
 Computation Biology - Final Report

 (Shorty Assembler)

 Bala Nagi Reddy Mudiam (107367424)

 Chandrakantha Reddy B (107224402)

 Anandsagar Kothapalli (107232216)

1. Introduction
 Shorty is a short read genome assembler. It is targeted towards paired end micro read
sequencing data. It uses seeds and contig distances for sequencing.

2. Project Description
 Shorty is a short read de novo assembler which is particularly targeted at the new ABI SOLID
sequencing technology. Currently it doesn't have test data to evaluate. So we collected the
different test data sets and also different sequencing technology data such as Solexa/Illumina and
Helicos Bio Sciences. By running shorty on different data sets we evaluated its performance with
respect to other genome assemblers such as velvet.

3. Goal of the Project
Evaluate it on Solexa, ABI Solid data against other assemblers (velvet):

We collected various assembler’s data and executed them on shorty and velvet
assemblers. We analyzed the results of both the assemblers and drawn advantages and limitations
of shorty.

Improve its ease of use for other platforms:
We have collected the data of different assembler’s and created required scripts for

transforming data from assembly-specific format script.pl <infile> <outfile> paired-end fasta
format, the default format for shorty. We have documented this information so that users can use
this information to run their assembly data on shorty.

4. Tasks Done

4.1. Running Shorty (fixing configuration issues in the assembler)
Previous version of shorty has lot of configuration issues and it is not executing properly.

Running shorty on sample data will give lot of errors. We found out the errors and changed the
respective header file declaritives and some configuration issues in the code so that it can be
executed on latest C++ compilers. We have successfully executed on GCC 4.2 compiler. We
created a README explaining in detail on how to setup, install and run shorty. We have created
few scripts and modified some existing scripts to generate contig statistics for the assembly
output produced by shorty. By following the new readme document, shorty is working properly
on the test data we've collected from Charles. By running according to this and using mummer
software we got the outputs in graph format.

To run the shorty assembler, we used the following command.

bin/shorty-assembler -o12 -r5 -s3 -l100 -L580077 -t5 shorty-
dat/ab/m_genitalium/<seed file> shorty-dat/ab/m_genitalium/<fasta file>
.mg.0.100

All the outputs will be stored in out directory.

We also tried running the assembler end to end. run-all script in scripts directory allows one to
run assembler, geography and collect contig stats by running through Mummer.

The arguments to run-all are explained below.

scripts/run-all 12 5 3 100 shorty-dat/ab/m_genitalium/org.seq 5 shorty-
dat/ab/m_genitalium/seed.0 shorty-dat/ab/m_genitalium/pair100_2270_350.fasta .mg.0.100

1 overlap of reads
2 max read reuse
3 substition error allowed in seed mapping
4 min output contig length
5 reference sequence file
6 desired thickness of output
7 seed file
8 reads file
9 output extension
(Each one of the above corresponds to the argument specified after run-all)

Output:
contigs[ext] : Contigs generated by shorty-assembler
contigs-enriched[ext] : Contigs enriched using shorty-geography
contig-map[ext].eps : Contig length mapping to the reference coverage
contigs-len[ext].eps : Contig length mapping to the accuracy.
contig-map-enriched[ext].eps : Enriched Contig length mapping to the reference
coverage(Produced by shorty-geography)
contigs-len-enriched[ext].eps : Contig length mapping to the accuracy.(Produced by
shorty-geography)

To download the new shorty with all the fixes, click on the below link.
http://www.cs.sunysb.edu/~cbabireddyga/shorty/

We ran Shorty on Test data after fixing all the issues and the results are shown in following
pages.

4.2. Data Collection - ABI Solid, Solexa Illumina, Helicos

Next task is to collect various assembly reads from the internet, which is a lot difficult
than we first thought. Although there are various kinds of sequencing data is available, the data
we needed such as solexa/illumina paired end read data, and helicos bio sciences data that is less
than 5 GB is rarely available. We were able to find solexa/illumina and ABI solid data and tested
them with shorty. The main sources of downloading ABI Solid data which we used are
[1],[2],[3],[4],[5]. Solexa/Illumina data is downloaded from [6],[7],[8],[9] Where as Helicos data
is downloaded from [10]. Both Solexa and ABI Solid which we used for our project are from
ECOLI and M-Genitalium. We search for Helicos data and couldn’t find the data which is less
than 10 GB. The Helicos data which we got is in FASTQ format by default.

4.3. Conversion between data formats
After collecting data we need to change the different assembly specific formats into

FASTA format, since shorty works on fasta format only. ABI solid data is only available in
csfasta files. Solexa data available in fastq format only. But to run it on shorty we need to convert
it to fasta format. So we found some of the scripts online and modified them to retain the paired
information required for shorty. These scripts are used to convert the sequencing data formats.
These scripts can be executed using bio perl tools. By using these scripts all the downloaded data
is converted to fasta format with paired information required for shorty.

We followed the below procedure to convert paired end Illumina/solexa data to fasta format.

Converting paired end Illumina/Solexa data to FASTA format.

First we do the subsetting. Start by counting the lines, as above:

wc -l SRR001666_1.fastq SRR001666_2.fastq

Do the subsetting. Soon we will compare the single ended assembly to the paired-end assembly.
In order for the comparison to be fair, we must use the same total number of reads. Therefore
each paired end file will contain 1/4 of the reads:

subset_fastq.pl --input SRR001666_1_sample.fastq --output
SRR001666_1_sample.paired_subset.fastq --length 7047668 --fraction 1

subset_fastq.pl --input SRR001666_2_sample.fastq --output
SRR001666_2_sample.paired_subset.fastq --length 7047668 --fraction 1

 Shorty expects a single fastq file for paired-end reads, so we have to shuffle (forward, reverse,
forward, reverse, etc.) the two files together:

shuffleSequences_fastq.pl SRR001666_1_sample.paired_subset.fastq
SRR001666_2_sample.paired_subset.fastq SRR001666_sample.paired_all_subset.fastq

Now use the fastq-to-fasta.pl to convert from fastq format of Solexa data to fasta format.

./fastq-to-fasta.pl fq2fa SRR001666_sample.paired_all_subset.fastq >
SRR001666_sample_converted.paired_all_subset.fastq

The sequence of execution of the above steps would produce the following output.

Sample output before conversion

@SRR001666.1 071112_SLXA-EAS1_s_7:5:1:817:345 length=36
GGGTGATGGCCGCTGCCGATGGCGTCAAATCCCACC
+SRR001666.1 071112_SLXA-EAS1_s_7:5:1:817:345 length=36
IIIIIIIIIIIIIIIIIIIIIIIIIIIIII9IG9IC
@SRR001666.2 071112_SLXA-EAS1_s_7:5:1:801:338 length=36
GTTCAGGGATACGACGTTTGTATTTTAAGAATCTGA
+SRR001666.2 071112_SLXA-EAS1_s_7:5:1:801:338 length=36
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII6IBI
@SRR001666.3 071112_SLXA-EAS1_s_7:5:1:839:309 length=36
GAATTTCAATACGGGTGACTTTAATCCCCCACGGGT
+SRR001666.3 071112_SLXA-EAS1_s_7:5:1:839:309 length=36
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII/

Sample output after conversion

>aSRR001666.1
GGGTGATGGCCGCTGCCGATGGCGTCAAATCCCACC
>bSRR001666.1
AAGTTACCCTTAACAACTTAAGGGTTTTCAAATAGA
>aSRR001666.2
GTTCAGGGATACGACGTTTGTATTTTAAGAATCTGA
>bSRR001666.2
AGCAGAAGTCGATGATAATACGCGTCGTTTTATCAT
>aSRR001666.3
GAATTTCAATACGGGTGACTTTAATCCCCCACGGGT
>bSRR001666.3
TTATCCCGATTCTCATTTTTGTCGCGCTGGTCATTG
>aSRR001666.4
GATACCCAGAATACCAAACACCGTCTGCTGCATATC

The data which we collected w.r.t ABI Solid was in FASTA/CSFASTA format. We used FASTA
files directly as shorty is compatible with fasta by default. For CSFASTA files, we used
conversion scripts[21] to convert into fasta and we ran the same on shorty. As far as Solexa data
is concerned, the data which we downloaded was in fastq format by default. We used the above
strategy to convert into required fasta format so that it could be made compatible with shorty.
Helicos data that we download was in fastq format.

Apart from the above strategy, we also worked on some other scripts for converstion between
formats. To view those scripts, please check the link below.
http://www.cs.sunysb.edu/~cbabireddyga/shorty/utilities.html

 4.4. Shorty and Velvet – Comparison
 Velvet is another short read genome assembler which uses debruijn graphs while
sequencing data. We downloaded velvet assembler from the website. In the velvet manual
executing various kinds of sequencing data on velvet is explained. We did accordingly and
executed it on the test data. But all those results were in .txt format and hardly understandable.
So we once again used mummer software for velvet also to generate contig statistics. One
advantage with this approach was that Mummer will serve as platform for evaluating shorty and
velvet. Now comparing both shorty and velvet will be very easy, we used these results and duly
developed a comparison chart.

Velvet by default supports formats such as fasta, fastq, eland, Gerald. Running the data in velvet
assembler is basically divided into two steps

./velveth output_directory hash_length [[-file_format][-read_type] filename]

./velvetg output_directory/ -min_contig_lgth 100

Velvetg command is the core of the assembler where de Brujin Graph is built, whereas velveth
command is used to construct the dataset for velvetg and gives an indication to it on what each
sequence file represents.

We downloaded ABI solid data and used our scripts to convert from csfasta to fasta
format and ran it against shorty and velvet. We downloaded solexa data from NCBI website and
converted from fastq format files to fasta format using our scripts.
 To view the results of running velvet and shorty on ABI solid and Solexa sequencing
data, Check the link below. From our results it is clear that velvet works better than shorty for
this data.

Results are shown here: http://www.cs.sunysb.edu/~cbabireddyga/shorty/graphs.html

Comparison of Shorty with Velvet

Assembler N50 Max Contig
Length

Number of contigs

Shorty-90 550 2550 12122

Shorty with Geography-90 4500 7900 385

Velvet-90 3306 15229 558

Shorty-100 650 2650 11446

Shorty with Geography-100 7350 12350 207

Velvet-100 6721 55874 323

4.6. Performance improvements

We used gprof, open source gnu c profiler for profiling shorty assembler and finding bottlenecks
in the code. Bottle necks from gmon output are shown below.

% self total calls name

11.81 196.60 196.60 myList::checkString(std::stringconst&, int, int)

10.12 364.96 168.36 missMatchNumber(std::string,std::string, int, int)

9.88 529.33 164.36 138559832 fini

7.56 655.20 125.88 3937446119 std::vector<readPointer,std::allocator<readPointer>
::_M_fill_insert()

6.83 768.90 113.70 std::vector<triple<int, int, mar_types>,
 std::allocator<triple<int, int, mar_types> >>::_M_insert_aux()

5.79 865.33 96.43 1103210846 std::vector<OverlapGraph::ContigInfo,
 std::allocator<OverlapGraph::ContigInfo> >::_M_insert_aux()

4.71 943.64 78.31 3693798105 ShortyString::ShortyString(std::string const&, int)

3.96 1009.49 65.84 529397792 std::vector<OverlapGraph::ContigInfo,
 std::allocator<OverlapGraph::ContigInfo>

2.57 1052.33 42.84 1397173708 std::vector<int,std::allocator<int> >::push_back(int const&)

2.08 1086.89 34.57 1198094656 gnu_cxx::new_allocator<triple<int, int, int>>

1.89 1118.40 31.51 1663943608 _M_check_len(unsigned int, char const*) const

1.61 1145.26 26.86 TrieNode::addToTrie(readPointer, int)

1.55 1171.13 25.87 3634312314 UtilsMath::MedianOfIntervals()

1.18 1190.78 19.64 readPointer::stringData()

1.13 1209.57 18.79 getIndex(char)

We have optimized the performance of the above methods by in-lining the functions called from
these functions. One such example is returning the base of the corresponding alphabet. Other
step where program is lagging is printing the contigs to standard I/O and additional information
produced during the assembly like bambus-contig file. We have added debug statements to the
code to print these values only when debug option is set to on. This value can be configured in
the config file. At first shorty took almost 140 minutes of which assembly took 120 minutes and
mummer took 20 minutes to generate the contig statistics. With our improvements, we reduced it
to around 80 minutes.

In addition to the above optimizations, there is scope for more optimizations. We also observed
that most of the time is spent in the below steps.
1. Writing the contig output and the geography information of the contig.
2. Currently the code takes only one seed; it can be further improved by providing more seeds to
the assembler.

5. Documentation - creation of new Read me File
As said earlier we created a new Read Me file. This document is up-to-dated. This

document clearly demonstrates how to run shorty on the test data and collected data. This file
along with the shorty project with modifications can be downloaded from the website.

6. Future Improvements
We have modified shorty so that it can work on helicos configuration. But we are

unavailable to test it on helicos data since all the helicos data samples are single ended reads. But
we provided the required steps on how to run shorty on helicos data.

7. Conclusion
As per the goals stated, we have fixed the issues in previous version of shorty and made

the working version available at {URL}. we have collected ABI SOLID and Solexa sequencing
data and successfully ran them on Shorty. We also evaluated shorty with velvet and analyzed the
results. We also improved the performance of shorty from its previous version by significant
margin. We created extensive documentation and provided required scripts for future usage of
shorty.

8. References according to category

ABI Solid Data:

1. http://www.algorithm.cs.sunysb.edu/charles/
2. http://www3.appliedbiosystems.com/AB_Home/applicationstechnologies/SOLiDSystemSequenci

ng/SoftwareCommunityDataAnalysisResourcesforScientistsDevelopers/index.htm
3. http://solidsoftwaretools.com/gf/?
4. http://www.ncbi.nlm.nih.gov/sites/entrez
5. http://solidsoftwaretools.com/gf/project/

Solexa Data:

6. http://www.ncbi.nlm.nih.gov/sites/entrez?db=sra&term=solexa
7. ftp://ftp.ncbi.nlm.nih.gov/sra/static/SRX003/SRX003935/
8. http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=faspftp_seqsamples&m=download

s&s=download_fastq
9. ftp://ftp.ncbi.nlm.nih.gov/sra/SeqSamples/ERS000/ERS000013/ERX000013/

Helicos Data;

10. ftp://ftp.ncbi.nlm.nih.gov/sra/SeqSamples/ERS000/ERS000013/ERX000013/
11. http://open.helicosbio.com/mwiki/index.php/Datasets

General

12. http://www.cs.sunysb.edu/~skiena/shorty/paper1.pdf
13. http://www.cs.sunysb.edu/~skiena/shorty/paper.pdf
14. http://seqanswers.com/forums/index.php
15. ftp://ftp.ncbi.nih.gov/genbank/genomes/Bacteria/
16. http://www.bioperl.org/wiki/Installing_Bioperl_for_Unix
17. http://genome.cshlp.org/content/19/6/1117.full#ref-31
18. http://code.google.com/p/standardized-velvet-assembly-report/
19. http://packages.debian.org/unstable/science/velvet

Conversion scripts

20. http://www.cs.sunysb.edu/~cbabireddyga/shorty/all2y.pl
21. http://www.cs.sunysb.edu/~cbabireddyga/shorty/fastq2fasta.pl
22. http://www.cs.sunysb.edu/~cbabireddyga/shorty/mycsfasta2fasta.pl
23. http://www.cs.sunysb.edu/~cbabireddyga/shorty/script.pl

