
Lecture 4:
(Computational) Geometry

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.stonybrook.edu/˜skiena

http://www.cs.stonybrook.edu/~skiena

Contest Results

Winner: WYWYWYWYWYWY (8 problems, 1333 min-
utes)

Topic: Geometric Primitives

• Complexities of Geometry

• Fundamental Problems and Algorithms

• Sweepline Algorithms

• Voronoi Diagrams and Delauney Triangulations

Complexities of Geometry

Many programming problems deal with “real” geometry –
lines, points, circles, and so forth.
Although you did geometry in high school, it can be
surprisingly difficult to program even very simple things. One
reason is that floating point arithmetic introduces numerical
uncertainty.
Another difficulty of geometric programming is that certain
“obvious” operations you do with a pencil, such as finding the
intersection of two lines, requires non-trivial programming to
do correctly with a computer.

Degeneracy

Special cases or degeneracies require extra attention when
doing geometric programming. For these reasons I recom-
mend you carefully study my code fragments before writing
your own.

Lines

Straight lines are the shortest distance between any two
points. Lines are of infinite length in both directions, as
opposed to line segments, which are finite. We limit our
discussion here to lines in the plane.
Every line l is completely represented by any pair of points
(x1, y1) and (x2, y2) which lie on it.
Lines are also completely described by equations such as
y = mx + b, where m is the slope of the line and b is the
y-intercept, i.e., the unique point (0, b) where it crosses the
x-axis.

Line Type

Vertical lines cannot be described by such equations, how-
ever, because dividing by ∆x means dividing by zero. The
equation x = c denotes a vertical line that crosses the x-axis
at the point (c, 0).
We use the more general formula ax + by + c = 0 as the
foundation of our line type because it covers all possible lines
in the plane:
typedef struct {

double a; /* x-coefficient */
double b; /* y-coefficient */
double c; /* constant term */

} line;

Multiplying these coefficients by any non-zero constant
yields an alternate representation for any line. We establish
a canonical representation by insisting that the y-coefficient
equal 1 if it is non-zero. Otherwise, we set the x-coefficient
to 1:

points_to_line(point p1, point p2, line *l)
{

if (p1[X] == p2[X]) {
l->a = 1;
l->b = 0;
l->c = -p1[X];

} else {
l->b = 1;
l->a = -(p1[Y]-p2[Y])/(p1[X]-p2[X]);
l->c = -(l->a * p1[X]) - (l->b * p1[Y]);

}
}

point_and_slope_to_line(point p, double m, line *l)
{

l->a = -m;
l->b = 1;
l->c = -((l->a*p[X]) + (l->b*p[Y]));

}

Line Intersection

Two distinct lines have one intersection point unless they are
parallel; in which case they have none. Parallel lines share
the same slope but have different intercepts and by definition
never cross.
bool parallelQ(line l1, line l2)
{

return ((fabs(l1.a-l2.a) <= EPSILON) &&
(fabs(l1.b-l2.b) <= EPSILON));

}

The intersection point of lines l1 : y = m1x+ b1 and l2 : y2 =
m2x + b2 is the point where they are equal, namely,

x =
b2 − b1
m1 −m2

, y = m1
b2 − b1
m1 −m2

+ b1

Implementation

intersection_point(line l1, line l2, point p)
{

if (same_lineQ(l1,l2)) {
printf("Warning: Identical lines, all points intersect.\n");
p[X] = p[Y] = 0.0;
return;

}

if (parallelQ(l1,l2) == TRUE) {
printf("Error: Distinct parallel lines do not intersect.\n");
return;

}

p[X] = (l2.b*l1.c - l1.b*l2.c) / (l2.a*l1.b - l1.a*l2.b);

if (fabs(l1.b) > EPSILON) /* test for vertical line */
p[Y] = - (l1.a * (p[X]) + l1.c) / l1.b;

else
p[Y] = - (l2.a * (p[X]) + l2.c) / l2.b;

}

Angles

An angle is the union of two rays sharing a common endpoint.
The entire range of angles spans from 0 to 2π radians or,
equivalently, 0 to 360 degrees. Most trigonometric libraries
assume angles are measured in radians.
A right angle measures 90° or π/2 radians.
Any two non-parallel lines intersect each other at a given
angle. Lines l1 : a1x+b1y+c1 = 0 and l2 : a2x+b2y+c2 = 0,
written in the general form, intersect at the angle θ given by:

tan θ =
a1b2 − a2b1
a1a2 + b1b2

For lines in slope-intercept form this reduces to tan θ =
(m2 −m1)/(m1m2 + 1).
Two lines are perpendicular if they cross at right angles to
each other. The line perpendicular to l : y = mx + b is
y = (−1/m)x + b′, for all values of b′.

Closest Point

A very useful subproblem is identifying the point on line l
which is closest to a given point p. This closest point lies on
the line through p which is perpendicular to l, and hence can
be found using the routines we have already developed:

closest_point(point p_in, line l, point p_c)
{

line perp; /* perpendicular to l through (x,y) */

if (fabs(l.b) <= EPSILON) { /* vertical line */
p_c[X] = -(l.c);
p_c[Y] = p_in[Y];
return;

}

if (fabs(l.a) <= EPSILON) { /* horizontal line */
p_c[X] = p_in[X];
p_c[Y] = -(l.c);
return;

}

point_and_slope_to_line(p_in,1/l.a,&perp); /* normal case */
intersection_point(l,perp,p_c);

}

Triangles

Each pair of rays with a common endpoint defines an internal
angle of a radians and an external angle of 2π − a radians.
The three internal (smaller) angles of any triangle add up to
180° = π radians.
The Pythagorean theorem enables us to calculate the length
of the third side of any right triangle given the length of the
other two. Specifically, |a|2 + |b|2 = |c|2, where a and b are
the two shorter sides, and c is the longest side or hypotenuse.
We can go farther to analyze triangles using trigonometry.

Trigonometry

The trigonometric functions sine and cosine are defined as the
x- and y-coordinates of points on the unit circle centered at
(0, 0). The tangent is the ratio of sine over cosine.
These functions enable us to relate the lengths of any two
sides of a right triangle T with the non-right angles of T . The
non-hypotenuse edges can be labeled as opposite or adjacent
edges in relation to a given angle a. Then

cos(a) =
|adjacent|
|hypotenuse|

, sin(a) =
|opposite|
|hypotenuse|

, tan(a) =
|opposite|
|adjacent|

Use the famous Indian Chief Soh-Cah-Toa to remember
these relations. “Cah” means Cosine equals Adjacent over
Hypotenuse, for example.

Area of a Triangle

The area A(T) of a triangle T is given by A(T) = (1/2)ab,
where a is the altitude and b is the base of the triangle.
Another approach to computing the area of a triangle is
directly from its coordinate representation. Using linear
algebra and determinants, it can be shown that the signed area
A(T) of triangle T = (a, b, c) is

2·A(T) =

∣∣∣∣∣∣∣∣∣∣∣∣

ax ay 1
bx by 1
cx cy 1

∣∣∣∣∣∣∣∣∣∣∣∣
= axby−aybx+aycx−axcy+bxcy−cxby

This formula generalizes nicely to compute d! times the
volume of a simplex in d dimensions.

Note that the signed areas can be negative, so we must take
the absolute value to compute the actual area. The sign
of this area can be used to build important primitives for
computational geometry.
double signed_triangle_area(point a, point b, point c)
{

return((a[X]*b[Y] - a[Y]*b[X] + a[Y]*c[X]
- a[X]*c[Y] + b[X]*c[Y] - c[X]*b[Y]) / 2.0);

}

double triangle_area(point a, point b, point c)
{

return(fabs(signed_triangle_area(a,b,c)));
}

Circles

A circle is defined as the set of points at a given distance (or
radius) from its center, (xc, yc). A circle can be represented
in two basic ways, either as triples of boundary points or
by its center/radius. For most applications, the center/radius
representation is most convenient:
typedef struct {

point c; /* center of circle */
double r; /* radius of circle */

} circle;

The equation of a circle of radius r follows directly from its
center/radius representation, r =

√
(x− xc)2 + (y − yc)2.

Many important quantities associated with circles are easy to
compute. Specifically, A = πr2 and C = 2πr.

A tangent line l intersects the boundary of c but not its
interior. The point of contact between c and l lies on the line
perpendicular to l through the center of c.
We can compute the unknown tangent length x using the
Pythagorean theorem. From x, we can compute either the
tangent point or the angle a. The distance d from O to the
center is computed using the distance formula.
Two circles c1 and c2 of distinct radii r1 and r2 will intersect
if and only if the distance between their centers is at most
r1 + r2.
The points of intersection form triangles with the two centers
whose edge lengths are totally determined (r1, r2, and the
distance between the centers), so the angles and coordinates
can be computed as needed.

Line Segments

Computational geometry can be defined (for our purposes) as
the geometry of discrete line segments and polygons.
Most computer programs represent geometry as arrange-
ments of line segments. Arbitrary closed curves or shapes
can be represented by ordered collections of line segments or
polygons.
A line segment s is the portion of a line l which lies between
two given points inclusive. Thus line segments are most
naturally represented by pairs of endpoints:
typedef struct {

point p1,p2; /* endpoints of line segment */
} segment;

The most important geometric primitive on segments, testing
whether a given pair of them intersect, proves surprisingly
complicated because of tricky special cases that arise.
The right way to deal with degeneracy is to base all
computation on a small number of carefully crafted geometric
primitives. Previously we implemented a general line data
type that successfully dealt with vertical lines; those of
infinite slope. We can reap the benefits by generalizing our
line intersection routines to line segments.
Segment intersection can also be cleanly tested using a
primitive to check whether three ordered points turn in a
counterclockwise direction.

bool segments_intersect(segment s1, segment s2)
{

line l1,l2; /* lines containing the input segments */
point p; /* intersection point */

points_to_line(s1.p1,s1.p2,&l1);
points_to_line(s2.p1,s2.p2,&l2);

if (same_lineQ(l1,l2)) /* overlapping or disjoint segments */
return(point_in_box(s1.p1,s2.p1,s2.p2) ||

point_in_box(s1.p2,s2.p1,s2.p2) ||
point_in_box(s2.p1,s1.p1,s1.p2) ||
point_in_box(s2.p1,s1.p1,s1.p2));

if (parallelQ(l1,l2)) return(FALSE);

intersection_point(l1,l2,p);

return(point_in_box(p,s1.p1,s1.p2) && point_in_box(p,s2.p1,s2.p2));
}

Point in Box

bool point_in_box(point p, point b1, point b2)
{

return((p[X] >= min(b1[X],b2[X])) && (p[X] <= max(b1[X],b2[X]))
&& (p[Y] >= min(b1[Y],b2[Y])) && (p[Y] <= max(b1[Y],b2[Y])));

}

Polygons and Angle Computations

Polygons are closed chains of non-intersecting line segments.
We can implicitly represent polygons by listing the n vertices
in order around the boundary of the polygon. Thus a segment
exists between the ith and (i + 1)st points in the chain for
0 ≤ i ≤ n− 1. These indices are taken mod n to ensure there
is an edge between the first and last point:
typedef struct {

int n; /* number of points in polygon */
point p[MAXPOLY]; /* array of points in polygon */

} polygon;

Convex Polygons

A polygon P is convex if any line segment defined by two
points within P lies entirely within P ; i.e., there are no
notches or bumps such that the segment can exit and re-enter
P . This implies that all internal angles in a convex polygon
must be acute; i.e., at most 180° or π radians.
Actually computing the angle defined between three ordered
points is a tricky problem. We can avoid the need to know
actual angles in most geometric algorithms by using the
counterclockwise predicate ccw(a,b,c). This routine tests
whether point c lies to the right of the directed line which goes
from point a to point b.

CCW Predicate / Testing Angle Direction

These predicates are computed using
signed triangle area(). Negative area results if
point c is to the left of

→
ab. Zero area results if all three points

are collinear.

bool ccw(point a, point b, point c)
{

double signed_triangle_area();

return (signed_triangle_area(a,b,c) > EPSILON);
}

bool cw(point a, point b, point c)
{

double signed_triangle_area();

return (signed_triangle_area(a,b,c) < EPSILON);
}

bool collinear(point a, point b, point c)
{

double signed_triangle_area();

return (fabs(signed_triangle_area(a,b,c)) <= EPSILON);
}

Questions?

Topic: Fundamental Algorithms and Problems

• Complexities of Geometry

• Fundamental Problems and Algorithms

• Sweepline Algorithms

• Voronoi Diagrams and Delauney Triangulations

Convex Hulls

Convex hull is to computational geometry what sorting
is to other algorithmic problems, a first step to apply to
unstructured data so we can do more interesting things.
The convex hull C(S) of a set of points S is the smallest
convex polygon containing S.

Graham’s Scan

The Graham’s scan algorithm for convex hull first sorts the
points in angular order, and then incrementally inserts the
points into the hull in this sorted order. Previous hull points
rendered obsolete by the last insertion are then deleted.
Observe that both the leftmost and lowest points must lie on
the hull, because they cannot lie within some other triangle of
points.

Graham Scan: Example

Not removing the contained points connects them all in an
ugly but simple polygon.

Analysis of Graham Scan

Sorting by angle takes O(n log n).
In any iteration, inserting a new point might cause the
deletion of θ(n) points.
But each of the n points can only be deleted once, so the total
running time is linear plus the cost of sorting.
This is a simple example of amortized analysis, where the
cost is less than n times the worst case.

Graham Scan Implementation

point first_point; /* first hull point */

convex_hull(point in[], int n, polygon *hull)
{

int i; /* input counter */
int top; /* current hull size */
bool smaller_angle();

if (n <= 3) { /* all points on hull! */
for (i=0; i<n; i++)

copy_point(in[i],hull->p[i]);
hull->n = n;
return;

}

sort_and_remove_duplicates(in,&n);
copy_point(in[0],&first_point);

qsort(&in[1], n-1, sizeof(point), smaller_angle);

copy_point(first_point,hull->p[0]);
copy_point(in[1],hull->p[1]);

copy_point(first_point,in[n]); /* sentinel for wrap-around */

top = 1;
i = 2;

while (i <= n) {
if (!ccw(hull->p[top-1], hull->p[top], in[i]))

top = top-1; /* top not on hull */
else {

top = top+1;
copy_point(in[i],hull->p[top]);
i = i+1;

}
}

hull->n = top;
}

Why Did Graham Sort by Angle Instead of x?

There is no good reason. The incremental insertion algorithm
words just as well left-to-right as it does angularly.
The rightmost point must be on the hull, and swallows a chain
of points connected to the last point insertion.
Further, left-to-right is more suggestive of the powerful class
of sweepline algorithms.

Triangulations

Given a set of n points, we seek to partition its convex hull
into empty triangular regions.
How can we construct such a triangulation efficiently?

Triangulation Algorithms

To triangulate a point set, modify the left-to-right Graham
Scan to connect the new point to all visible points, instead of
deleting them.

van Gogh’s Algorithm

Every polygon contains at least two ears, meaning three con-
secutive points pi−1, pi, pi+1 such that the segment (pi−1, pi+1)
do not intersect any part of the polygon.
Van Gogh’s algorithm for polygon triangulation works by
finding ears and cutting them off.

Area of a Polygon
We can compute the area of any triangulated polygon by
summing the area of all triangles.
An even slicker algorithm is based on the notion of signed
areas for triangles, which we used in our ccw routine. By
properly summing the signed areas of the triangles defined by
an arbitrary point p with each segment of polygon P we get
the area of P , because the negatively signed triangles cancel
the area outside the polygon.
This computation simplifies to the equation

A(P) =
1

2

n−1∑
i=0

(xi · yi+1 − xi+1 · yi)

where all indices are taken modulo the number of vertices.

double area(polygon *p)
{

double total = 0.0; /* total area so far */
int i, j; /* counters */

for (i=0; i<p->n; i++) {
j = (i+1) % p->n;
total += (p->p[i][X]*p->p[j][Y]) - (p->p[j][X]*p->p[i][Y]);

}

return(total / 2.0);
}

Polygon Partitioning

How can you partition a polygon into the smallest number of
convex pieces?

Polygon Partitioning Algorithm

Use dynamic programming.
Let M [i, j] be the smallest number of convex pieces the
subchain from vertices i to j after adding a chord (i, j).

M [i, j] = 1 + min
k

(M [i, k],M [k, j])

Legal k have no concave angles between for all x between i
or j and k.

Questions?

Topic: Sweepline Algorithms and Duality

• Complexities of Geometry

• Fundamental Problems and Algorithms

• Sweepline Algorithms

• Voronoi Diagrams and Delauney Triangulations

Sweepline Algorithms

• Need a priority queue to maintain interesting future
events.

• Need a horizon data structure to maintain the order of
objects hit by the current sweep line position.

Sweeping Arrangements

Intersection Detection

Sweep a line from left to right, stopping at every point of
intersection, and make local updates to what is in and what is
out.

Duality

In solving linear systems, given n lines we seek the point that
lies on all the lines.
In regression, we seek the line that lies on all n points.
By the duality transformation (s, t) < − > y = (s)x− t lines
are equivalent to points in another space.

Thinking in Dual Space

It is often useful to view problems in dual space as another
way to think about them.
Convex hull finds the smallest region containing all points
Linear programming (half-plane intersection) asks for the
largest region on the right side of every linear constraint.

Identifying Geometric Degeneracies

Which is easier:

• Testing whether a set of n points have three points on a
line?

• Test whether a set of n lines have three lines going through
a single point?

Same Thing

By duality, both of these problems are exactly the same.
But it seems easier to me to test whether there is a point on
three lines using a sweepline algorithm.

Questions?

Topic: Voronoi Diagrams and Delauney
Triangulations

• Complexities of Geometry

• Fundamental Problems and Algorithms

• Sweepline Algorithms

• Voronoi Diagrams and Delauney Triangulations

Voronoi Diagrams

Voronoi diagrams partition the plane around each site p,
defining the region where p is the closest site.

Constructing Voronoi Diagrams

The edges of Voronoi diagrams are constructed from pieces
of the perpendicular bisectors of pairs of points.
But the better way to construct a Voronoi Diagram is as a dual
graph of the Delauney triangulation.

Delauney Triangulations

The key property of a Delauney triangulation is that it has
fat triangles, by maximizing the minimum angle over all
triangulations.
The Delauney triangulation can be constructed by finding
edges to flip that remove small angles.

Point Location

The point location problem asks us to determine whether a
point is inside or outside a given polygon, or to identify which
one of set of polygons the point is in.
One approach is to triangulate the polygon, then test if there
exists a triangle containing the point.

q?

KD-trees

For Further Reading

• M. de Berg, M. van Kreveld, M. Overmars, O.
Schwarzkopf, Computational Geometry: Theory and
Applications, second edition, 2000.

• Arseniy Akopyan, Geometry in Figures, 2017.

Questions?

