
domain knowledge and intuitions.

 Machine Learning algorithms automatically learn the
importance (weight) of each feature. That is, machine
learning algorithms learn the weight vector
𝑤 = (𝑤1, 𝑤2, 𝑤3, …)

Features
 This is the place where you will use your intuitions

 Features should describe the input in a way machine
learning algorithms can learn generalized patterns
from them.

 You can throw in anything you think might be useful.

 Example of features – words, n-grams (used as
features), syntax oriented features (part-of-speech
tags, semantic roles, parse tree based features),
electronic dictionary based features (WordNet)

Features
 Even an output from another classifier (for the same

task) can be used as features as well!

 There is no well-established best set of features you
must use for each problem – you need to explore.

 “feature engineering” – you often need to repeat the
cycle of [encoding basic features, running the machine
learning algorithm, analyzing the errors, improving
features, running the machine learning again], and so
forth

 “feature selection” – a statistical method to select a
small set of better features.

Machine Learning
Algorithm

Classifier (“model”)

Training Corpus

Training Data = Many pairs
of (Feature Vectors, Gold

Standard)

Test Corpus

Test Data = Many pairs of
(Feature Vectors, ???)

Prediction

Overfitting and Regularization
 Suppose you need to design a classifier for a credit

card company – you need to classify whether each
applicant is likely to be a good customer or not, and
you are given the training data.

 Features – ages, jobs, the number of credit cards,
region of the country etc...

 How about “social security number”?

Overfitting and Regularization
 Overfitting: the phenomenon where a machine

learning algorithm is fitting its learning model too
specific to the training data, without being able to
discover generalized concepts. – will not perform well
on the previously unseen data

 Many of learning algorithms are iterative – overfitting
can happen if you let them iterate for too long

 Overfitting can also happen if you define features that
encourage learning models to memorize the training
data, rather than generalize. (previous slide)

 Y axis – performance of the
trained model

 X axis – number of training
cycles

 Blue – prediction errors in
the training data

 Red – prediction errors in
the test data

Overfitting and Regularization

Overfitting and Regularization
 Regularization: typically enforces none of the features

can become too powerful (that is, make sure the
distribution of weights is not too spiky)

 Most of machine learning packages have parameters
for regularization – Do play with them!

 Quiz: How should you pick the best value for the
regularizing parameter?

Perceptron slides are from Dan Klein

Supervised V.S. Unsupervised Learning

 Supervised Learning

 Training data includes “Gold standard” or “true prediction”
which is typically from human “annotation”

 For text categorization, the correct category of each
document is given in the training data

 Human annotation is typically VERY VERY expensive, which
limits the size of training corpus. – the more data, the better
your model will perform.

 Sometimes it’s possible to obtain gold standard automatically.
Eg. Movie review data or Amazon product review data.

 Annotation typically has some noise. Especially for NLP tasks
that are hard to judge even for human. Examples?

Supervised V.S. Unsupervised Learning
 Unsupervised Learning

 Training data does not have gold standard. Machine learning
algorithms need to learn from the data based on statistical
patterns alone.

 E.g. “Clustering” or “K-nearest neighbors (KNN)”
 Suitable when obtaining annotation is too expensive, or one

has a cool idea about how to devise a statistical method that
can learn directly from the data.

 Supervised Learning generally performs better than
unsupervised alternatives, especially if the size of training
corpus is identical. Typically a bigger training corpus can be
utilized for unsupervised learning.

 Semi-supervised Learning
 Only a small portion of your training data comes with gold

standard.

Generative V.S. Discriminative Learning

 Generative Learning

 Tries to “generate” the output variables (often tries to
generate input variables as well)

 Typically involves “probability”

 For instance, Language Models can be used to generate
sequence of words that resemble natural language. (by
drawing words proportionate to the n-gram
probabilities)

 Generative learning tends to waste the effort in
preserving a valid probability distribution (that sums up
to 1) which might not be always necessary in the end.

Generative V.S. Discriminative Learning

 Discriminative Learning

 Perceptron!

 Only care about making a correct prediction for the
output variables. That is, “discrimination” between the
correct prediction and incorrect ones. But doesn’t care
about which is more correct than the other by how
much.

 Often does not involve probability

 For tasks that do not require probabilistic outputs,
discriminative methods tend to perform better. (because
learning is focused on making correct predictions, rather
than preserving a valid prob. distribution.)

“No Free Lunch”

“No Free Lunch”
 No Free Lunch Theorem by Wolpert and Macready, 1997

 Interpretation for Machine Learning: There is no single
classifier that works best on all problems.

 Metaphor
 Restaurant – classifier

 Menu – a set of problems (dishes)

 Price – the performance of each classifier for each problem
 Suppose all restaurants serve identical menu, except the

prices differ such that the average price of the menu is
identical across different restaurants. If you are an
omnivore, you cannot pick one single restaurant that is the
most cost-efficient.

Practical Issues
 Feature Vectors are typically sparse

 Remember Zipf’s Law?

 Use sparse encoding (e.g. linked list rather than array)

 Different machine learning packages accept different
types of features
 Categorical features – some machine learning packages

require for you to change “string” features into “integer”
features. (assign unique id for each different string feature)

 Binary features – binarized version of categorical features.
Some machine learning packages will accept categorical
features, but convert them into binary features internally.

 Numeric features – need to normalize!!! Why?
 You might need to convert numerical features into

categorical features

Practical Issues
 Popular choices

 Boosting
 BoosTexter

 Decision Trees
 Weka

 Support Vector Machines (SVMs)
 SVMLight, libsvm

 Conditional Random Fields (CRFs)
 Mallet

 Weka and Mallet contain other algorithms as well.

 Definitely play with parameters for regularization!

Baseline
 Your evaluation must compare your proposed

approaches against reasonable baselines.

 Baseline shows a lower bound of performance.

 Baseline can be either simple heuristics (hand-written
rules) or based on simple machine learning
techniques.

 Sometimes a very simple baseline might turn out to
be quite difficult to beat

 Examples? Learn from research papers.

Recommended Reading to learn more
about machine learning

 Part V Learning

 Ch-18 Learning from Examples

 Ch-20 Learning Probabilistic Models

