
Machine Learning Basics 
 Classification & Text Categorization 

 

 Features 

 Overfitting and Regularization 

 

 Perceptron Classifier 

 

 Supervised Learning V.S. Unsupervised Learning 

 Generative Learning V.S. Discriminative Learning 

 

 Baselines 



Text Categorization Examples 
 Blogs 

 Recommendation 
 Spam filtering 
 Sentiment analysis for marketing 

 Newspaper Articles 
 Topic based categorization 

 Emails 
 Organizing 
 Spam filtering 
 Advertising on Gmail 

 General Writing 
 Authorship detection 
 Genre detection 



Text Classification – who is lying? 
 I have been best friends with Jessica for about seven years 

now. She has always been there to help me out. She was 
even in the delivery room with me when I had my 
daughter. She was also one of the Bridesmaids in my 
wedding. She lives six hours away, but if we need each 
other we’ll make the drive without even thinking. 
 

 I have been friends with Pam for almost four years now. 
She’s the sweetest person I know. Whenever we need help 
she’s always there to lend a hand. She always has a kind 
word to say and has a warm heart. She is my inspiration. 
 

Examples taken from Rada Mihalcea and Carlo Strapparava, The Lie Detector: 
Explorations in the Automatic Recognition of Deceptive Language, ACL 2009 
 

 How would you make feature vectors? 



Classification 
 𝑦 : random variable for prediction (output) 

 𝑥 : random variable for observation (input) 

 Training Data = Collection of (𝑥, 𝑦) pairs 

 Machine Learning = Given the training data, learn a 
mapping function 𝑓 𝑥 = 𝑦  that can map input 
variables to output variables 

 

 Binary classification 

 Multiclass classification 

 

 

 



Classification 
 Input variable 𝑥 is defined (represented) as a feature 

vector 𝑥 = (𝑓1, 𝑓2, 𝑓3, …) 

 Feature vector is typically defined by human, based on 
domain knowledge and intuitions. 

 Machine Learning algorithms automatically learn the 
importance (weight) of each feature. That is, machine 
learning algorithms learn the weight vector 
𝑤 = (𝑤1, 𝑤2, 𝑤3, …) 

 

 



Features 
 This is the place where you will use your intuitions 

 Features should describe the input in a way machine 
learning algorithms can learn generalized patterns 
from them. 

 You can throw in anything you think might be useful. 

 Example of features – words, n-grams (used as 
features), syntax oriented features (part-of-speech 
tags, semantic roles, parse tree based features), 
electronic dictionary based features (WordNet) 

 



Features 
 Even an output from another classifier (for the same 

task) can be used as features as well! 

 There is no well-established best set of features you 
must use for each problem – you need to explore. 

 “feature engineering” – you often need to repeat the 
cycle of [encoding basic features, running the machine 
learning algorithm, analyzing the errors, improving 
features, running the machine learning again], and so 
forth 

 “feature selection” – a statistical method to select a 
small set of better features.  

 



Machine Learning 
Algorithm 

Classifier (“model”) 

Training Corpus 

Training Data = Many pairs 
of (Feature Vectors, Gold 

Standard) 

Test Corpus  

Test Data = Many pairs of 
(Feature Vectors, ???) 

Prediction 



Overfitting and Regularization 
 Suppose you need to design a classifier for a credit 

card company – you need to classify whether each 
applicant is likely to be a good customer or not, and 
you are given the training data. 

 Features – ages, jobs, the number of credit cards, 
region of the country etc... 

 How about “social security number”? 

 



Overfitting and Regularization 
 Overfitting: the phenomenon where a machine 

learning algorithm is fitting its learning model too 
specific to the training data, without being able to 
discover generalized concepts. – will not perform well 
on the previously unseen data 

 Many of learning algorithms are iterative – overfitting 
can happen if you let them iterate for too long 

 Overfitting can also happen if you define features that 
encourage learning models to memorize the training 
data, rather than generalize. (previous slide) 



 Y axis – performance of the 
trained model 

 X axis – number of training 
cycles 

 

 Blue – prediction errors in 
the training data 

 Red – prediction errors in 
the test data 

Overfitting and Regularization 



Overfitting and Regularization 
 Regularization: typically enforces none of the features 

can become too powerful (that is, make sure the 
distribution of weights is not too spiky) 

 Most of machine learning packages have parameters 
for regularization – Do play with them! 

 

 Quiz: How should you pick the best value for the 
regularizing parameter? 

 

 



Perceptron slides are from Dan Klein 

















Supervised V.S. Unsupervised Learning 

 Supervised Learning  

 Training data includes “Gold standard” or “true prediction” 
which is typically from human “annotation” 

 For text categorization, the correct category of each 
document is given in the training data 

 Human annotation is typically VERY VERY expensive, which 
limits the size of training corpus. – the more data, the better 
your model will perform. 

 Sometimes it’s possible to obtain gold standard automatically. 
Eg. Movie review data or Amazon product review data.  

 Annotation typically has some noise. Especially for NLP tasks 
that are hard to judge even for human. Examples? 

 



Supervised V.S. Unsupervised Learning 
 Unsupervised Learning  

 Training data does not have gold standard. Machine learning 
algorithms need to learn from the data based on statistical 
patterns alone.   

 E.g. “Clustering” or “K-nearest neighbors (KNN)” 
 Suitable when obtaining annotation is too expensive, or one 

has a cool idea about how to devise a statistical method that 
can learn directly from the data. 

 Supervised Learning generally performs better than 
unsupervised alternatives, especially if the size of training 
corpus is identical. Typically a bigger training corpus can be 
utilized for unsupervised learning. 

 Semi-supervised Learning 
 Only a small portion of your training data comes with gold 

standard. 
 



Generative V.S. Discriminative Learning 

 Generative Learning 

 Tries to “generate” the output variables (often tries to 
generate input variables as well) 

 Typically involves “probability” 

 For instance, Language Models can be used to generate 
sequence of words that resemble natural language. (by 
drawing words proportionate to the n-gram 
probabilities)  

 Generative learning tends to waste the effort in 
preserving a valid probability distribution (that sums up 
to 1) which might not be always necessary in the end. 

 



Generative V.S. Discriminative Learning 

 Discriminative Learning 

 Perceptron! 

 Only care about making a correct prediction for the 
output variables. That is, “discrimination” between the 
correct prediction and incorrect ones. But doesn’t care 
about which is more correct than the other by how 
much. 

 Often does not involve probability 

 For tasks that do not require probabilistic outputs, 
discriminative methods tend to perform better. (because 
learning is focused on making correct predictions, rather 
than preserving a valid prob. distribution.) 

 

 



“No Free Lunch” 



“No Free Lunch” 
 No Free Lunch Theorem by Wolpert and Macready, 1997 

 Interpretation for Machine Learning: There is no single 
classifier that works best on all problems. 

 Metaphor 
 Restaurant – classifier 

 Menu – a set of problems (dishes)  

 Price – the performance of each classifier for each problem 
 Suppose all restaurants serve identical menu, except the 

prices differ such that the average price of the menu is 
identical across different restaurants.  If you are an 
omnivore, you cannot pick one single restaurant that is the 
most cost-efficient. 

 



Practical Issues 
 Feature Vectors are typically sparse 

 Remember Zipf’s Law? 

 Use sparse encoding (e.g. linked list rather than array) 

 Different machine learning packages accept different 
types of features 
 Categorical features – some machine learning packages 

require for you to change “string” features into “integer” 
features. (assign unique id for each different string feature) 

 Binary features – binarized version of categorical features. 
Some machine learning packages will accept categorical 
features, but convert them into binary features internally. 

 Numeric features – need to normalize!!! Why? 
 You might need to convert numerical features into 

categorical features 

 

 
 



Practical Issues 
 Popular choices 

 Boosting 
 BoosTexter 

 Decision Trees 
 Weka 

 Support Vector Machines (SVMs) 
 SVMLight, libsvm 

 Conditional Random Fields (CRFs) 
 Mallet 

 Weka and Mallet contain other algorithms as well. 

 Definitely play with parameters for regularization! 



Baseline 
 Your evaluation must compare your proposed 

approaches against reasonable baselines. 

 Baseline shows a lower bound of performance. 

 Baseline can be either simple heuristics (hand-written 
rules) or based on simple machine learning 
techniques. 

 Sometimes a very simple baseline might turn out to 
be quite difficult to beat 

 Examples? Learn from research papers. 



Recommended Reading to learn more 
about machine learning 

 Part V Learning 

 Ch-18 Learning from Examples 

 Ch-20 Learning Probabilistic Models 


