Lecture Schedule

no subject topics reading | hw
1 Preliminaries Analyzing algorithms 1-9
2 " Asymptotic notation 10-18 | 1lout
3% "’ Recurrence Relations
4 " Modeling 18-25
5 Data Structs Elementary data structures 27-30
6 "’ Binary search trees 30-31
7 "’ Red-black trees 175-179
8 Sorting Heapsort 31-37 | 1in
9 "’ Quicksort 37-50 | 2out
10 " Linear sorting 236-239
"’ Catalog problems
MIDTERM 1
11 Decomposition | Elements of dynamic prog 53-65
12 " Examples of dynamic prog 65-75
13 "’ Divide and conquer 75-77 | 2in
14 Graph Algs Data structures for graphs 81-88 | 3out
15 " Breadth/depth-first search 88-92
16 "’ Topsort/connectivity 92-97
17 " Minimum spanning trees 97-100
18 "’ Single-source shortest paths | 100-102
19 " All-pairs shortest paths 279-283 | 3in
MIDTERM 2
20 Search Combinatorial search 115-125 | 4out
21 " Heuristic methods 125-136
Catalog problems
22 Intractability Reductions 139-144
23 " Satisfiability 144-147 | 4/5
24 " Harder reductions 147-146
25*% | " Cook's Theorem
26 " Approximation algorithms 156-160
Catalog Problems 5in

Graduate-only lectures denoted with ‘*’

What Is An Algorithm?

Algorithms are the ideas behind computer programs.

An algorithm is the thing which stays the same whether
the program is in Pascal running on a Cray in New York
or is in BASIC running on a Macintosh in Kathmandu!

To be interesting, an algorithm has to solve a general,
specified problem. An algorithmic problem is specified
by describing the set of instances it must work on and
what desired properties the output must have.

Example: Sorting

Input: A sequence of N numbers ai...a,

Output: the permutation (reordering) of the input se-
quence such as a1 < az... < ay,.

We seek algorithms which are correct and efficient.

Correctness

For any algorithm, we must prove that it always returns
the desired output for all legal instances of the problem.

For sorting, this means even if (1) the input is already
sorted, or (2) it contains repeated elements.

Correctness is Not Obvious!

The following problem arises often in manufacturing
and transportation testing applications.

Suppose you have a robot arm equipped with a tool,
say a soldering iron. To enable the robot arm to do
a soldering job, we must construct an ordering of the
contact points, so the robot visits (and solders) the
first contact point, then visits the second point, third,
and so forth until the job is done.

Since robots are expensive, we need to find the order
which minimizes the time (ie. travel distance) it takes
to assemble the circuit board.

You are given the job to program the robot arm. Give
me an algorithm to find the best tour!

Nearest Neighbor Tour

A very popular solution starts at some point pg and then
walks to its nearest neighbor p; first, then repeats from
p1, etc. until done.

Pick and visit an initial point pg

P — po

1 =20

While there are still unvisited points
=1+ 1
Let p; be the closest unvisited point to p;_1
Visit j o

Return to po from p;

This algorithm is simple to understand and implement
and very efficient. However, it is not correct!

2 e 5 o1 3 1

21 -5 10 1 3 1

Always starting from the leftmost point or any other
point will not fix the problem.

Closest Pair Tour

Always walking to the closest point is too restrictive,
since that point might trap us into making moves we
don’t want.

Another idea would be to repeatedly connect the clos-
est pair of points whose connection will not cause a
cycle or a three-way branch to be formed, until we
have a single chain with all the points in it.

Let n be the number of points in the set
d = oo
Fori=1ton—-—1do
For each pair of endpoints (z,y) of partial paths
If dist(z,y) < d then
Ty = T, Ym — vy, d = dist(z,y)
Connect (z,,,ym) by an edge
Connect the two endpoints by an edge.

Although it works correctly on the previous example,
other data causes trouble:

T

This algorithm is not correct!

A Correct Algorithm

We could try all possible orderings of the points, then
select the ordering which minimizes the total length:

d = o0
For each of the n! permutations I; of the n points
If (cost(lM;) < d) then
d= cost(l’li) and P, = IN;
Return P,,;n

Since all possible orderings are considered, we are guar-
anteed to end up with the shortest possible tour.

Because it trys all n! permutations, it is extremely slow,
much too slow to use when there are more than 10-20
points.

No efficient, correct algorithm exists for the traveling
salesman problem, as we will see later.

Efficiency

"Why not just use a supercomputer?”

Supercomputers are for people too rich and too stupid
to design efficient algorithms!

A faster algorithm running on a slower computer will
always win for sufficiently large instances, as we shall
see.

Usually, problems don’t have to get that large before
the faster algorithm wins.

Expressing Algorithms

We need some way to express the sequence of steps
comprising an algorithm.

In order of increasing precision, we have English, pseu-
docode, and real programming languages. Unfortu-
nately, ease of expression moves in the reverse order.

I prefer to describe the ideas of an algorithm in English,
moving to pseudocode to clarify sufficiently tricky de-
tails of the algorithm.

The RAM Model

Algorithms are the only important, durable, and origi-
nal part of computer science because they can be stud-
ied in @ machine and language independent way.

The reason is that we will do all our design and analysis
for the RAM model of computation:

e Each "simple” operation (4, -, =, if, call) takes
exactly 1 step.

e Loops and subroutine calls are not simple opera-
tions, but depend upon the size of the data and
the contents of a subroutine. We do not want
“sort” to be a single step operation.

e Each memory access takes exactly 1 step.

We measure the run time of an algorithm by counting
the number of steps.

This model is useful and accurate in the same sense as
the flat-earth model (which is useful)!

Best, Worst, and Average-Case

The worst case complexity of the algorithm is the func-
tion defined by the maximum number of steps taken
on any instance of size n.

of
Steps Worst Case

Complexity

Average Case
Complexity

Best Case
Complexity

The best case complexity of the algorithm is the func-
tion defined by the minimum number of steps taken on
any instance of size n.

The average-case complexity of the algorithm is the
function defined by an average number of steps taken
on any instance of size n.

Each of these complexities defines a numerical function
— time vs. sizel

Insertion Sort

One way to sort an array of n elements is to start with
a, empty list, then successively insert new elements in
the proper position:

a1 <ax2<...<ag | agy1...an

At each stage, the inserted element leaves a sorted
list, and after n insertions contains exactly the right
elements. Thus the algorithm must be correct.

But how efficient is it?

Note that the run time changes with the permutation
instance! (even for a fixed size problem)

How does insertion sort do on sorted permutations?

How about unsorted permutations?

Exact Analysis of Insertion Sort

Count the number of times each line of pseudocode
will be executed.

Line | InsertionSort(A) #Inst. | #Exec.
1 for j:=2 to len. of A do cl n
2 key:=A[j] c2 n-1
3 /* put A[j] into A[1..j-1] */ | c3=0 /
4 ii=j-1 c4 n-1
5 while 7 > 0&A[1] > key do ch t]
6 Ali+1]:= AJi] c6

7 = i-1 c7

8 Ali4+1]:=key c8 n-1

The for statement is executed (n—1)+1 times (why?)

Within the for statement, " key:=A[j]" is executed n-1
times.

Steps 5, 6, 7 are harder to count.

Let t; = 14+ the number of elements that have to be
slide right to insert the jth item.

Step 5 is executed t5> + t3 + ... + t, times.

Step 6 is to—_1 +tz_1+ ... + t,—_1.

Add up the executed instructions for all pseudocode
lines to get the run-time of the algorithm:

ci¥n+co(n—1)+ca(n—1)+ cs Z?:z ti+ ce Z?=2(tj—1)
+c7 Z?=2(tj —1)+ecs

What are the t;.s? They depend on the particular input.

Best Case

If it’s already sorted, all t;'s are 1.

Hence, the best case time is

cin+ (co+ca+cs+cg)(n—1)=Cn—+ D

where C and D are constants.

Worst Case

If the input is sorted in descending order, we will have
to slide all of the already-sorted elements, so t; = j,
and step 5 is executed

Y i=m24n)/2-1
j=2

How can we modify almost any algorithm to have a
good best-case running time?

To improve the best case, all we have to do it to be
able to solve one instance of each size efficiently. We
could modify our algorithm to first test whether the
input is the special instance we know how to solve,
and then output the canned answer.

For sorting, we can check if the values are already or-
dered, and if so output them. For the traveling sales-
man, we can check if the points lie on a line, and if so
output the points in that order.

The supercomputer people pull this trick on the linpack
benchmarks!

Because it is so easy to cheat with the best case run-
ning time, we usually don’t rely too much about it.

Because it is usually very hard to compute the average
running time, since we must somehow average over all
the instances, we usually strive to analyze the worst
case running time.

The worst case is usually fairly easy to analyze and
often close to the average or real running time.

Exact Analysis is Hard!

We have agreed that the best, worst, and average case
complexity of an algorithm is a numerical function of
the size of the instances.

However, it is difficult to work with exactly because it
is typically very complicated!

Thus it is usually cleaner and easier to talk about upper
and lower bounds of the function.

This is where the dreaded big O notation comes in!

Since running our algorithm on a machine which is
twice as fast will effect the running times by a multi-
plicative constant of 2 - we are going to have to ignore
constant factors anyway.

Names of Bounding Functions

Now that we have clearly defined the complexity func-
tions we are talking about, we can talk about upper
and lower bounds on it:

e g(n) = O(f(n)) means C x f(n) is an upper bound
on g(n).

e g(n) = Q(f(n)) means C x f(n) is a lower bound
on g(n).

e g(n) = ©(f(n)) means C1x f(n) is an upper bound
on g(n) and C> x f(n) is a lower bound on g(n).

Got it? C, C1, and C> are all constants independent of
n.

All of these definitions imply a constant ng beyond
which they are satisfied. We do not care about small
values of n.

c2g(n)

f(n)

no

@

The value of ng shown is the minimum possible value;

clg(n)

€2, and ©

cg(n)

f(n)

f(n)

no

f(n) = O(g(n)

(b)

any greater value would also work.

(a) f(n) = ©(g(n)) if there exist positive constants ng,
c1, and ¢ such that to the right of ng, the value of
f(n) always lies between ci-g(n) and c>-g(n) inclusive.

(b) f(n) = O(g(n)) if there are positive constants ng
and c such that to the right of ng, the value of f(n)

always lies on or below c- g(n).

(c) f(n) = Q(g(n)) if there are positive constants ng
and c such that to the right of ng, the value of f(n)

always lies on or above c-g(n).

Asymptotic notation (O,©,<Q) are as well as we can

©

practically deal with complexity functions.

What does all this mean?

O(n?) because 3n? > 3n? — 100n + 6
O(n3) because .01n> > 3n? — 100n + 6

3n° —100n+ 6
3n° —100n+ 6

W

3n? — 100n 4+ 6 O(n) because c-n < 3n? when n>c
3n?2 —100n+6 = Q(n?) because 2.99n° < 3n? — 100n + 6
3n2 —100n+6 #* Q(n3) because 3n? — 100n + 6 < n3

3n%2 — 100n + 6 Q(n) because 101%°n < 3n% — 100+ 6

3n2 —100n+6 = ©O(n?) because O and
3n2 —100n+6 # ©O(n3) because O only
£

3n? —100n + 6 ©(n) because 2 only

Think of the equality as meaning in the set of functions.

Note that time complexity is every bit as well defined
a function as sin(z) or you bank account as a function
of time.

Testing Dominance

f(n) dominates g(n) if lim,50 g(n)/f(n) = 0, which is
the same as saying g(n) = o(f(n)).

Note the little-oh — it means ‘“grows strictly slower

than”.

Knowing the dominance relation between common func-
tions is important because we want algorithms whose
time complexity is as low as possible in the hierarchy.
If f(n) dominates g(n), f is much larger (ie. slower)

than g.

e n® dominates nb if @ > b since

lim n®/n® =n

n— o0

b—a

— 0

e n®+ o(n*) doesn’'t dominate n® since

JI_)h;]o n?/(n®* 4+ o(n?)) —» 1

Complexity 10 20 30 40

n 0.00001 sec | 0.00002 sec | 0.00003 sec | 0.00004 sec
n? 0.0001 sec 0.0004 sec 0.0009 sec 0.016 sec
n3 0.001 sec 0.008 sec 0.027 sec 0.064 sec
n> 0.1 sec 3.2 sec 24 .3 sec 1.7 min

2" 0.001 sec 1.0 sec 17.9 min 12.7 days
3" 0.59 sec 58 min 6.5 years 3855 cent

LLogarithms

It is important to understand deep in your bones what
logarithms are and where they come from.

A logarithm is simply an inverse exponential function.
Saying b* = y is equivalent to saying that z = log,y.

Exponential functions, like the amount owed on a n
year mortgage at an interest rate of <% per year, are
functions which grow distressingly fast, as anyone who
has tried to pay off a mortgage knows.

Thus inverse exponential functions, ie. logarithms,
grow refreshingly slowly.

Binary search is an example of an O(lgn) algorithm.
After each comparison, we can throw away half the
possible number of keys. Thus twenty comparisons
suffice to find any name in the million-name Manhattan
phone book!

If you have an algorithm which runs in O(lgn) time,
take it, because this is blindingly fast even on very
large instances.

Properties of Logarithms

Recall the definition, ¢'°9:* = .

Asymptotically, the base of the log
does not matter:

log.a

lo =
v a log.b

Thus, logon = (1/10g1002) X l0g100m, and note that
1/10g10902 = 6.643 is just a constant.

Asymptotically, any polynomial
function of n does not matter:

Note that

log(n*™® 4+ n? 4+ n+96) = O(log n)
since n*3 4+ n?2 4+ n+ 96 = O(n*"3), and logn?"3 =
473 x logn.

Any exponential dominates every polynomial. This
is why we will seek to avoid exponential time algo-
rithms.

Federal Sentencing Guidelines

2F1.1. Fraud and Deceit; Forgery; Offenses Involving
Altered or Counterfeit Instruments other than Coun-
terfeit Bearer Obligations of the United States.

(a) Base offense Level: 6
(b) Specific offense Characteristics

(1) If the loss exceeded $2,000, increase the offense
level as follows:

Loss(Apply the Greatest) Increase in Level
(A) $2,000 or less no increase
(B) More than $2,000 add 1
(C) More than $5,000 add 2
(D) More than $10,000 add 3
(E) More than $20,000 add 4
(F) More than $40,000 add 5
(G) More than $70,000 add 6
(H) More than $120,000 add 7
(I) More than $200,000 add 8
(J) More than $350,000 add 9
(K) More than $500,000 add 10
(L) More than $800,000 add 11
(M) More than $1,500,000 add 12
(N) More than $2,500,000 add 13
(O) More than $5,000,000 add 14
(P) More than $10,000,000 add 15
(Q) More than $20,000,000 add 16
(R) More than $40,000,000 add 17
(Q) More than $80,000,000 add 18

The federal sentencing guidelines are designed to help
judges be consistent in assigning punishment. The
time-to-serve is a roughly linear function of the total
level.

However, notice that the increase in level as a function
of the amount of money you steal grows logarithmically
in the amount of money stolen.

This very slow growth means it pays to commit one
crime stealing a lot of money, rather than many small
crimes adding up to the same amount of money, be-
cause the time to serve if you get caught is much less.

The Moral: “if you are gonna do the crime, make it
worth the time!”

Working with the Asymptotic
Notation

Suppose f(n) = O(n?) and g(n) = O(n?).

What do we know about ¢'(n) = f(n) + g(n)? Adding
the bounding constants shows ¢'(n) = O(n?).

What do we know about ¢'(n) = f(n) — g(n)? Since
the bounding constants don’t necessary cancel, ¢"(n) =
O(n?)

We know nothing about the lower bounds on ¢’ + ¢”
because we know nothing about lower bounds on f, g.

Suppose f(n) = Q(n?) and g(n) = Q(n?).

What do we know about ¢'(n) = f(n) + g(n)? Adding
the lower bounding constants shows ¢'(n) = Q(n?).

What do we know about ¢"(n) = f(n) — g(n)? We
know nothing about the lower bound of this!

The Complexity of Songs

Suppose we want to sing a song which lasts for n units
of time. Since n can be large, we want to memorize
songs which require only a small amount of brain space,
i.e. memory.

Let S(n) be the space complexity of a song which lasts
for n units of time.

The amount of space we need to store a song can
be measured in either the words or characters needed
to memorize it. Note that the number of characters
is ©(words) since every word in a song is at most 34
letters long — Supercalifragilisticexpialidocious!

What bounds can we establish on S(n)?

e S(n) = O(n), since in the worst case we must ex-
plicitly memorize every word we sing — “The Star-
Spangled Banner”

e S(n) = (1), since we must know something about
our song to sing it.

T he Refrain

Most popular songs have a refrain, which is a block of
text which gets repeated after each stanza in the song:

Bye, bye Miss American pie

Drove my chevy to the levy but the levy was
dry

Them good old boys were drinking whiskey
and rye

Singing this will be the day that I die.

Refrains made a song easier to remember, since you
memorize it once yet sing it O(n) times. But do they
reduce the space complexity?

Not according to the big oh. If
n = repetitions x (verse-size + refrain-size)

Then the space complexity is still O(n) since it is only
halved (if the verse-size = refrain-size):

S(n) = repetitions x verse-size 4+ refrain-size

The kK Days of Christmas

To reduce S(n), we must structure the song differently.

Consider “The k Days of Christmas”. All one must
memorize is:

On the kth Day of Christmas, my true love
gave to me, gift

On the First Day of Christmas, my true love
gave to me, a partridge in a pear tree

But the time it takes to sing it is

k

Y i=k(k+1)/2 = ©(Kk?)

1=1

If n = O(k?), then k = O(y/n), so S(n) = O(/n).

100 Bottles of Beer

What do kids sing on really long car trips?

n bottles of beer on the wall,

n bottles of beer.

You take one down and pass it around
n — 1 bottles of beer on the ball.

All you must remember in this song is this template
of size ®(1), and the current value of n. The storage
size for n depends on its value, but log, n bits suffice.

This for this song, S(n) = O(lgn).

Is there a song which eliminates even the need to
count?

That’s the way, uh-huh, uh-huh
I like it, uh-huh, huh

Reference: D. Knuth, ‘The Complexity of Songs’, Comm.
ACM, April 1984, pp.18-24

Show that for any real constants a and b, b > 0,

(n+a)’ = ©(n?)

To show f(n) = ©(g(n)), we must show O and 2. Go
back to the definition!

e Big O — Must show that (n + a)® < ¢; - n® for all
n > ng. When is this true? If ¢; = 2%, this is true
for all n > |a| since n+a < 2n, and raise both sides
to the b.

e Big © — Must show that (n 4+ a)® > ¢ - nb for all
n > ng. When is this true? If c; = (1/2)°, this is
true for all n > 3|a|/2 since n 4+ a > n/2, and raise
both sides to the b.

Note the need for absolute values.

Modeling

Modeling is the art of formulating your application in
terms of precisely described, well-understood problems.
Proper modeling is the key to applying algorithmic de-
sign techniques to any real-world problem.

Real-world applications involve real-world objects.

Most algorithms, however, are designed to work on
rigorously defined abstract structures such as permu-
tations, graphs, and sets.

You must first describe your problem abstractly, in
terms of fundamental structures and properties.

Combinatorial Objects

e Permutations, are arrangements, or orderings, of
items. For example, {1,4,3,2} and {4,3,2,1} are
two distinct permutations of the same set of four
integers. Permutations are likely the object in
question whenever your problem seeks an “arrange-
ment,” “tour,” “ordering,”, or ‘“sequence.”

e Subsets, which represent selections from a set of
items. For example, {1,3,4} and {2} are two dis-
tinct subsets of the first four integers. Order does
not matter in subsets the way it does with permu-
tations, so the subsets {1,3,4} and {4,3,1} would
be considered identical. Subsets are likely the
object in question whenever your problem seeks
a ‘“cluster,” “collection,” “committee,” “group,”
“packaging,” or “selection.”

e Strings, which represent sequences of characters
or patterns. For example, the names of students
in a class can be represented by strings. Strings
are likely the object in question whenever you are
dealing with “text,” “characters,” “patterns,” or
“labels.”

Relationship Models

e Trees, which represent hierarchical relationships
between items. Figure (a) illustrates a portion
of the family tree of the Skiena clan. Trees
are likely the object in question whenever your
problem seeks a “hierarchy,” “dominance relation-
ship,” “ancestor/decendant relationship,” or “tax-

onomy.”

Stony Brook Greenport

\‘HV
/\ Shelter Island

O Montauk

(O Orient Point

Morris

Steve Len Rob Richard Laurie Jm Lisa Jeff 1sip Sag Harbor

e Graphs, which represent relationships between ar-
bitrary pairs of objects. Figure (b) models a net-
work of roads as a graph, where the vertices are
cities and the edges are roads connecting pairs
of cities. Graphs are likely the object in question
whenever you seek a “network,” “circuit,” “web,”
or “relationship.”

Geometric Objects

e Points, which represent locations in some geomet-
ric space. For example, the locations of McDon-
ald’s restaurants can be described by points on a
map/plane. Points are likely the object in question
whenever your problems work on “sites,” “posi-
tions,” ‘“data records,” or “locations.”

e Polygons, which represent regions in some geo-
metric space. For example, the borders of a coun-
try can be described by a polygon on a map/plane.
Polygons and polyhedra are likely the object in
question whenever you are working on “shapes,”
“regions,” ‘“configurations,” or “boundaries.”

Using the Catalog

These fundamental structures all have associated
problems and properties, which are presented in
the catalog of Part II.

Familiarity with all of these problems is important,
because they provide the language we use to model
applications.

Understanding all or most of these problems, even
at a cartoon/definition level, will enable you to
know where to look later when the problem arises
in your application.

Rules for Algorithm Design

The secret to successful algorithm design, and prob-
lem solving in general, is to make sure you ask the
right questions. Below, I give a possible series of ques-
tions for you to ask yourself as you try to solve difficult
algorithm design problems:

1. Do I really understand the problem?
(a) What exactly does the input consist of ?
(b) What exactly are the desired results or output?

(c) Can I construct some examples small enough
to solve by hand? What happens when I solve
them?

(d) Are you trying to solve a numerical problem? A
graph algorithm problem? A geometric prob-
lem? A string problem? A set problem? Might
your problem be formulated in more than one
way? Which formulation seems easiest?

2. Can I find a simple algorithm for the problem?

(a) Can I find the solve my problem exactly by
searching all subsets or arrangements and pick-
ing the best one?

i. If so, why am I sure that this algorithm al-
ways gives the correct answer?

ii. How do I measure the quality of a solution
once I construct it?

iii. Does this simple, slow solution run in poly-
nomial or exponential time?

iv. If I can't find a slow, guaranteed correct al-
gorithm, am I sure that my problem is well
defined enough to permit a solution?

(b) Can I solve my problem by repeatedly trying
some heuristic rule, like picking the biggest
item first? The smallest item first? A random
item first?

i. If so, on what types of inputs does this heuris-
tic rule work well? Do these correspond to
the types of inputs that might arise in the
application?

ii. On what types of inputs does this heuristic
rule work badly? If no such examples can
be found, can I show that in fact it always
works well?

iii. How fast does my heuristic rule come up
with an answer?
3. Are there special cases of this problem I know how

to solve exactly?

(a) Can I solve it efficiently when I ignore some of
the input parameters?

(b) What happens when I set some of the input
parameters to trivial values, such as 0 or 17

(c)

(d)

Can I simplify the problem to create a problem
I can solve efficiently? How simple do I have
to make it?

If I can solve a certain special case, why can’t
this be generalized to a wider class of inputs?

4. Which of the standard algorithm design paradigms
seem most relevant to the problem?

(a)

(b)

(c)

Is there a set of items which can be sorted by
size or some key? Does this sorted order make
it easier to find what might be the answer?

Is there a way to split the problem in two
smaller problems, perhaps by doing a binary
search, or a partition of the elements into big
and small, or left and right? If so, does this
suggest a divide-and-conquer algorithm?

Are there certain operations being repeatedly
done on the same data, such as searching it for
some element, or finding the largest/smallest
remaining element? 1If so, can I use a data
structure of speed up these queries, like hash
tables or a heap/priority queue?

5. Am I still stumped?
(a) Why don’t I go back to the beginning of the

list and work through the questions again? Do
any of my answers from the first trip change
on the second?

(a) Is 2"t1 = 0O(2")?

(b) Is 2?2 = O(2")?

(a) Is 27Tl = O(2™)?

Is 2711 < ¢ % 277

Yes, if ¢ > 2 for all n
(b) Is 227 = O(2™)7?

Is 22" < c* 2"7

note 227 = 27 x 2"

Is 2" % 2" < c % 2™7

Is 2" < ¢7?

No! Certainly for any constant ¢ we can find an n such
that this is not true.

Elementary Data Structures

“Mankind’s progress is measured by the number of
things we can do without thinking.”

Elementary data structures such as stacks, queues,
lists, and heaps will be the “of-the-shelf” components
we build our algorithm from. There are two aspects to
any data structure:

e T he abstract operations which it supports.
e T he implementation of these operations.

The fact that we can describe the behavior of our data
structures in terms of abstract operations explains why
we can use them without thinking, while the fact that
we have different implementation of the same abstract
operations enables us to optimize performance.

Stacks and Queues

Sometimes, the order in which we retrieve data is inde-
pendent of its content, being only a function of when
it arrived.

A stack supports last-in, first-out operations: push and
pop.

A queue supports first-in, first-out operations: enqueue
and dequeue.

A deque is a double ended queue and supports all four
operations: push, pop, enqueue, dequeue.

Lines in banks are based on queues, while food in my
refrigerator is treated as a stack.

Both can be used to traverse a tree, but the order is
completely different.

Queue Stack

Which order is better for WWW crawler robots?

Stack Implementation

Although this implementation uses an array, a linked
list would eliminate the need to declare the array size
in advance.

STACK-EMPTY(S)
if top[S] = 0
then return TRUE
else return FALSE

PUSH(S, x)
top[S] + top[S] + 1
S[top[S] + =

POP(S)
if STACK-EMPTY(S)
then error “underflow”
else top[S] + top[S] — 1
return S[top[S] + 1]

top

PN (WA

All are O(1) time operations.

Queue Implementation

A circular queue implementation requires pointers to
the head and tail elements, and wraps around to reuse
array elements.

ENQUEUE(Q, X)
Q[tail[Q]] + x
if tail[Q] = length[Q]
then tail[Q] <« 1
else tail[Q] « tail[Q] + 1

tail head

DEQUEUE(Q)
X = Q[head[Q]]
if head[Q] = length[Q]
then head[Q] = 1
else head[Q] = head[Q] + 1
return x

A list-based implementation would eliminate the pos-
sibility of overflow.

All are O(1) time operations.

Dynamic Set Operations

Perhaps the most important class of data structures
maintain a set of items, indexed by keys.

There are a variety of implementations of these dic-
tionary operations, each of which yield different time
bounds for various operations.

e Search(S,k) — A query that, given a set S and a
key value k, returns a pointer to an element in
S such that key[z] = k, or nil if no such element
belongs to S.

e Insert(S,x)— A modifying operation that augments
the set S with the element =.

e Delete(S,x) — Given a pointer z to an element in
the set S, remove =z from S. Observe we are given
a pointer to an element z, not a key value.

e Min(S), Max(S) — Returns the element of the to-
tally ordered set S which has the smallest (largest)
key.

e Next(S,x), Previous(S,x) — Given an element =z
whose key is from a totally ordered set S, returns
the next largest (smallest) element in S, or NIL if
z is the maximum (minimum) element.

Pointer Based Implementation

We can maintain a dictionary in either a singly or dou-
bly linked list.

L%

Hg

LA

LB |

We gain extra flexibility on predecessor queries at a cost
of doubling the number of pointers by using doubly-
linked lists.

Since the extra big-Oh costs of doubly-linkly lists is
zero, we will usually assume they are, although it might
not be necessary.

Singly linked to doubly-linked list is as a Conga line is
to a Can-Can line.

Array Based Sets

Unsorted Arrays
e Search(S,k) - sequential search, O(n)
e Insert(S,x) - place in first empty spot, O(1)
e Delete(S,x) - copy nth item to the zth spot, O(1)
e Min(S,x), Max(S,x) - sequential search, O(n)

e Successor(S,x), Predecessor(S,x) - sequential search,
O(n)

Sorted Arrays
e Search(S,k) - binary search, O(lgn)

e Insert(S,x) - search, then move to make space,
O(n)

e Delete(S,x) - move to fill up the hole, O(n)
e Min(S,x), Max(S,x) - first or last element, O(1)

e Successor(S,x), Predecessor(S,x) - Add or sub-
tract 1 from pointer, O(1)

What are the costs for a heap?

Unsorted List Implementation

LIST-SEARCH(L, k)
r — head][L]
while £ <> NIL and key[z] <> k
do = = next[x]
return =

Note: the while loop might require two lines in some
programming languages.

DELETION

HEAD(L) J/ X

,
X /,/:f / /
1 L

INSERTION

LIST-INSERT(L, x)
next[x] = head][L]
if head[L] <> NIL
then prev[head[L]] = x
head[L] = x
prev[x] = NIL

LIST-DELETE(L, X)
if prev[z] <> NIL
then next[prev[x]] = next[x]
else head[L] = next[X]
if next[z] <> NIL
then prev[next[x]] = prev][X]

Sentinels

Boundary conditions can be eliminated using a sentinel
element which doesn’'t go away.

@////
()

LIST-SEARCH’(L, k)
xz = next[nil[L]]
while £ <> NIL[L] and key[z] <> k
do z = next[x]
return =

LIST-INSERT'(L, x)
next[x] = next[nil[L]]
prev[next[nil[L]]] = x
next[nil[L]] = x
prev[x] = NILJ[L]

LIST-DELETE'(L, X)
next[prev[x]] <> next[x]
next[prev[x]] = prev[x]

Hash Tables

Hash tables are a very practical way to maintain a dic-
tionary. As with bucket sort, it assumes we know that
the distribution of keys is fairly well-behaved.

The idea is simply that looking an item up in an array
is ©(1) once you have its index. A hash function is a
mathematical function which maps keys to integers.

In bucket sort, our hash function mapped the key to a
bucket based on the first letters of the key. “Collisions”
were the set of keys mapped to the same bucket.

If the keys were uniformly distributed, then each bucket
contains very few keysl!

The resulting short lists were easily sorted, and could
just as easily be searched!

Hash Functions

It is the job of the hash function to map keys to inte-
gers. A good hash function:

1. Is cheap to evaluate

2. Tends to use all positions from 0... M with uni-
form frequency.

3. Tends to put similar keys in different parts of the
tables (Remember the Shifletts!!)

The first step is usually to map the key to a big integer,
for example

keylength

h = Z 128 x char(keyl[i])
1=0

This large number must be reduced to an integer whose
size is between 1 and the size of our hash table.

One way is by h(k) = k mod M, where M is best a
large prime not too close to 2* — 1, which would just
mask off the high bits.

This works on the same principle as a roulette wheel!

Good and Bad Hash functions

The first three digits of the Social Security Number

0

1

2

3

4

5

6

7

8

9

The last three digits of the Social Security Number

0

1

2

3

4

5

6

7

8

9

The Birthday Paradox

No matter how good our hash function is, we had bet-
ter be prepared for collisions, because of the birthday
paradox.

J | F M A M J Ji A S ©) N D

The probability of there being no collisions after n in-
sertions into an m-element table is

(m/m)x((m—1)/m)x..x((m—n+1)/m) = ﬂ?z_g(m—z')/m

When m = 366, this probability sinks below 1/2 when
N = 23 and to almost O when N > 50.

20 40 60 80 100

Collision Resolution by
Chaining

The easiest approach is to let each element in the hash
table be a pointer to a list of keys.

Lig % TTTIIT

[]

Insertion, deletion, and query reduce to the problem in
linked lists. If the n keys are distributed uniformly in a
table of size m/n, each operation takes O(m/n) time.

Chaining is easy, but devotes a considerable amount of
memory to pointers, which could be used to make the
table larger. Still, it is my preferred method.

Open Addressing
We can dispense with all these pointers by using an
implicit reference derived from a simple function:

LIk Ixx l Ix x|] T

If the space we want to use is filled, we can examine
the remaining locations:

1. Sequentially h,h+1,h+ 2, ...
2. Quadratically h,h + 12, h 4+ 22, A+ 32...
3. Linearly h,h+ k,h 4+ 2k, h + 3k, ...

The reason for using a more complicated science is to
avoid long runs from similarly hashed keys.

Deletion in an open addressing scheme is ugly, since
removing one element can break a chain of insertions,
making some elements inaccessible.

Performance on Set
Operations

With either chaining or open addressing:
e Search - O(1) expected, O(n) worst case
e Insert - O(1) expected, O(n) worst case
e Delete - O(1) expected, O(n) worst case

e Min, Max and Predecessor, Successor ©(n + m)
expected and worst case

Pragmatically, a hash table is often the best data struc-
ture to maintain a dictionary. However, we will not use
it much in proving the efficiency of our algorithms,
since the worst-case time is unpredictable.

The best worst-case bounds come from balanced bi-
nary trees, such as red-black trees.

For each of the four types of linked lists in the following
table, what is the asymptotic worst-case running time
for each dynamic-set operation listed?

singly singly doubly doubly

unsorted sorted unsorted sorted
Search(L, k) O(N) O(N) O(N) O(N)-
Insert(L, z) O(1) O(N) O(1) O(N)-
Delete(L, x) O(N)* O(N)* 0O(1) O(1)
Successor(L, x) O(N) O(1) O(N) O(1)
Predecessor(L, =) | O(N) O(N) O(N) O(1)
Minimum(L) O(N) O(1) O(N) O(1)
Maximum(L) O(N) O(1)4+ O(N) O(1)+

e I need a pointer to the predecessor! (*)
e I need a pointer to the tail! (+4)

e Only bottlenecks in otherwise perfect dictionary!

(-)

Binary Search Trees

“T think that I shall never see

a poem as lovely as a tree Poem’s
are wrote by fools like me but only
G-d can make a tree “

— Joyce Kilmer

Binary search trees provide a data structure which ef-
ficiently supports all six dictionary operations.

A binary tree is a rooted tree where each node contains
at most two children.

Each child can be identified as either a left or right
child.

paren

left (right

O

A binary tree can be implemented where each node
has left and right pointer fields, an (optional) parent
pointer, and a data field.

Binary Search Trees

A binary search tree labels each node in a binary tree
with a single key such that for any node z, and nodes
in the left subtree of have keys < z and all nodes in
the right subtree of = have key's > «x.

A

Left: A binary search tree. Right: A heap but not a
binary search tree.

The search tree labeling enables us to find where any
key is. Start at the root - if that is not the one we want,
search either left or right depending upon whether what
we want is < or > then the root.

Searching in a Binary Tree

Dictionary search operations are easy in binary trees ...

TREE-SEARCH(X, k)
if (x = NIL) and (k = key[z])
then return x
if (k< keylx])
then return TREE-SEARCH(left[x],k)
else return TREE-SEARCH(right[x],k)

The algorithm works because both the left and right
subtrees of a binary search tree are binary search trees
— recursive structure, recursive algorithm.

This takes time proportional to the height of the tree,
O(h).

Maximum and Minimum

Where are the maximum and minimum elements in a

(/
> pe

TREE-MAXIMUM(X)
while right[z] # NIL
do x = right[x]
return x

TREE-MINIMUM(x)
while left[z] = NIL
do x = left[x]
return x

Both take time proportional to the height of the tree,
O(h).

Where iIs the predecessor?

Where is the predecessor of a node in a tree, assuming
all keys are distinct?

/
ROO

PREDECESSOR(X) SUCCESSOR(X)

If X has two children, its predecessor is the maximum
value in its left subtree and its successor the minimum
value in its right subtree.

What if a node doesn’t have

children?
O
predecessor(x) Q/
~0

JJ

XQ/\
e

If it does not have a left child, a node's predecessor is
its first left ancestor.

The proof of correctness comes from looking at the
in-order traversal of the tree.

Tree-Successor(z)
if right[z] %= NIL
then return Tree-Minimum(right[z])
y < plz]
while (y #2 NIL) and (z = right[y])
dozxz <+ vy

y < ply]
return y

Tree predecessor/successor both run in time propor-
tional to the height of the tree.

In-Order Traversal
(H)

\
o o
}@
© ®
Inorder-Tree-walk(z)
if (¢ <> NIL)
then Inorder-Tree-Walk(left[z])

print key[z]
Inorder-Tree-walk(right[z])

A-B-C-D-E-F-G-H

Tree Insertion

Do a binary search to find where it should be, then
replace the termination NIL pointer with the new item.

Tree-insert(T, z)

y = NIL
x = root[T]
while ¢ # NIL
doy==
if key[z] < key[z]
then z = left[x]
else z = right[z]
plz] <y
if y = NIL

then root[T] < 2

else if key[z] < key[y]
then left[y] «+ =
else right[y] «+ =

y is maintained as the parent of x, since x eventually
becomes NIL.

The final test establishes whether the NIL was a left
or right turn from y.

Insertion takes time proportional to the height of the
tree, O(h).

Tree Deletion

Deletion is somewhat more tricky than insertion, be-
cause the node to die may not be a leaf, and thus effect
other nodes.

Case (a), where the node is a leaf, is simple - just NIL
out the parents child pointer.

Case (b), where a node has one chld, the doomed node
can just be cut out.

Case (c), relabel the node as its successor (which has
at most one child when z has two children!) and delete
the successor!

This implementation of deletion assumes parent point-
ers to make the code nicer, but if you had to save space
they could be dispensed with by keeping the pointers
on the search path stored in a stack.

Tree-Delete(T, z)
if (left[z] = NIL) or (right[z] = NIL)
then y « =z
else y «+ Tree-Successor(z)
if left[y] # NIL
then z « left[y]
else = < right[y]
if 2 £ NIL
then plz] « p[y]
if pl[y] = NIL
then root[T] < =

else if (y = left[ply]])
then left[p[y]] « =

else right[p[y]] < =
if (y<>z)
then key[z] + key[y]
/* If y has other fields, copy them, too. */
return y

Lines 1-3 determine which node y is physically removed.
Lines 4-6 identify = as the non-nil decendant, if any.
Lines 7-8 give = a new parent.

Lines 9-10 modify the root node, if necessary

Lines 11-13 reattach the subtree, if necessary.

Lines 14-16 if the removed node is deleted, copy.

Conclusion: deletion takes time proportional to the
height of the tree.

Balanced Search Trees

All six of our dictionary operations, when implemented
with binary search trees, take O(h), where h is the
height of the tree.

The best height we could hope to get is Ign, if the tree
was perfectly balanced, since

Yt 2t an

But if we get unlucky with our order of insertion or
deletion, we could get linear height!

insert(a)
insert(b)
insert(c)
insert(d)

In fact, random search trees on average have ©(Ilg N)
height, but we are worried about worst case height.

We can’t easily use randomization - Why?

Perfectly Balanced Trees

Perfectly balanced trees require a lot of work to main-
tain:

If we insert the key 1, we must move every single node
in the tree to rebalance it, taking ©(n) time.

Therefore, when we talk about " balanced” trees, we
mean trees whose height is O(lgn), so all dictionary
operations (insert, delete, search, min/max, succes-
sor/predecessor) take O(lgn) time.

Red-Black trees are binary search trees where each
node is assigned a color, where the coloring scheme
helps us maintain the height as ©(Ign).

Red-Black Tree Definition

Red-black trees have the following properties:

1.

2.

3.

Every node is colored either red or black.
Every leaf (NIL pointer) is black.
If a node is red then both its children are black.

Every single path from a node to a decendant leaf
contains the same number of black nodes.

What does this mean?

If the root of a red-black tree is black can we just color
it red?

No! For one of its children might be red.

If an arbitrary node is red can we color it black?

No! Because now all nodes may not have the same
black height.

e

What tree maximizes the number of nodes in a tree of

black height h?

What does a red-black tree with two real nodes look
like?

% (2) (3))
(@)

Not (1) - consecutive reds Not (2), (4) - Non-Uniform
black height

Red-Black Tree Height

Lemma: A red-black tree with n internal nodes has
height at most 21g(n + 1).

Proof: Our strategy; first we bound the number of
nodes in any subtree, then we bound the height of any
subtree.

We claim that any subtree rooted at z has at least 2bh(=)
- 1 internal nodes, where bh(z) is the black height of
node =z.

Proof, by induction:

bh(z) =0 > zis a leaf, 5 2°—1 =0
Now assume it is true for all tree with black height
< bh(zx).

If = is black, both subtrees have black height bh(z) — 1.
If z is red, the subtrees have black height bh(zx).

Therefore, the number of internal nodes in any subtree
is

Now, let h be the height of our red-black tree. At
least half the nodes on any single path from root to
leaf must be black if we ighore the root.

Thus bh(z) > h/2 and n > 22 — 1, so n+ 1 > 2//2,

This implies that Ig(n 4+ 1) > h/2,s0 h < 2Ig(n+ 1). j

Therefore red-black trees have height at most twice
optimal. We have a balanced search tree if we can
maintain the red-black tree structure under insertion
and deletion.

Show that any n-node tree can be transformed to any
other using O(n) rotations (hint: convert to a right
going chain).

I will start by showing weaker bounds - that O(n?)
and O(nlogn) rotations suffice - because that is how I
proceeded when I first saw the problem.

First, observe that creating a right-going, for ¢t> path
from t1 | and reversing the same construction gives a
path from t1 to t».

Note that it will take at most n rotations to make
the lowest valued key the root. Once it is root, all
keys are to the right of it, so no more rotations need
go through it to create a right-going chain. Repeating
with the second lowest key, third, etc. gives that O(n?)
rotations suffice.

Now that if we try to create a completely balanced tree
instead. To get the n/2 key to the root takes at most
n rotations. Now each subtree has half the nodes and

we Can recur...
N

N/2 N/2

VAWA

N/4 N/4 N/4

To get a linear algorithm, we must beware of trees like:

7

6 /jO 6
4
! \ 9 7
2 Oblo 3 8
AN 1 2 \Og

&
4 3@ \le 1
N

The correct answer is that n — 1 rotations suffice to
get to a rightmost chain.

By picking the lowest node on the rightmost chain
which has a left ancestor, we can add one node per
rotation to the right most chain!

Jo

ol >\© O/Qﬁ\ .
y /N x /@
| Q/Qk \ S o

Initially, the rightmost chain contained at least 1 node,
so after n — 1 rotations it contains all n. Slick!

Given an element x in an n-node order-statistic binary
tree and a natural number ¢, how can the i1th successor
of x be determined in O(lgn) time.

This problem can be solved if our data structure sup-
ports two operations:

e Rank(x) — what is the position of z in the total
order of keys?

e Get(i) — what is the key in the ith position of the
total order of keys?

What we are interested in is Get(Rank(z) + 7).

In an order statistic tree, each node z is labeled with
the number of nodes contained in the subtree rooted
in z.

Implementing both operations involves keeping track
of how many nodes lie to the left of our path.

Why don’t CS profs ever stop
talking about sorting?!

1. Computers spend more time sorting than anything
else, historically 25% on mainframes.

2. Sorting is the best studied problem in computer
science, with a variety of different algorithms known.

3. Most of the interesting ideas we will encounter in
the course can be taught in the context of sort-
ing, such as divide-and-conquer, randomized algo-
rithms, and lower bounds.

You should have seen most of the algorithms - we will
concentrate on the analysis.

Applications of Sorting

One reason why sorting is so important is that once
a set of items is sorted, many other problems become
easy.

Searching

Binary search lets you test whether an item is in a
dictionary in O(lgn) time.

Speeding up searching is perhaps the most important
application of sorting.

Closest pair

Given n numbers, find the pair which are closest to
each other.

Once the numbers are sorted, the closest pair will be
next to each other in sorted order, so an O(n) linear
scan completes the job.

Element unigueness

Given a set of n items, are they all unigue or are there
any duplicates?

Sort them and do a linear scan to check all adjacent
pairs.

This is a special case of closest pair above.

Frequency distribution — Mode

Given a set of n items, which element occurs the largest
number of times?

Sort them and do a linear scan to measure the length
of all adjacent runs.

Median and Selection

What is the kth largest item in the set?

Once the keys are placed in sorted order in an array,
the kth largest can be found in constant time by simply
looking in the kth position of the array.

Convex hulls

Given n points in two dimensions, find the smallest area
polygon which contains them all.

The convex hull is like a rubber band stretched over
the points.

Convex hulls are the most important building block for
more sophisticated geometric algorithms.

Once you have the points sorted by x-coordinate, they
can be inserted from left to right into the hull, since
the rightmost point is always on the boundary.

Without sorting the points, we would have to check
whether the point is inside or outside the current hull.

Adding a new rightmost point might cause others to
be deleted.

Huffman codes

If you are trying to minimize the amount of space a
text file is taking up, it is silly to assign each letter the
same length (ie. one byte) code.

Example: e is more common than g, a is more common
than z.

If we were storing English text, we would want a and
e to have shorter codes than g and z.

To design the best possible code, the first and most
important step is to sort the characters in order of
frequency of use.

Character | Frequency | Code
f 5 1100
e 9 1101
C 12 100
b 13 101
d 16 111
a 45 0

Selection Sort

A simple O(n?) sorting algorithm is selection sort.

Sweep through all the elements to find the smallest
item, then the smallest remaining item, etc. until the
array is sorted.

Selection-sort(A)
fore=1ton
forg =14+ 1ton
if (A[7] < A[7]) then swap(A[i],A[i])

It is clear this algorithm must be correct from an in-
ductive argument, since the ith element is in its correct
position.

It is clear that this algorithm takes O(n?) time.

It is clear that the analysis of this algorithm cannot
be improved because there will be n/2 iterations which
will require at least n/2 comparisons each, so at least
n2/4 comparisons will be made. More careful analysis
doubles this.

Thus selection sort runs in ©(n?) time.

Binary Heaps

A binary heap is defined to be a binary tree with a key
in each node such that:

1. AIll leaves are on, at most, two adjacent levels.

2. All leaves on the lowest level occur to the left,
and all levels except the lowest one are completely
filled.

3. The key in root is > all its children, and the left
and right subtrees are again binary heaps.

Conditions 1 and 2 specify shape of the tree, and con-
dition 3 the labeling of the tree.

The ancestor relation in a heap defines a partial or-
der on its elements, which means it is reflexive, anti-
symmetric, and transitive.

1. Reflexive: x is an ancestor of itself.

2. Anti-symmetric: if z is an ancestor of y and y is
an ancestor of z, then = y.

3. Transitive: if x is an ancestor of y and y is an
ancestor of z, is an ancestor of z.

Partial orders can be used to model heirarchies with
incomplete information or equal-valued elements. One
of my favorite games with my parents is fleshing out
the partial order of “big” old-time movie stars.

The partial order defined by the heap structure is weaker
than that of the total order, which explains

1. Why it is easier to build.

2. Why it is less useful than sorting (but still very
important).

Constructing Heaps

Heaps can be constructed incrementally, by inserting
new elements into the left-most open spot in the array.

If the new element is greater than its parent, swap their
positions and recur.

Since at each step, we replace the root of a subtree by
a larger one, we preserve the heap order.

Since all but the last level is always filled, the height h
of an n element heap is bounded because:

h
Y 2i=2M1_1>n
=1

so h = [lgn]|.

Doing n such insertions takes ©(nlogn), since the last
n/2 insertions require O(logn) time each.

Heapify

The bottom up insertion algorithm gives a good way
to build a heap, but Robert Floyd found a better way,
using a merge procedure called heapify.

Given two heaps and a fresh element, they can be
merged into one by making the new one the root and
trickling down.

Build-heap(A)
n = |A|
For i = |n/2] to 1 do
Heapify(A,i)

Heapify(A,i)

left = 22

right = 2:+4+1

if (left <mn) and (A[left] > Al:]) then
max = left
else max = i

if (right <n) and (A(right] > A[maz]) then
max = right

if (mazxz # 1) then
swap(A[i],A[max])
Heapify(A,max)

Rough Analysis of Heapify

Heapify on a subtree containing n nodes takes

T(n) <T(2n/3) + O(1)

The 2/3 comes from merging heaps whose levels dif-
fer by one. The last row could be exactly half filled.
Besides, the asymptotic answer won't change so long
the fraction is less than one.

Solve the recurrence using the Master Theorem.
Let a=1, b=3/2 and f(n) = 1.
Note that ©(n'°%:1) = ©(1), since logz;» 1 = 0.

Thus Case 2 of the Master theorem applies.

The Master Theorem: Let a > 1 and b > 1 be constants, let f(n)
be a function, and let T'(n) be defined on the nonnegative integers
by the recurrence

T(n) = aT(n/b) + f(n)

where we interpret n/b to mean either |n/b] or [n/b]. Then T(n)
can be bounded asymptotically as follows:

1. If f(n) = O(n'!°%32=¢) for some constant € > 0, then T(n) =
O (n'°9%:2),

2. If f(n) = ©(n'°9%2), then T(n) = O(n'/°%2Ign).

3. If f(n) = Q(n'°9%2T¢) for some constant e > 0, and ifaf(n/b) <
cf(n) for some constant ¢ < 1, and all sufficiently large n,
then T'(n) = ©(f(n)).

Exact Analysis of Heapify

In fact, Heapify performs better than O(nlogn), be-
cause most of the heaps we merge are extremely small.

In a full binary tree on n nodes, there are n/2 nodes
which are leaves (i.e. height 0), n/4 nodes which are
height 1, n/8 nodes which are height 2, ...

In general, there are at most [n/2"*1] nodes of height
h, so the cost of building a heap is:

llgn] llgn]
Y [n/2"0(R) = 0(n) | h/2M)
h=0 h=0

Since this sum is not quite a geometric series, we can’t
apply the usual identity to get the sum. But it should
be clear that the series converges.

Proof of Convergence

Series convergence is the “free lunch” of algorithm
analysis.

The identify for the sum of a geometric series is

oo
E :Bk -
k=0

If we take the derivative of both sides,

1
Zka)k — (1—w)2

Multiplying both sides of the equation by x gives the
identity we need:

ka —1—3:)2

Substituting x = 1/2 gives a sum of 2, so Build-heap
uses at most 2n comparisons and thus linear time.

The Lessons of Heapsort, 1

" Are we doing a careful analysis? Might our algorithm
be faster than it seems?”

Typically in our analysis, we will say that since we are
doing at most x operations of at most y time each, the
total time is O(zy).

However, if we overestimate too much, our bound may
not be as tight as it should be!

Heapsort

Heapify can be used to construct a heap, using the
observation that an isolated element forms a heap of
size 1.

Heapsort(A)
Build-heap(A)
for:=n to 1 do

swap(A[1],Ali])
n=n-—1

Heapify(A,1)

If we construct our heap from bottom to top using
Heapify, we do not have to do anything with the last
n/2 elements.

With the implicit tree defined by array positions, (i.e.
the ith position is the parent of the 2ith and (2i+4 1)st
positions) the leaves start out as heaps.

Exchanging the maximum element with the last ele-
ment and calling heapify repeatedly gives an O(nlgn)
sorting algorithm, named Heapsort.

Heapsort Animations

The Lessons of Heapsort, II

Always ask yourself, “Can we use a different data struc-
ture?”

Selection sort scans throught the entire array, repeat-
edly finding the smallest remaining element.

For: =1 ton
A: Find the smallest of the first n — 7+ 1 items.
B: Pull it out of the array and put it first.

Using arrays or unsorted linked lists as the data struc-
ture, operation A takes O(n) time and operation B
takes O(1).

Using heaps, both of these operations can be done
within O(lgn) time, balancing the work and achieving
a better tradeoff.

Priority Queues

A priority queue is a data structure on sets of keys
supporting the following operations:

e Insert(S, x) - insert z into set S
e Maximum(S) - return the largest key in S

e ExtractMax(S) - return and remove the largest key
in S

These operations can be easily supported using a heap.
e Insert - use the trickle up insertion in O(logn).

e Maximum - read the first element in the array in
O(1).

e Extract-Max - delete first element, replace it with

the last, decrement the element counter, then heapify
in O(logn).

Applications of Priority Queues

Heaps as stacks or queues

e In a stack, push inserts a new item and pop re-
moves the most recently pushed item.

e In a queue, enqueue inserts a new item and de-
queue removes the least recently enqueued item.

Both stacks and queues can be simulated by using a
heap, when we add a new time field to each item and
order the heap according it this time field.

e To simulate the stack, increment the time with
each insertion and put the maximum on top of
the heap.

e To simulate the queue, decrement the time with
each insertion and put the maximum on top of the
heap (or increment times and keep the minimum
on top)

This simulation is not as efficient as a normal stack/queue
implementation, but it is a cute demonstration of the
flexibility of a priority queue.

Discrete Event Simulations

In simulations of airports, parking lots, and jai-alai —
priority queues can be used to maintain who goes next.

The stack and queue orders are just special cases of
orderings. In real life, certain people cut in line.

Sweepline Algorithms in
Computational Geometry

In the priority queue, we will store the points we have
not yet encountered, ordered by z coordinate. and
push the line forward one stop at a time.

Greedy Algorithms

In greedy algorithms, we always pick the next thing
which locally maximizes our score. By placing all the
things in a priority queue and pulling them off in or-
der, we can improve performance over linear search or
sorting, particularly if the weights change.

Example: Sequential strips in triangulations.

Danny Heep

Show that an n-element heap has height |lgn|.

Since it is balanced binary tree, the height of a heap
is clearly O(lgn), but the problem asks for an exact
answer.

The height is defined as the number of edges in the
longest simple path from the root.

The number of nodes in a complete balanced binary
tree of height h is 2h+1 — 1.

Thus the height increases only when n = 297 or in
other words when Ign is an integer.

Is a reverse sorted array a heap?

In a heap, each element is greater than or equal to
each of its descendants.

In the array representation of a heap, the descendants
of the ith element are the 2:th and (2:+ 1)th elements.

If A is sorted in reverse order, then A[i] > A[j] implies
that i < j.

Since 2¢ > ¢ and 2i + 1 > ¢ then A[2i] < A[i{] and
A[2i + 1] < A[4].

Thus by definition A is a heap!

Quicksort

Although mergesort is O(nlgn), it is quite inconvenient
for implementation with arrays, since we need space to
merge.

In practice, the fastest sorting algorithm is Quicksort,
which uses partitioning as its main idea.

Example: Pivot about 10.
17 12 6 19 23 8 5 10 — before
6 85 10 23 19 12 17 — after

Partitioning places all the elements less than the pivot
in the left part of the array, and all elements greater
than the pivot in the right part of the array. The pivot
fits in the slot between them.

Note that the pivot element ends up in the correct
place in the total order!

Partitioning the elements

Once we have selected a pivot element, we can parti-
tion the array in one linear scan, by maintaining three
sections of the array: < pivot, > pivot, and unexplored.

Example: pivot about 10
— 17 126 192385 — 10
— 5126 19238 — 17
5— 126 19238 — 17
5— 86 1923 — 12 17
58 —6 1923 — 12 17
586 — 1923 — 12 17
586 —23— 19 12 17
58 6 —23 19 12 17
586 1019 12 17 23

As we scan from left to right, we move the left bound
to the right when the element is less than the pivot,
otherwise we swap it with the rightmost unexplored
element and move the right bound one step closer to
the left.

Since the partitioning step consists of at most n swaps,
takes time linear in the number of keys. But what does

it buy us?

1. The pivot element ends up in the position it retains
in the final sorted order.

2. After a partitioning, no element flops to the other
side of the pivot in the final sorted order.

Thus we can sort the elements to the left of the pivot
and the right of the pivot independently!

This gives us a recursive sorting algorithm, since we
can use the partitioning approach to sort each sub-

problem.

Quicksort Animations

Pseudocode

Sort(A)
Quicksort(A,1,n)

Quicksort(A, low, high)
if (low < high)
pivot-location = Partition(A,low,high)
Quicksort(A,low, pivot-location - 1)
Quicksort(A, pivot-location+1, high)

Partition(A,low,high)

pivot = Allow]

leftwall = low

for : = low+1 to high

if (A[i] < pivot) then

leftwall = leftwall41
swap(A[i],Alleftwall])

swap(A[low],Afleftwall])

Best Case for Quicksort

Since each element ultimately ends up in the correct
position, the algorithm correctly sorts. But how long
does it take?

The best case for divide-and-conquer algorithms comes
when we split the input as evenly as possible. Thus in
the best case, each subproblem is of size n/2.

The partition step on each subproblem is linear in its
size. Thus the total effort in partitioning the 2% prob-
lems of size n/2* is O(n).

The recursion tree for the best case looks like this:

| ﬁ |

| | | |

e

| | |

[[T 111
HEEREEN

The total partitioning on each level is O(n), and it take

lg n levels of perfect partitions to get to single element

subproblems. When we are down to single elements,

the problems are sorted. Thus the total time in the
best case is O(nlgn).

Worst Case for Quicksort

Suppose instead our pivot element splits the array as
unequally as possible. Thus instead of n/2 elements in
the smaller half, we get zero, meaning that the pivot
element is the biggest or smallest element in the array.

Now we have n — 1 levels, instead of Ign, for a worst
case time of ®(n?), since the first n/2 levels each have
> n/2 elements to partition.

Thus the worst case time for Quicksort is worse than
Heapsort or Mergesort.

To justify its name, Quicksort had better be good in
the average case. Showing this requires some fairly
intricate analysis.

The divide and conquer principle applies to real life. If
you will break a job into pieces, it is best to make the
pieces of equal sizel

Intuition: The Average Case
for Quicksort

Suppose we pick the pivot element at random in an
array of n keys.

| |

1 n/4 n/2 3n/4 n

Half the time, the pivot element will be from the center
half of the sorted array.

Whenever the pivot element is from positions n/4 to
3n/4, the larger remaining subarray contains at most
3n/4 elements.

If we assume that the pivot element is always in this
range, what is the maximum number of partitions we
need to get from n elements down to 1 element?

(3/4) - n=1— n=(4/3)!

lgn =1-1g(4/3)

Thereforel =19(4/3)-lg(n) < 2Ign good partitions suffice.

What have we shown?

At most 21gn levels of decent partitions suffices to sort
an array of n elements.

But how often when we pick an arbitrary element as
pivot will it generate a decent partition?

Since any number ranked between n/4 and 3n/4 would
make a decent pivot, we get one half the time on av-
erage.

If we need 21gn levels of decent partitions to finish the
job, and half of random partitions are decent, then on
average the recursion tree to quicksort the array has
~ 41gn levels.

Since O(n) work is done partitioning on each level, the
average time is O(nlgn).

More careful analysis shows that the expected number
of comparisons is &~ 1.38nlgn.

Average-Case Analysis of
Quicksort

To do a precise average-case analysis of quicksort, we
formulate a recurrence given the exact expected time
T(n):

T(n) =3 (T(p— 1)+ T(n—p)) +n—1

p=1

Each possible pivot p is selected with equal probability.
The number of comparisons needed to do the partition
isn—1.

We will need one useful fact about the Harmonic num-
bers H,, namely

n

H,=) 1/i~Inn

i=1
It is important to understand (1) where the recurrence

relation comes from and (2) how the log comes out
from the summation. The rest is just messy algebra.

T(n) =3 2(T(p—1) +T(n—p)) +n—1

p=1

T(n) =23 T(p-1)+n-1
p=1

nT(n) = ZZT(p —1)4+n(n—-1) multiply by n
p=1

n—1

(n-1)T(n—1) =2) T(p—1)+(n—-1)(n—2) apply to n-1
p=1

nT(n)—(n—1)T(n-1)=2T(n-1)+2(n-1)

rearranging the terms give us:

T(n) _ T(n—-1) n 2(n—-1)
n—+1 n n(n + 1)

substituting a, = A(n)/(n + 1) gives

n

2(n—1) 2(i — 1)
n(n+ 1) _Zi(i—l—l)

anp — Qn-1 +
=1

- 1
an, ~ 2 ~2Ilnn
2 GHD)

We are really interested in A(n), so

An) =(n+ 1)a,~2(n+1)Inn~ 1.38nlgn

What is the Worst Case?

The worst case for Quicksort depends upon how we
select our partition or pivot element. If we always select
either the first or last element of the subarray, the
worst-case occurs when the input is already sorted!

ABDFHJK
BDFHJK
DFHJK
FHJK
HJK

J K

K

Having the worst case occur when they are sorted or
almost sorted is very bad, since that is likely to be the
case in certain applications.

To eliminate this problem, pick a better pivot:
1. Use the middle element of the subarray as pivot.
2. Use a random element of the array as the pivot.

3. Perhaps best of all, take the median of three el-
ements (first, last, middle) as the pivot. Why
should we use median instead of the mean?

Whichever of these three rules we use, the worst case
remains O(n?). However, because the worst case is
no longer a natural order it is much more difficult to
occur.

Is Quicksort really faster than
Heapsort?

Since Heapsort is ©(nlgn) and selection sort is ©(n?),
there is no debate about which will be better for decent-
sized files.

But how can we compare two ©(nlgn) algorithms to
see which is faster? Using the RAM model and the big
Oh notation, we can’t!

When Quicksort is implemented well, it is typically 2-3
times faster than mergesort or heapsort. The primary
reason is that the operations in the innermost loop are
simpler. The best way to see this is to implement both
and experiment with different inputs.

Since the difference between the two programs will be
limited to a multiplicative constant factor, the details
of how you program each algorithm will make a big
difference.

If you don't want to believe me when I say Quicksort is
faster, I won’t argue with you. It is a question whose
solution lies outside the tools we are using.

Randomization

Suppose you are writing a sorting program, to run on
data given to you by your worst enemy. Quicksort is
good on average, but bad on certain worst-case in-
stances.

If you used Quicksort, what kind of data would your
enemy give you to run it on? Exactly the worst-case
instance, to make you look bad.

But instead of picking the median of three or the first
element as pivot, suppose you picked the pivot element
at random.

Now your enemy cannot design a worst-case instance
to give to you, because no matter which data they give
you, you would have the same probability of picking a
good pivot!

Randomization is a very important and useful idea. By
either picking a random pivot or scrambling the per-
mutation before sorting it, we can say:

“With high probability, randomized quicksort
runs in ©(nlgn) time.”

Where before, all we could say is:

“If you give me random input data, quicksort
runs in expected ©(nlgn) time.”

Since the time bound how does not depend upon your
input distribution, this means that unless we are ex-
tremely unlucky (as opposed to ill prepared or unpop-
ular) we will certainly get good performance.

Randomization is a general tool to improve algorithms
with bad worst-case but good average-case complexity.

The worst-case is still there, but we almost certainly
won't see it.

Argue that insertion sort is better than Quicksort for
sorting checks

In the best case, Quicksort takes ©(nlgn). Although
using median-of-three turns the sorted permutation into
the best case, we lose if insertion sort is better on the
given data.

123467911 —5

In insertion sort, the cost of each insertion is the num-
ber of items which we have to jump over. In the check
example, the expected number of moves per items is
small, say ¢. We win if ¢ << Ign.

Why do we analyze the average-case performance of a
randomized algorithm, instead of the worst-case?

In a randomized algorithm, the worst case is not a
matter of the input but only of luck. Thus we want to

know what kind of luck to expect. Every input we see
is drawn from the uniform distribution.

How many calls are made to Random in randomized
quicksort in the best and worst cases?

Each call to random occurs once in each call to parti-
tion.

The number of partitions is ©(n) in any run of quick-
sort!!

There is some potential variation depending upon what
you do with intervals of size 1 — do you call partition on
intervals of size one? However, there is no asymptotic
difference between best and worst case.

The reason — any binary tree with n leaves has n — 1
internal nodes, each of which corresponds to a call to
partition in the quicksort recursion tree.

Can we sort in better than
nlgn?

Any comparison-based sorting program can be thought
of as defining a decision tree of possible executions.

Running the same program twice on the same per-
mutation causes it to do exactly the same thing, but
running it on different permutations of the same data
causes a different sequence of comparisons to be made
on each.

(1.3,2 (312 (231 (321

Claim: the height of this decision tree is the worst-case
complexity of sorting.

Once you believe this, a lower bound on the time com-
plexity of sorting follows easily.

Since any two different permutations of n elements
requires a different sequence of steps to sort, there
must be at least n! different paths from the root to
leaves in the decision tree, ie. at least n! different
leaves in the tree.

Since only binary comparisons (less than or greater
than) are used, the decision tree is a binary tree.

Since a binary tree of height h has at most 2" leaves,
we know n! < 2% or h > Ig(n!).

By inspection n! > (n/2)"/?, since the last n/2 terms of
the product are each greater than n/2. By Sterling’s
approximation, a better bound is n! > (n/e)™ where
e —=2.718.

h>lg(n/e)" =nlgn —nlge= Q(nlgn)

Non-Comparison-Based Sorting

All the sorting algorithms we have seen assume binary
comparisons as the basic primative, questions of the
form “is x before y7”.

Suppose you were given a deck of playing cards to sort.
Most likely you would set up 13 piles and put all cards
with the same number in one pile.

A2345678910JQK
A2345678910JQK
A2345678910JQK
A2345678910J QK

With only a constant number of cards left in each pile,
you can use insertion sort to order by suite and con-
catenate everything together.

If we could find the correct pile for each card in con-
stant time, and each pile gets O(1) cards, this algo-
rithm takes O(n) time.

Bucketsort

Suppose we are sorting n numbers from 1 to m, where
we know the numbers are approximately uniformly dis-
tributed.

We can set up n buckets, each responsible for an in-
terval of m/n numbers from 1 to m

I I B e

1 m/n m/n+l 2m/n 2m/n+1 3m/n m

Given an input number z, it belongs in bucket number

[zn/m].

If we use an array of buckets, each item gets mapped
to the right bucket in O(1) time.

With uniformly distributed keys, the expected number
of items per bucket is 1. Thus sorting each bucket
takes O(1) time!

T he total effort of bucketing, sorting buckets, and con-
catenating the sorted buckets together is O(n).

What happened to our Q(nlgn) lower bound!

We can use bucketsort effectively whenever we under-
stand the distribution of the data.

However, bad things happen when we assume the wrong
distribution.

Suppose in the previous example all the keys happened
to be 1. After the bucketing phase, we have:

X X

x X x X

X
X %% x <

Xy XX
IS || || | | |

1 m/n m/n+l 2m/in 2m/n+1l 3m/n . . m

We spent linear time distributing our items into buckets
and learned nothing. Perhaps we could split the big
bucket recursively, but it is not certain that we will
ever win unless we understand the distribution.

Problems like this are why we worry about the worst-
case performance of algorithms!

Such distribution techniques can be used on strings
instead of just numbers. The buckets will correspond
to letter ranges instead of just number ranges.

The worst case “shouldn’t” happen if we understand
the distribution of our data.

Real World Distributions

Consider the distribution of names in a telephone book.

e Will there be a lot of Skiena’s?
e Will there be a lot of Smith’'s?
e Will there be a lot of Shifflett’s?

Either make sure you understand your data, or use a
good worst-case or randomized algorithm!

T he Shifflett’s of
Charlottesville

For comparison, note that there are seven Shifflett’s

(of various spellings) in the 1000 page Manhattan tele-
phone directory.

Shitflett Debbie K Ruckergville ~----rc=see VB3-T957 JWNeS 2117 WILNTEOUR ¥O
Shiffiett Debra S SR 617 Quinque <--=-ee-n 985-8813 Shiffiett James 5 801 Stonehenge Av-
Shiffiett Delna SRO09 - -« nxxcvunemeas- 985-3688 Shiffiett James C Stenordsville <<«
Shiffiett Delmag Crozet --c--evvevinneen. 823-5901 Shiffiatt James € Earlysville <vcoce.
Shiffiett Dempsey & Mani Shiftiett James E Jr 552 Clevaland Av

100 Graanbrier Tefeserverrmcserenanann 973-7195 Shitfiett James F & Lois LongMasdo
hiffiett Denise Rt 6270yke --.---caccene . Shiffiett Jamas £ & Vernell RW71 - --
Shifftatt Dannis Stansrdsvilie <-vv--vvve-v 985-4560 Shiffiett James J 1430 Rugby Av <« -
Shiffiett Dennis B Stanardsville --------.. =2024 Shiffiett James K St George Av -----
Shiffiett Dewey E RISO7 ~ccccasarcicaannas 985-6576 Shiffiett Jamas L SRI3 Sanerdsvitle
Shiffiott Dewey O Dyke ---c-ccvvvucecnes . Shittiett Jomes O Earlysvillg ------
Shiffiett Diane 308 Bainbridge Av - -~ - ----- 979-7035 Shiffiett James O Stansrdeville -.-..
wm&:ﬂﬂmm ------------- mnwmn'
Shiffiett REO2ZL cecccnnancnanans 974-7463 Shiffiett James R Esmom -s-

Parallel Bubblesort

In order for me to give back your midterms, please form
a line and sort yourselves in alphabetical order, from A
to Z.

There is traditionally a strong correlation between the
midterm grades and the number of daily problems at-
tempted:

daily: O, sum: 134, count: 3, avg: 44.67
daily: 1, sum: 0, count: 2, avg: XXXXX
daily: sum: 63, count: 1, avg: 63.00
daily: sum: 194, count: 3, avg: 64.67

daily: sum: 335, count: 5, avg: 67.00

, avg: 61.12

daily: sum: 381, count: 6, avg: 63.50

daily:

daily: sum: 217, count:

2,
3,
4,
daily: 5, sum: 489, count:
6,
7,
8, , avg: 72.33
9,

5
8
6
sum: 432, count: 6, avg: 72.00
3
daily: 4

sum: 293, count: 4, avg: 73.25

Show that there is no sorting algorithm which sorts at
least (1/2™) x n! instances in O(n) time.

Think of the decision tree which can do this. What
is the shortest tree with (1/2™) x n! leaves?

NIgN

h>Ig(n!/2™) = Ig(n!) —I1g(2™)
= ©(nlgn) —n
= ©(nlgn)

Moral: there cannot be too many good cases for any
sorting algorithm!

Show that the Q(nlgn) lower bound for sorting still
holds with ternary comparisons.

/O
O Q
O

AV INOY

The maximum number of leaves in a tree of height h
is 3",

Ig3(n!) = ©(nlign)

So it goes for any constant base.

Optimization Problems

In the algorithms we have studied so far, correctness
tended to be easier than efficiency. In optimization
problems, we are interested in finding a thing which
maximizes or minimizes some function.

In designing algorithms for optimization problem - we
must prove that the algorithm in fact gives the best
possible solution.

Greedy algorithms, which makes the best local decision
at each step, occasionally produce a global optimum -
but you need a proofl!

Dynamic Programming

Dynamic Programming is a technique for computing
recurrence relations efficiently by sorting partial results.

Computing Fibonacci Numbers

Fn: n—1+Fn—2

Fo=0F =1

Implementing it as a recursive procedure is easy but
slow!

We keep calculating the same value over and over!

F(6)=13

F(5) F4)

N 7N

F(4) F@3) F(3) H(2)

VRN /N AN SN

F3) F2) FQ F) A (0
N

F2 FD ga) ro FO FO) RO

FD) RO

How slow is slow?

Foi1/Fo~¢=(14++5)/2~ 1.61803

Thus F,, =~ 1.6™, and since our recursion tree has O and
1 as leaves, means we have =~ 1.6™ calls!

What about Dynamic
Programming?

We can calculate F, in linear time by storing small
values:

Fo 0

Fi 1

For: =1 ton
F,=F,_1+ F,_»

Moral: we traded space for time.

Dynamic programming is a technique for efficiently
computing recurrences by storing partial results.

Once you understand dynamic programming, it is usu-
ally easier to reinvent certain algorithms than try to
look them up!

Dynamic programming is best understood by looking
at a bunch of different examples.

I have found dynamic programming to be one of the
most useful algorithmic techniques in practice:

e Morphing in Computer Graphics
e Data Compression for High Density Bar Codes

e Utilizing Grammatical Constraints for Telephone
Keypads

Multiplying a Sequence of
Matrices

Suppose we want to multiply a long sequence of ma-
trices Ax BxC x D

Multiplying an X x Y matrix by a Y x Z matrix (using
the common algorithm) takes X xY x Z multiplications.

2 3 13 18 23
2 3 4
3 4 3 4 5 18 25 32

23 32 41

We would like to avoid big intermediate matrices, and
since matrix multiplication is associative, we can paren-
thesise however we want.

Matrix multiplication is not communitive, so we cannot
permute the order of the matrices without changing the
result.

Example

Consider Ax BxC x D, where Ais30x 1, Bis 1l x40,
C is 40 x 10, and D is 10 x 25.

There are three possible parenthesizations:

((AB)C)D = 30x1x40430x40x10430x10x25 = 20,700
(AB)(CD) = 30x1x40440x10x25430x40x25 = 41,200

A((BC)D) = 1x40x104+1x10x254+30x 1x25 = 1400

The order makes a big difference in real computation.
How do we find the best order?

Let M(4,5) be the minimum number of multiplications
necessary to compute HJ:Z. Ap.

The key observations are

e T he outermost parentheses partition the chain of
matricies (7,7) at some k.

e T he optimal parenthesization order has optimal or-
dering on either side of k.

A recurrence for this is:

M(i,3) Min<p<j—1[M(i, k) + M(k + 1,7) + di—1did;]
M(@i,i) = O

If there are n matrices, there are n 4+ 1 dimensions.

A direct recursive implementation of this will be expo-
nential, since there is a lot of duplicated work as in the
Fibonacci recurrence.

Divide-and-conquer is seems efficient because there is
no overlap, but ...

There are only (g

it requires only ©(n?) space to store the optimal cost
for each of them.

) substrings between 1 and n. Thus

We can represent all the possibilities in a triangle ma-
trix. We can also store the value of k in another triangle
matrix to reconstruct to order of the optimal parenthe-
sisation.

The diagonal moves up to the right as the computation
progresses. On each element of the kth diagonal |5 —
1| = k.

For the previous example:

Procedure MatrixOrder
fori=1 ton do MJ[:,j] =0
for diagonal =1 ton—1
for : =1 to n — diagonal do

J =1+ diagonal
M[i, 5] = miniZi[M[i, k] + M[k + 1,5] + di_1dxd;]
faster(z,7) = k

return [m(1,n)]

Procedure ShowOrder(z,)

if (1 =7) write (4;)

else
k —=factor(z,j)
write “(”
ShowOrder(i, k)
write ‘“*”
ShowOrder (k+1,3)
write “)”

A dynamic programming
solution has three components:

1. Formulate the answer as a recurrence relation or
recursive algorithm.

2. Show that the number of different instances of
your recurrence is bounded by a polynomial.

3. Specify an order of evaluation for the recurrence
so you always have what you need.

Approximate String Matching

A common task in text editing is string matching -
finding all occurrences of a word in a text.

Unfortunately, many words are mispelled. How can we
search for the string closest to the pattern?

Let p be a pattern string and T a text string over the
same alphabet.

A k-approximate match between P and T is a substring
of T with at most k differences.

Differences may be:

1. the corresponding characters may differ: KAT—
CAT

2. P is missing a character from T:. CAAT— CAT
3. T is missing a character from P. CT— CAT

Approximate Matching is important in genetics as well
as spell checking.

A 3-Approximate Match

A match with one of each of three edit operations is:
P = unescessaraly
T = unnecessarily

Finding such a matching seems like a hard problem
because we must figure out where you add blanks, but
we can solve it with dynamic programming.

DIJi,j] = the minimum number of differences between
Py, P>, ..., P, and the segment of T ending at j.

DIJi, j] is the minimum of the three possible ways to
extend smaller strings:

1. If P, =t;then D[t1—1,5—1] else D[z —1,57—-1]+1
(corresponding characters do or do not match)

2. D[i—1,7]+ 1 (extra character in text — we do not
advance the pattern pointer).

3. DJ[i,j— 1]+ 1 (character in pattern which is not in
text).

Once you accept the recurrence it is easy.

To fill each cell, we need only consider three other cells,
not O(n) as in other examples. This means we need
only store two rows of the table. The total time is
O(mn).

Boundary conditions for string
matching

What should the value of D[0,:] be, corresponding to
the cost of matching the first 7« characters of the text
with none of the pattern?

It depends. Are we doing string matching in the text
or substring matching?

e If you want to match all of the pattern against all
of the text, this meant that would have to delete
the first i characters of the pattern, so D[0,i] =1
to pay the cost of the deletions.

e if we want to find the place in the text where the
pattern occurs? We do not want to pay more of
a cost if the pattern occurs far into the text than
near the front, so it is important that starting cost
be equal for all positions. In this case, D[O0,i] =
0, since we pay no cost for deleting the first =
characters of the text.

In both cases, DJ[i,0] = 7, since we cannot excuse delet-
ing the first + characters of the pattern without cost.

What do we return?

If we want the cost of comparing all of the pattern
against all of the text, such as comparing the spelling
of two words, all we are interested in is D[n, m].

But what if we want the cheapest match between the
pattern anywhere in the text? Assuming the initial-
ization for substring matching, we seek the cheapest
matching of the full pattern ending anywhere in the
text. This means the cost equals mini<;<m Dl[n,].

This only gives the cost of the optimal matching. The
actual alignment — what got matched, substituted, and
deleted — can be reconstructed from the pattern/text
and table without an auxiliary storage, once we have
identified the cell with the lowest cost.

How much space do we need?

Do we need to keep all O(mn) cells, since if we evaluate
the recurrence filling in the columns of the matrix from
left to right, we will never need more than two columns
of cells to do what we need. Thus O(m) space is
sufficient to evaluate the recurrence without changing
the time complexity at all.

Unfortunately, because we won’t have the full matrix
we cannot reconstruct the alignment, as above.

Saving space in dynamic programming is very impor-
tant. Since memory on any computer is limited, O(nm)
space is more of a bottleneck than O(nm) time.

Fortunately, there is a clever divide-and-conquer algo-
rithm which computes the actual alignment in O(nm)
time and O(m) space.

Give an O(n?) algorithm to find the longest montoni-
cally increasing sequence in a sequence of n numbers.

Build an example first: (5,2,8,7,1,6,4)

Ask yourself what would you like to know about the
first n—1 elements to tell you the answer for the entire
seguence?

1. Thelength of the longest sequence in s1,s2,...,8,-1.
(seems obvious)

2. The length of the longest sequence s, will extend!
(not as obvious - this is the idea!)

Let s; be the length of the longest sequence ending
with the :th character:

segquence
Sq

R Ol
=N
N 00
N~
N W
-
w

How do we compute s:?
S§; — max0<j<i,seq[j]<seq[i] Sj + 1
S0 — 0

To find the longest sequence - we know it ends some-
where, so Length = maxl_; s;

The Principle of Optimality

To use dynamic programming, the problem must ob-
serve the principle of optimality, that whatever the ini-
tial state is, remaining decisions must be optimal with
regard the state following from the first decision.

Combinatorial problems may have this property but
may use too much memory/time to be efficient.

Example: The Traveling Salesman
Problem

Let T'(7; 71,72,...,J%) be the cost of the optimal tour
for : to 1 that goes thru each of the other cities once

T(% 81,52, -+, 0i) = Min1<m<iCli, im] + T(Gm; 1,925 - - - Jk)

T(:,5) =C(G,5)+C3G, 1)

Here there can be any subset of j1,72,..., 7% instead of
any subinterval - hence exponential.

Still, with other ideas (some type of pruning or best-
first search) it can be effective for combinatorial search.

When can you use Dynamic
Programming?

Dynamic programming computes recurrences efficiently
by storing partial results. Thus dynamic programming
can only be efficient when there are not too many par-
tial results to computel

There are n! permutations of an n-element set — we
cannot use dynamic programming to store the best so-
lution for each subpermutation. There are 2™ subsets
of an n-element set — we cannot use dynamic program-
ming to store the best solution for each.

However, there are only n(n — 1)/2 continguous sub-
strings of a string, each described by a starting and
ending point, so we can use it for string problems.

There are only n(n — 1)/2 possible subtrees of a binary
search tree, each described by a maximum and mini-
mum key, so we can use it for optimizing binary search
trees.

Dynamic programming works best on objects which
are linearly ordered and cannot be rearranged — char-
acters in a string, matrices in a chain, points around
the boundary of a polygon, the left-to-right order of
leaves in a search tree.

Whenever your objects are ordered in a left-to-right
way, you should smell dynamic programming!

Minimum Length Triangulation

A triangulation of a polygon is a set of non-intersecting
diagonals which partiions the polygon into diagonals.

The length of a triangulation is the sum of the diagonal
lengths.

We seek to find the minimum length triangulation. For
a convex polygon, or part thereof:

k

Once we identify the correct connecting vertex, the
polygon is partitioned into two smaller pieces, both of
which must be triangulated optimally!

tfi,i+1] = 0

thi,j] = mineli, K] + e[k, 5]+ |ik] + k3]

Evaluation proceeds as in the matrix multiplication ex-
ample - (g) values of t, each of which takes O(j — 1)

time if we evaluate the sections in order of increasing
size.

1 Ji=2
13, 24, 35, 46, 51, 62

Ji=3
14, 25, 36, 41, 52, 63

Ji=4

15, 26, 31, 42, 53, 64
Finish with 16

What if there are points in the interior of the polygon?

Dynamic Programming and
High Density Bar Codes

Symbol Technology has developed a new design for bar
codes, PDF-417 that has a capacity of several hundred
bytes. What is the best way to encode text for this

design?

They developed a complicated mode-switching data
compression scheme.

Latch commands permanently put you in a different
mode. Shift commands temporarily put you in a dif-
ferent mode.

Originally, Symbol used a greedy algorithm to encode
a string, making local decisions only. We realized that
for any prefix, you want an optimal encoding which
might leave you in every possible mode.

The Quick Brown Fox

Alpha
Lower
Mixed X
Punct.

M]Ji, 3] = min(M][i — 1, k]+ the cost of encoding the ith
character and ending up in node j3).

Our simple dynamic programming algorithm improved
to capacity of PDF-417 by an average of 8%!

Dynamic Programming and
Morphing

Morphing is the problem of creating a smooth series of
intermediate images given a starting and ending image.

The key problem is establishing a correspondence be-
tween features in the two images. You want to morph
an eye to an eye, not an ear to an ear.

We can do this matching on a line-by-line basis:
Object A’s segments
T=0 _ _ |
T=05 4: \J N :l
T=1 _ _

Object B’s segments

This should sound like string matching, but with a dif-
ferent set of operations:

e Full run match: We may match run ¢z on top to
run 3 on bottom for a cost which is a function of
the difference in the lengths of the two runs and
their positions.

e Merging runs: We may match a string of consecu-
tive runs on top to a run on bottom. The cost will
be a function of the number of runs, their relative
positions, and lengths.

e Splitting runs: We may match a big run on top to
a string of consecutive runs on the bottom. This
is just the converse of the merge. Again, the cost
will be a function of the number of runs, their
relative positions, and lengths.

This algorithm was incorported into a morphing sys-
tem, with the following results:

Problem Solving Techniques

Most important: make sure you understand exactly
what the question is asking — if not, you have no hope
of answer it!!

Never be afraid to ask for another explanation of a
problem until it is clear.

Play around with the problem by constructing examples
to get insight into it.

Ask yourself questions. Does the first idea which comes
into my head work? If not, why not?

Am I using all information that I am given about the
problem?

Read Polya’s book How to Solve it.

The Euclidean traveling-salesman problem is the prob-
lem of determining the shortest closed tour that con-
nects a given set of n points in the plane.

Bentley suggested simplifying the problem by restrict-
ing attention to bitonic tours, that is tours which start
at the leftmost point, go strictly left to right to the
rightmost point, and then go strictly right back to the
starting point.

non-bitonic bitonic

Describe an O(n?) algorithm for finding the optimal
bitonic tour. You may assume that no two points have
the same xz-coordinate. (Hint: scan left to right, main-
taining optimal possibilities for the two parts of the
tour.)

Make sure you understand what a bitonic tour is, or
else it is hopeless.

First of all, play with the problem. Why isn't it trivial?

O O < "Hey, I guessthistour
~— P can zig-zag alot."

o

ol el
Hey, i guessthat | can have

an arbitrary number of upper
" Hey, | guess| can’t tell an or lower pointsin arow."
upper point from alower point"

Am I using all the information?

Why will they let us assume that no two z-coordinates
are the same? What does the hint mean? What hap-
pens if I scan from left to right?

If we scan from left to right, we get an open tour which
uses all points to the left of our scan line.

-

>

In the optimal tour, the kth point is connected to ex-
actly one point to the left of k. (k #n) Once I decide
which point that is, say . I need the optimal partial
tour where the two endpoints are £ and k— 1, because
if it isn’'t optimal I could come up with a better one.
Hey, I have got a recurrence! And look, the two pa-

rameters which describe my optimal tour are the two
endpoints.

Let c[k,n] be the optimal cost partial tour where the
two endpoints are k < n.

clk,n] < c[k,n — 1] + d[n,n — 1] (when k< n —1)
c[n —1,n] < c[k,n— 1] + d[k, n]
c[0, 1] = d[0, 1]

0 1 2 3
0 d(o, 1) N\
1 % \

K 5 \/

Filling the entitiesin from N=1to N’, k=1to N, meanswe
aways have what we need waiting for us.

c[n — 1,n] takes O(n) to update, c[k,n] k < n — 1 takes
O(1) to update. Total time is O(n?).

But this doesn’'t quite give the tour, but just an open
tour. We simply must figure where the last edge to n
must go.

n

Tourcost = T_I? Clk,n] + din

Divide and Conquer

Divide and conquer was a successful military strategy
long before it became an algorithm design paradigm.
The wise general would attack so as to divide the en-
emy army into two forces and then mop up one after
the other.

To use divide and conquer as an algorithm design tech-
niqgue, we must divide the problem into two smaller
subproblems, solve each of them recursively, and then
meld the two partial solutions into one solution to the
full problem. Whenever the merging takes less time
than solving the two subproblems, we get an efficient
algorithm.

Mergesort is the classic example of a divide-and-conquer
algorithm. It takes only linear time to merge two sorted
lists of n/2 elements each of which was obtained in
O(nlgn) time.

Divide and conquer is a design techniqgue with many
important algorithms to its credit, including mergesort,
the fast Fourier transform, and Strassen’s matrix mul-
tiplication algorithm.

Fast Exponentiation

Suppose that we need to compute the value of a™ for
some reasonably large n. Such problems occur in pri-
mality testing for cryptography.

The simplest algorithm performs n — 1 multiplications,
by computing a X a X ... X a.

However, we can do better by observing that n =
In/2] + [n/2]. If n is even, then a" = (a™?)?. If n
is odd, then a® = a(al™?)2. In either case, we have
halved the size of our exponent at the cost of at most
two multiplications, so O(lgn) multiplications suffice
to compute the final value.

function power(a,n)
if (n =0) return(1)
r = power(a, [n/2])
if (n is even) then return(z?)
else return(a x z2)

This simple algorithm illustrates an important principle
of divide and conquer. It always pays to divide a job
as evenly as possible.

Twenty Questions

In Twenty questions one player selects a word, and
the other repeatedly asks true/false questions in an
attempt to identify the word. If the word remains
unidentified after 20 questions, the first party wins;
otherwise, the second player wins.

In fact, the second player always has a winning strategy,
based on binary search. Given a printed dictionary,
the player opens it in the middle, selects a word (say
“move”), and asks whether the unknown word is before
“move” in alphabetical order.

Since standard dictionaries contain 50,000 to 200,000
words, we can be certain that the process will always
terminate within twenty questions.

Finding a Transition

Other interesting algorithms follow from simple vari-
ants of binary search.

Suppose we have an array A consisting of a run of O’s,
followed by an unbounded run of 1's, and would like to
identify the exact point of transition between them:

0000000000000000000000011111111111

Binary search on the array would provide the transition
point in [Ign] tests.

Clearly there is no way to solve this problem any faster.

One-Sided Binary Search

Suppose that we want to search in a sorted array, but
we do not know how large the array is. All we know is
the starting point.

{2,3,5,7,11,13,17,19,23,29,31, ...}

How can we use binary search without both bound-
aries?

In the absence of such a bound, we can test repeatedly
at larger intervals (A[1], A[2], A[4], A[8], A[1l6], ...)
until we find a first nonzero value. Now we have a
window containing the target and can proceed with
binary search.

This one-sided binary search finds the transition point
p using at most 2[lgp] comparisons, regardless of how
large the array actally is.

One-sided binary search is most useful whenever we are
looking for a key that probably lies close to our current
position.

Square and Other Roots

The square root of n is the number r such that r2 = n.
Square root computations are performed inside every
pocket calculator — but how?

Observe that the square root of n > 1 must be at least
1 and at most n. Let Il = 1 and »r = n. Consider the
midpoint of this interval, m = (I+r)/2. How does m?
compare to n?

If n > m?, then the square root must be greater than
m, so the algorithm repeats with I = m. If n < m?2, then
the square root must be less than m, so the algorithm
repeats with » = m.

Either way, we have halved the interval with only one
comparison. Therefore, after only Ign rounds we will
have identified the square root to within +1.

This bisection method, as it is called in numerical anal-
ysis, can also be applied to the more general problem
of finding the roots of an equation. We say that z is a
root of the function f if f(z) = 0.

ITH

Find the missing integer from 0 to n using O(n) “is

bit[j] in A[i]” queries.

Note - there are a total of nilgn bits, so we are not
allowed to read the entire inputl!

Also note, the problem is asking us to minimize the
number of bits we read. We can spend as much time
as we want doing other things provided we don’t look
at extra bits.

How can we find the last bit of the missing integer?

Ask all the n integers what their last bit is and see
whether O or 1 is the bit which occurs less often than
it is supposed to. That is the last bit of the missing
integer!

How can we determine the second-to-last bit?

Ask the =~ n/2 numbers which ended with the correct
last bit! By analyzing the bit patterns of the numbers
from O to n which end with this bit.

By recurring on the remaining candidate numbers, we
get the answer in T(n) = T(n/2) + n = O(n), by the
Master Theorem.

Graphs

A graph G consists of a set of vertices V together with
a set E of vertex pairs or edges.

Graphs are important because any binary relation is a
graph, so graphs can be used to represent essentially
any relationship.

Example: A network of roads, with cities as vertices
and roads between cities as edges.

Stony Brook Green Port
vertices - cities
Riverhead
edges - roads
/\ Sheter Island

O Montauk

(O Orient Point

Idip Sag Harbor

Example: An electronic circuit, with junctions as ver-
tices as components as edges.

vertices: junctions

{] edges: components

To understand many problems, we must think of them
in terms of graphs!

The Friendship Graph

Consider a graph where the vertices are people, and
there is an edge between two people if and only if they

.
are friends.
Ronald Reagan Frank Sinatra
George Bush \I Nancy Reagan
Saddam Hussain

This graph is well-defined on any set of people: SUNY
SB, New York, or the world.

What questions might we ask about the friendship
graph?

e If I am your friend, does that mean you are
my friend?

A graph is undirected if (z,y) implies (y,z). Other-
wise the graph is directed. The “heard-of” graph
is directed since countless famous people have never
heard of me! The “had-sex-with” graph is presum-
ably undirected, since it requires a partner.

e AM I my own friend?

An edge of the form (z,z) is said to be a loop.
If x is y's friend several times over, that could be
modeled using multiedges, multiple edges between
the same pair of vertices. A graph is said to be
simple if it contains no loops and multiple edges.

e Am I linked by some chain of friends to the
President?

A path is a sequence of edges connecting two ver-
tices. Since Mel Brooks is my father’'s-sister’s-
husband’s cousin, there is a path between me and
him!

O O

Steve Dad Aunt Eve Uncle Lenny Cousin Méel

e How close is my link to the President?

If T were trying to impress you with how tight I
am with Mel Brooks, I would be much better off
saying that Uncle Lenny knows him than to go into
the details of how connected I am to Uncle Lenny.
Thus we are often interested in the shortest path
between two nodes.

e Is there a path of friends between any two
people?

A graph is connected if there is a path between
any two vertices. A directed graph is strongly con-
nected if there is a directed path between any two
vertices.

¢ Who has the most friends?

The degree of a vertex is the number of edges
adjacent to it.

e What is the largest clique?

A social clique is a group of mutual friends who all
hang around together. A graph theoretic clique is
a complete subgraph, where each vertex pair has
an edge between them. Cliques are the densest
possible subgraphs. Within the friendship graph,
we would expect that large cliques correspond to
workplaces, neighborhoods, religious organizations,
schools, and the like.

e How long will it take for my gossip to get back
to me?

A cycle is a path where the last vertex is adjacent
to the first. A cycle in which no vertex repeats
(such as 1-2-3-1 verus 1-2-3-2-1) is said to be
simple. The shortest cycle in the graph defines its
girth, while a simple cycle which passes through
each vertex is said to be a Hamiltonian cycle.

Data Structures for Graphs

There are two main data structures used to represent
graphs.

Adjacency Matrices

An adjacency matrix is an nxn matrix, where M][i, 7] =
O iff there is no edge from vertex : to vertex j

one .

» O O r O
I = =
o r O L O
, O B B O
O r O kR B

It takes ©(1) time to test if (z,7) is in a graph repre-
sented by an adjacency matrix.

Can we save space if (1) the graph is undirected? (2)
if the graph is sparse?

Adjacency Lists

An adjacency list consists of a N x 1 array of pointers,
where the ith element points to a linked list of the
edges incident on vertex .

i

Ol M| | N|F

To test if edge (4,7) is in the graph, we search the ith
list for 7, which takes O(d;), where d; is the degree of
the :th vertex.

Note that d; can be much less than n when the graph
is sparse. If necessary, the two copies of each edge can
be linked by a pointer to facilitate deletions.

Tradeoffs Between Adjacency
Lists and Adjacency Matrices

Comparison Winner
Faster to test if (z,y) exists? matrices
Faster to find vertex degree? lists

Less memory on small graphs?

lists (m +n) vs. (n?)

Less memory on big graphs?

matrices (small win)

Edge insertion or deletion?

matrices O(1)

Faster to traverse the graph?

lists m + n vs. n?

Better for most problems?

lists

Both representations are very useful and have different
properties, although adjacency lists are probably better

for most problems.

Traversing a Graph

One of the most fundamental graph problems is to
traverse every edge and vertex in a graph. Applications
include:

e Printing out the contents of each edge and vertex.
e Counting the number of edges.
e Identifying connected components of a graph.

For efficiency, we must make sure we visit each edge
at most twice.

For correctness, we must do the traversal in a system-
atic way so that we don’t miss anything.

Since a maze is just a graph, such an algorithm must be
powerful enough to enable us to get out of an arbitrary
maze.

Marking Vertices

The idea in graph traversal is that we must mark each
vertex when we first visit it, and keep track of what
have not yet completely explored.

For each vertex, we can maintain two flags:

e discovered - have we ever encountered this vertex
before?

e completely-explored - have we finished exploring
this vertex yet?

We must also maintain a structure containing all the
vertices we have discovered but not yet completely ex-
plored.

Initially, only a single start vertex is considered to be
discovered.

To completely explore a vertex, we look at each edge
going out of it. For each edge which goes to an undis-
covered vertex, we mark it discovered and add it to the
list of work to do.

Note that regardless of what order we fetch the next
vertex to explore, each edge is considered exactly twice,
when each of its endpoints are explored.

Correctness of Graph Traversal

Every edge and vertex in the connected component is
eventually visited.
Suppose not, ie. there exists a vertex which was un-

visited whose neighbor was visited. This neighbor will
eventually be explored so we would visit it:

The square of a directed graph G = (V, E) is the graph
G? = (V, E?) such that (u,w) € E? iff for some v € V,
both (u,v) € E and (v,w) € E; ie. there is a path of
exactly two edges.

Give efficient algorithms for both adjacency lists and
matricies.

Given an adjacency matrix, we can check in constant
time whether a given edge exists. To discover whether
there is an edge (u,w) € G?, for each possible interme-
diate vertex v we can check whether (u,v) and (v, w)
exist in O(1).

Since there are at most n intermediate vertices to
check, and n? pairs of vertices to ask about, this takes
O(n3) time.

With adjacency lists, we have a list of all the edges in
the graph. For a given edge (u,v), we can run through
all the edges from v in O(n) time, and fill the results
into an adjacency matrix of G2, which is initially empty.

It takes O(mn) to construct the edges, and O(n?) to
initialize and read the adjacency matrix, a total of
O((n + m)n). Since n < m unless the graph is dis-
connected, this is usually simplified to O(mn), and is
faster than the previous algorithm on sparse graphs.

Why is it called the square of a graph? Because the
square of the adjacency matrix is the adjacency ma-
trix of the square! This provides a theoretically faster
algorithm.

Traversal Orders

The order we explore the vertices depends upon what
kind of data structure is used:

o Queue — by storing the vertices in a first-in, first
out (FIFO) queue, we explore the oldest unex-
plored vertices first. Thus our explorations radiate
out slowly from the starting vertex, defining a so-
called breadth-first search.

e Stack - by storing the vertices in a last-in, first-
out (LIFO) stack, we explore the vertices by lurch-
ing along a path, constantly visiting a new neigh-
bor if one is available, and backing up only if we
are surrounded by previously discovered vertices.
Thus our explorations quickly wander away from
our starting point, defining a so-called depth-first
search.

The three possible colors of each node reflect if it is
unvisited (white), visited but unexplored (grey) or com-
pletely explored (black).

Breadth-First Search

BFS(G,s)
for each vertex u € V[G] — {s} do
color[u] = white
d[u] = oo, ie. the distance from s
plu] = NIL, ie. the parent in the BFS tree
color[u] = grey
d[s] =0
p[s] = NIL
Q = {s}
while Q@ # 0 do
u = head[Q]
for each v € Adj[u] do
if color[v] = white then
color[v] = gray
dlvl] =d[u] + 1
plv] = u
enqueue[Q,V]
dequeue[Q)]
color[u] = black

Depth-First Search

DFS has a neat recursive implementation which elimi-
nates the need to explicitly use a stack.

Discovery and final times are sometimes a convenience
to maintain.

DFS(G)
for each vertex u € V[G] do
color[u] = white
parent[u] = nil
time = 0
for each vertex u € V[G] do
if color[u] = white then DFS-VISIT[u]

Initialize each vertex in the main routine, then do a
search from each connected component. BFS must
also start from a vertex in each component to com-
pletely visit the graph.

DFS-VISIT[u]
color[u] = grey (*u had been white/undiscovered*)
discover[u] = time
time = time + 1
for each v € Adj[u] do
if color[v] = white then

parent[v] = u

DFS-VISIT(V)
color[u] = black (*now finished with u*)
finish[u] = time
time = time + 1

BFS Trees

If BFS is performed on a connected, undirected graph,
a tree is defined by the edges involved with the discov-

ery of new nodes:

e

T his tree defines a shortest path from the root to every
other node in the tree.

The proof is by induction on the length of the shortest
path from the root:

e Length = 1 First step of BFS explores all neigh-
bors of the root. In an unweighted graph one edge
must be the shortest path to any node.

e Length = s Assume the BFS tree has the shortest
paths up to length s—1. Any node at a distance of
s will first be discovered by expanding a distance
s — 1 node.

The key idea about DFS

A depth-first search of a graph organizes the edges of
the graph in a precise way.

In a DFS of an undirected graph, we assign a direction
to each edge, from the vertex which discover it:

0 s
2 \ & ,
(3)

5
e 6
(5)

In a DFS of a directed graph, every edge is either a
tree edge or a black edge.

In a DFS of a directed graph, no cross edge goes to a
higher numbered or rightward vertex. Thus, no edge
from 4 to 5 is possible:

1 5

7 8

Edge Classification for DFS

What about the other edges in the graph? Where can
they go on a search?

Every edge is either:
3. A Forward Edge
1. A Tree Edge f to a decendant @<I
A, /SN
4. A Cross Edge
2. A Back Edge) O
{0 an ancestor JO j to adifferent node / \

AN

On any particular DFS or BFS of a directed or undi-
rected graph, each edge gets classified as one of the
above.

DFS Trees

The reason DFS is so important is that it defines a
very nice ordering to the edges of the graph.

In a DFS of an undirected graph, every edge is either
a tree edge or a back edge.

Why? Suppose we have a forward edge. We would
have encountered (4,1) when expanding 4, so this is a
back edge.

1

3 g4

Suppose we have a cross-edge

1

2 5 When expanding 2, we would discover
5, so the tree would look like:

Paths in search trees
Where is the shortest path in a DFS?

r

It could use multiple
back and tree edges,
where BFS only used
tree edges.

It could use multiple back and tree edges, where BFS
only uses tree edges.

DFS gives a better approximation of the longest path
than BFS.

The BFS tree can have height 1,
independant of the length of the
longest path.

12 The DFS must always have height
4

>= |og P, where P is the length of
the longest path.

15
1 35 7 9 11 43

Give an efficient algorithm to test if a graph is bipar-
tite.

Bipartite means the vertices can be colored red or black
such that no edge links vertices of the same color.

® (W)

W)
®)

W)
®)

W)

Suppose we color a vertex red - what color must its
neighbors be? black!

We can augment either BFS or DFS when we first dis-
cover a new vertex, color it opposited its parents, and
for each other edge, check it doesn’t link two vertices
of the same color. The first vertex in any connected
component can be red or black!

Bipartite graphs arise in many situations, and special
algorithms are often available for them. What is the
interpretation of a bipartite “had-sex-with” graph?

How would you break people into two groups such
that no group contains a pair of people who hate each
other?

Give an O(n) algorithm to test whether an undirected
graph contains a cycle.

If you do a DFS, you have a cycle iff you have a back
edge. This gives an O(n + m) algorithm. But where
does the m go? If the graph contains more than n—1
edges, it must contain a cycle! Thus we never need
look at more than n edges if we are given an adjacency
list representation!

Topological Sorting

A directed, acyclic graph is a directed graph with no

directed cycles.

A topological sort of a graph is an ordering on the
vertices so that all edges go from left to right.

Only a DAG can have a topological sort.

s

Any DAG has (at least one) topological sort.

Applications of Topological
Sorting

Topological sorting is often useful in scheduling jobs
in their proper sequence. In general, we can use it to
order things given constraints, such as a set of left-
right constraints on the positions of objects.

Example: Dressing schedule from CLR.

Example: Identifying errors in DNA fragment assembly.

Certain fragments are constrained to be to the left or
right of other fragments, unless there are errors.

ABRACADABRA

ABRAC

ABRAC

A CADA RACAD
ADABR ACADA
DABRA ADABR
RACAD DABRA

Solution — build a DAG representing all the left-right
constraints. Any topological sort of this DAG is a con-
sistant ordering. If there are cycles, there must be
errors.

A DFS can test if a graph is a DAG (it is iff there are
no back edges - forward edges are allowed for DFS on
directed graph).

Algorithm

Theorem: Arranging vertices in decreasing order of
DFS finishing time gives a topological sort of a DAG.

Proof. Consider any directed edge u,v, when we en-
counter it during the exploration of vertex u:

e If v is white - we then start a DFS of v before we
continue with wu.

e If v is grey - then u,v is a back edge, which cannot
happen in a DAG.

e If v is black - we have already finished with v, so

flv] < flul.

Thus we can do topological sorting in O(n + m) time.

Articulation Vertices

Suppose you are a terrorist, seeking to disrupt the tele-
phone network. Which station do you blow up?

O

An articulation vertex is a vertex of a connected graph
whose deletion disconnects the graph.

Clearly connectivity is an important concern in the de-
sign of any network.

Articulation vertices can be found in O(n(m + n)) —
just delete each vertex to do a DFS on the remaining
graph to see if it is connected.

A Faster O(n + m) DFS
Algorithm

Theorem: In a DFS tree, a vertex v (other than the
root) is an articulation vertex iff v is not a leaf and
some subtree of v has no back edge incident until a
proper ancestor of v.

Theroot is aspecia case since
it has no ancestors.

X isan articulation vertex since
the right subtree does not have
aback edge to a proper ancestor.

O

L eaves cannot be
articulation vertices

Proof: (1) v is an articulation vertex — v cannot be a
leaf.

Why? Deleting v must seperate a pair of vertices =
and y. Because of the other tree edges, this cannot
happen unless y is a decendant of wv.

v separating x,y implies there is no back edge in the
subtree of y to a proper ancestor of v.

(2) Conditions — v is a non-root articulation vertex. v
separates any ancestor of v from any decendant in the
appropriate subtree.

Actually implementing this test in O(n + m) is tricky —
but believable once you accept this theorem.

Strongly Connected
Components

A directed graph is strongly connected iff there is a
directed path between any two vertices.

The strongly connected components of a graph is a
partition of the vertices into subsets (maximal) such
that each subset is strongly connected.

Observe that no vertex can be in two maximal compo-
nents, so it is a partition.

There is an amazingly elegant, linear time algorithm to
find the strongly connected components of a directed
graph, using DFS.

e Call DFS(o) to compute finishing times for each
vertex.

e Compute the transpose graph GT (reverse all edges
in G)

e Call DFS(GT), but order the vertices in decreasing
order of finish time.

e The vertices of each DFS tree in the forest of
DFS(GT) is a strongly connected component.

This algorithm takes O(n + m), but why does it com-
pute strongly connected components?

Lemma: If two vertices are in the same strong com-
ponent, no path between them ever leaves the compo-
nent.

X

0 X must also bein
the strong component!

Lemma: In any DFS forest, all vertices in the same
strongly connected component are in the same tree.

Proof: Consider the first vertex v in the component to
be discovered. Everything in the component is reach-
able from it, so we will traverse it before finishing with
V.

What does DFS(G7T, v) Do?

It tells you what vertices have directed paths to v,
while DFS(o,v) tells what vertices have directed paths
from v. But why must any vertex in the search tree of
DFS(GT, v) also have a path from u?

Al

Because there is no edge from any previous DFS tree
into the last tree!! Because we ordered the vertices
by decreasing order of finish time, we can peel off the
strongly connected components from right to left just
be doing a DFS(GT).

Example of Strong
Components Algorithm

b

9,10,11,12 can reach 9, oldest remaining finished is 5.
5,6,8 can reach 5, oldest remaining is 7.

7 can reach 7, oldest remaining is 1.

1,2,3 can reach 1, oldest remaining is 4.

4 can reach 4.

AR

DFG(G) 9isthelast vertex tofinish

Show that you can topologically sort in O(n + m) by
repeatedly deleting vertices of degree 0.

The correctness of this algorithm follows since in a
DAG there must always be a vertex of indegree 0, and
such a vertex can be first in topological sort. Suppose
each vertex is initialized with its indegree (do DFS on
G to get this). Deleting a vertex takes O(degree v).
Reduce the indegree of each efficient vertex - and keep
a list of degree-0 vertices to delete next.

Time: Y " ; O(deg(v;)) = O(n 4+ m)

Minimum Spanning Trees

A tree is a connected graph with no cycles. A spanning
tree is a subgraph of G which has the same set of
vertices of G and is a tree.

A minimum spanning tree of a weighted graph G is
the spanning tree of G whose edges sum to minimum
weight.

There can be more than one minimum spanning tree
in a graph — consider a graph with identical weight
edges.

The minimum spanning tree problem has a long history
— the first algorithm dates back at least to 1926!.

Minimum spanning tree is always taught in algorithm
courses since (1) it arises in many applications, (2) it is
an important example where greedy algorithms always
give the optimal answer, and (3) Clever data structures
are necessary to make it work.

In greedy algorithms, we make the decision of what
next to do by selecting the best local option from all
available choices — without regard to the global struc-
ture.

Applications of Minimum
Spanning Trees

Minimum spanning trees are useful in constructing net-
works, by describing the way to connect a set of sites
using the smallest total amount of wire. Much of the
work on minimum spanning (and related Steiner) trees
has been conducted by the phone company.

Minimum spanning trees provide a reasonable way for
clustering points in space into natural groups.

When the cities are points in the Euclidean plane, the
minimum spanning tree provides a good heuristic for
traveling salesman problems. The optimum traveling
salesman tour is at most twice the length of the mini-
mum spanning tree.

The Option Traveling System tour is at most twice
the length of the minimum spanning tree.

Note: There can be more than one minimum spanning
tree considered as a group with identical weight
edges.

Prim’'s Algorithm

If G is connected, every vertex will appear in the mini-
mum spanning tree. If not, we can talk about a mini-
mum spanning forest.

Prim’s algorithm starts from one vertex and grows the
rest of the tree an edge at a time.

As a greedy algorithm, which edge should we pick?
The cheapest edge with which can grow the tree by
one vertex without creating a cycle.

During execution we will label each vertex as either in
the tree, fringe - meaning there exists an edge from
a tree vertex, or unseen - meaning the vertex is more
than one edge away.

Select an arbitrary vertex to start.

While (there are fringe vertices)
select minimum weight edge between tree and fringe
add the selected edge and vertex to the tree

Clearly this creates a spanning tree, since no cycle can
be introduced via edges between tree and fringe ver-
tices, but is it minimum?

Why is Prim’s algorithm
correct?

Don't be scared by the proof — the reason is really quite
basic:

Theorem: Let G be a connected, weighted graph and
let E' C E be a subset of the edges in a MST T =
(V,Er). Let V' be the vertices incident with edges in
E'. If (z,y) is an edge of minimum weight such that
z € V' and y is not in V', then E'U{x,y} is a subset of
a minimum spanning tree.

Proof: If the edge is in T, this is trivial.

Suppose (z,y) is not in T Then there must be a path
in T from z to y since T is connected. If (v,w) is the
first edge on this path with one edge in V’/, if we delete
it and replace it with (z,y) we get a spanning tree.

T his tree must have smaller weight than T', since W (v, w) >

W(z,y). Thus T could not have been the MST.

Thus we cannot go wrong
with the greedy strategy the
way we could with the
traveling salesman.

PRIM’s Algorithm is correct!

Prim’s Algorithm is correct!

Thus we cannot go wrong with the greedy strategy the
way we could with the traveling salesman problem.

But how fast is Prim’s?

That depends on what data structures are used. 1In
the simplest implementation, we can simply mark each
vertex as tree and non-tree and search always from
scratch:

Select an arbitrary vertex to start.

While (there are non-tree vertices)
select minimum weight edge between tree and fringe
add the selected edge and vertex to the tree

This can be done in O(nm) time, by doing a DFS or
BFS to loop through all edges, with a constant time
test per edge, and a total of n iterations.

Can we do faster? If so, we need to be able to identify
fringe vertices and the minimum cost edge associated
with it, fast. We will augment an adjacency list with
fields maintaining fringe information.

Vertex:
fringelink pointer to next vertex in fringe list.
fringe weight cheapest edge linking v to .
parent other vertex with v having fringeweight.
status intree, fringe, unseen.

adjacency list the list of edges.

Finding the minimum weight fringe-edge takes O(n)
time — just bump through fringe list.

After adding a vertex to the tree, running through its
adjacency list to update the cost of adding fringe ver-
tices (there may be a cheaper way through the new
vertex) can be done in O(n) time.

Total time is O(n?).

Kruskal’s Algorithm

Since an easy lower bound argument shows that every
edge must be looked at to find the minimum spanning
tree, and the number of edges m = O(n?), Prim’s al-
gorithm is optimal in the worst case. Is that all she
wrote?

The complexity of Prim’s algorithm is independent of
the number of edges. Can we do better with sparse
graphs? Yes!

Kruskal's algorithm is also greedy. It repeatedly adds
the smallest edge to the spanning tree that does not
create a cycle. Obviously, this gives a spanning tree,
but is it minimal?

Why is Kruskal's algorithm
correct?

Theorem: Let G be a weighted graph and let E' C E.
If E' is contained in a MST T and e is the smallest edge
in E — E' which does not create a cycle, E'ue C T.

Proof: As before, suppose e is not in T'. Addingeto T
makes a cycle. Deleting another edge from this cycle
leaves a connected graph, and if it is one from E — E'
the cost of this tree goes down. Since such an edge
exists, T could not be a MST.

How fast is Kruskal's
algorithm?

What is the simplest implementation?
e Sort the m edges in O(mlIgm) time.

e For each edge in order, test whether it creates
a cycle the forest we have thus far built — if so
discard, else add to forest. With a BFS/DFS, this
can be done in O(n) time (since the tree has at
most n edges).

The total time is O(mn), but can we do better?

Kruskal’s algorithm builds up connected components.
Any edge where both vertices are in the same con-
nected component create a cycle. Thus if we can
maintain which vertices are in which component fast,
we do not have test for cycles!

Put the edges in a heap
count = 0
while (count < n — 1) do
get next edge (v, w)
if (component (v) # component(w))
add to T
component (v)=component(w)

If we can test components in O(logn), we can find the
MST in O(mlogm)!

Question: Is O(mlogn) better than O(mlogm)?

Union-Find Programs

Our analysis that Kruskal’s MST algorithm is O(m logm)
requires a fast way to test whether an edge links two
vertices in the same connected component.

Thus we need a data structure for maintaining sets
which can test if two elements are in the same and
merge two sets together. These can be implemented
by UNION and FIND operations:

Is s; = Sj
t = Find(s;)
u = Find(s;)
Return (Is t = u?)

Make $; = 8j

t = d(sz)
u = d(s;)
Union(t, u)

Find returns the name of the set and Union sets the
members of t to have the same name as u.

We are interested in minimizing the time it takes to
execute any sequence of unions and finds.

A simple implementation is to represent each set as a
tree, with pointers from a node to its parent. Each
element is contained in a node, and the name of the
set is the key at the root:

UNION (s,)

FIND(S) ﬁ\@

In the worst case, these structures can be very unbal-
anced:

Fori=1 to n/2 do
UNIONC(i,i+1)

Fori=1 to n/2 do
FIND(1)

We want the limit the height of our trees which are
effected by UNIONs. When we union, we can make
the tree with fewer nodes the child.

Since the number of nodes is related to the height,
the height of the final tree will increase only if both
subtrees are of equal height!

Lemma: If Union(t,v) attaches the root of v as a sub-
tree of t iff the number of nodes in t is greater than or
equal to the number in v, after any sequence of unions,
any tree with h/4 nodes has height at most |Igh|.

Proof: By induction on the number of nodes k, k=1
has height 0.

Assume true to kK — 1 nodes. Let d; be the height of
the tree t;

| O

N

T1 T2 d2

di

k1 nodes k2 nodes

k = k1+ k2 nodes

dis the height

If (dl > d2) then d = di S Llog k1J S |_|g(k1 —+ kQ)J
[log k]

If (dl S dg), then kl Z kg.

d=dy+ 1< |logks| +1=|log2ks]| < |log(k1 + k2)]
log k

Can we do better?

We can do unions and finds in O(logn), good enough

for Kruskal’s algorithm. But can we do better?

The ideal Union-Find tree has depth 1:

On a find, if we are going down a path anyway, why

not change the pointers to point to the root?

14

12
5 6 0O8 90 11

This path compression will let us do better than O(nlogn)

for n union-finds.

O(n)? Not quite ...Difficult analysis shows that it
takes O(na(n)) time, where a(n) is the inverse Acker-
man function and a(number of atoms in the universe)=

5.

Describe an efficent algorithm that, given an undi-
rected graph G, determines a spanning tree G whose

largest edge weight is minimum over all spanning trees
of GG.

First, make sure you understand the question

Lower maximum edge weight Lower total weight

“Hey, doesn’t Kruskal’s algorithm do something like
this.”

Certainly! Since Krushal’s algorithm considers the edges
in order of increasing weight, and stops the moment
these edges form a connected graph, the tree it gives
must minimize the edge weight.

“Hey, but then why doesn’t Prim’s algorithm also work?”

It gives the same thing as Kruskal's algorithm, so it
must be true that any minimum spanning tree mini-
mizes the maximum edge weight!

Proof: Give me a MST and consider the largest edge
weight,

Deleting it disconnects the MST. If there was a lower
edge connects the two subtrees, I didn't have a MST!

Shortest Paths

Finding the shortest path between two nodes in a graph
arises in many different applications:

e Transportation problems — finding the cheapest
way to travel between two locations.

e Motion planning — what is the most natural way
for a cartoon character to move about a simulated
environment.

e Communications problems — how look will it take
for a message to get between two places? Which
two locations are furthest apart, ie. what is the
diameter of the network.

Shortest Paths and Sentence
Disambiguation

In our work on reconstructing text typed on an (over-
loaded) telephone keypad, we had to select which of
many possible interpretations was most likely.

INPUT . #4483%63%2+7464%...
v
Blank Recognition

Candidate Construction

Sentence Disambiguating

QUTPUT GIVE ME A RING.

We constructed a graph where the vertices were the
possible words/positions in,the sentence, with an edge
between possible neighboring words.

The weight of each edge is a function of the probability
that these two words will be next to each other in a
sentence. ‘hive me’ would be less than ‘give me’, for
example.

The final system worked extremely well — identifying
over 99% of characters correctly based on grammatical
and statistical constraints.

Dynamic programming (the Viterbi algorithm) can be
used on the sentences to obtain the same results, by
finding the shortest paths in the underlying DAG.

Finding Shortest Paths

In an unweighted graph, the cost of a path is just the
number of edges on the shortest path, which can be
found in O(n 4+ m) time via breadth-first search.

In a weighted graph, the weight of a path between two
vertices is the sum of the weights of the edges on a
path.

BFS will not work on weighted graphs because some-
times visiting more edges can lead to shorter distance,

ie.14+41+4+14+1+4+14+141<10.

Note that there can be an exponential number of short-
est paths between two nodes — so we cannot report all
shortest paths efficiently.

Note that negative cost cycles render the problem of
finding the shortest path meaningless, since you can
always loop around the negative cost cycle more to
reduce the cost of the path.

Thus in our discussions, we will assume that all edge
weights are positive. Other algorithms deal correctly
with negative cost edges.

Minimum spanning trees are uneffected by negative
cost edges.

Dijkstra’s Algorithm

We can use Dijkstra’s algorithm to find the shortest
path between any two vertices s and t in G.

The principle behind Dijkstra’s algorithm is thatifs,...,z,..

is the shortest path from s to ¢, then s,...,x had better
be the shortest path from s to =z.

This suggests a dynamic programming-like strategy,
where we store the distance from s to all nearby nodes,
and use them to find the shortest path to more distant
nodes.

The shortest path from s to s, d(s,s) = 0. If all edge
weights are positive, the smallest edge incident to s,
say (s,z), defines d(s,z).

We can use an array to store the length of the shortest
path to each node. Initialize each to oo to start.

Soon as we establish the shortest path from s to a new
node z, we go through each of its incident edges to see
if there is a better way from s to other nodes thru =.

Lt

known = {s}
for i =1 to n, dist[i] = o0
for each edge (s,v), dist[v] = d(s,v)
last=s
while (last % t)
select v such that dist(v) = Minunknown dist(7)
for each (v, z), dist[z] = min(dist[z], dist[v] + w(v,z))
last=v
known = known U {v}

Complexity — O(n?) if we use adjacency lists and a
Boolean array to mark what is known.

This is essentially the same as Prim's algorithm.

An O(mlgn) implementation of Dijkstra’s algorithm
would be faster for sparse graphs, and comes from us-
ing a heap of the vertices (ordered by distance), and
updating the distance to each vertex (if necessary) in
O(lgn) time for each edge out from freshly known ver-
tices.

Even better, O(nlgn—+m) follows from using Fibonacci
heaps, since they permit one to do a decrease-key op-
eration in O(1) amortized time.

Give two more shortest path trees for the following
graph:

Run through Dijkstra’s algorithm, and see where there
are ties which can be arbitrarily selected.

There are two choices for how to get to the third vertex
x, both of which cost 5.

There are two choices for how to get to vertex v, both
of which cost 9.

All-Pairs Shortest Path

Notice that finding the shortest path between a pair
of vertices (s,t) in worst case requires first finding the
shortest path from s to all other vertices in the graph.

Many applications, such as finding the center or di-
ameter of a graph, require finding the shortest path
between all pairs of vertices.

We can run Dijkstra’s algorithm n times (once from
each possible start vertex) to solve all-pairs shortest
path problem in O(n3). Can we do better?

Improving the complexity is an open question but there
is a super-slick dynamic programming algorithm which
also runs in O(n3).

Dynamic Programming and
Shortest Paths

The four-step approach to dynamic programming is:
1. Characterize the structure of an optimal solution.
2. Recursively define the value of an optimal solution.
3. Compute this recurrence in a bottom-up fashion.

4. Extract the optimal solution from computed infor-
mation.

From the adjacency matrix, we can construct the fol-
lowing matrix:

DIJi, j] = oo, if ¢ 27 and (v;,v;) is not in E
Dl[i, 5] =0, ifi=7

This tells us the shortest path going through no inter-
mediate nodes.

There are several ways to characterize the shortest
path between two nodes in a graph. Note that the
shortest path from : to 5, ¢« # j, using at most M
edges consists of the shortest path from 2 to k& using
at most M — 1 edges+W (k,j) for some k.

This suggests that we can compute all-pair shortest
path with an induction based on the number of edges
in the optimal path.

Let d[z,7]™ be the length of the shortest path from i
to 5 using at most m edges.

What is d[:, §]°?
d[i, j1°

Oifi=1
oo if 1 #£ 3

What if we know d[:, j]™! for all 4,57

dli, 1™ = min(d[i,3]™", min(d[:, k1™ + w(k, 5]1))
min(d[i, k] 4+ wlk,j]),1 < k <

since w[k,k] = 0O

This gives us a recurrence, which we can evaluate in a
bottom up fashion:

fore=1ton
forg=1ton
dfi, j]™ = oo
fork=1ton
d[i, j1°=Min(d[s, k]™, d[i, k]! + d[k, j])

This is an O(n3) algorithm just like matrix multiplica-
tion, but it only goes from m to m + 1 edges.

Since the shortest path between any two nodes must
use at most n edges (unless we have negative cost
cycles), we must repeat that procedure n times (m =1
to n) for an O(n*) algorithm.

We can improve this to O(n3logn) with the observation
that any path using at most 2m edges is the function
of paths using at most m edges each. This is just like
computing a"® = a™? x a™/2. So a logarithmic number
of multiplications suffice for exponentiation.

Although this is slick, observe that even O(n3logn) is
slower than running Dijkstra’s algorithm starting from
each vertex!

The Floyd-Warshall Algorithm

An alternate recurrence yields a more efficient dynamic
programming formulation. Number the vertices from
1 to n.

Let d[i, j]* be the shortest path from i to j using only
vertices from 1,2,...,.k as possible intermediate ver-
tices.

What is d[j,7]°? W.ith no intermediate vertices, any
path consists of at most one edge, so d[i, j]° = w[s, j5].

In general, adding a new vertex k + 1 helps iff a path
goes through it, so

dli,j1* = wli,j]ifk=0
= min(d[i,j]*1,d[s, k)"t + d[k,5]*71) if k> 1

Although this looks similar to the previous recurrence,
it isn’t. The following algorithm implements it:

d° = w
fork=1ton
fore=1ton
forg=1ton
dlz, j1* = min(d[s, j1*71, d[z, k]*~* 4 d[k, j]*~1)

This obviously runs in ©(n3) time, which asymptoti-
cally is no better than a calls to Dijkstra’s algorithm.
However, the loops are so tight and it is so short and
simple that it runs better in practice by a constant
factor.

Give an O(nlg k)-time algorithm which merges k sorted
lists with a total of n elements into one sorted list.
(hint: use a heap to speed up the elementary O(kn)-
time algorithm).

The elementary algorithm compares the heads of each
of the k sorted lists to find the minimum element, puts
this in the sorted list and repeats. The total time is
O(kn).

Suppose instead that we build a heap on the head ele-
ments of each of the k lists, with each element labeled
as to which list it is from. The minimum element can
be found and deleted in O(lg k) time. Further, we can
insert the new head of this list in the heap in O(lg k)
time.

An alternate O(nlg k) approach would be to merge the
lists from as in mergesort, using a binary tree on k
leaves (one for each list).

Combinatorial Search

We have seen how clever algorithms can reduce sorting
from O(n?) to O(nlogn). However, the stakes are even
higher for combinatorially explosive problems:

The Traveling Salesman Problem

Given a weighted graph, find the shortest cycle which
visits each vertex once.

Applications include minimizing plotter movement, printed-
circuit board wiring, transportation problems, etc.

There is no known polynomial time algorithm (ie. O(nF)
for some fixed k) for this problem, so search-based al-
gorithms are the only way to go if you need an optional
solution.

But I want to use a
Supercomputer

Moving to a faster computer can only buy you a rela-
tively small improvement:

e Hardware clock rates on the fastest computers
only improved by a factor of 6 from 1976 to 1989,
from 12ns to 2ns.

e Moving to a machine with 100 processors can only
give you a factor of 100 speedup, even if your
job can be perfectly parallelized (but of course it
can't).

e The fast Fourier algorithm (FFT) reduced compu-
tation from O(n?) to O(nlgn). This is a speedup
of 340 times on n = 4096 and revolutionized the
field of image processing.

e T he fast multipole method for n-particle interac-
tion reduced the computation from O(n?) to O(n).
This is a speedup of 4000 times on n = 4096.

Can Eight Pieces Cover a
Chess Board?

Consider the 8 main pieces in chess (king, queen, two
rooks, two bishops, two knights). Can they be posi-
tioned on a chessboard so every square is threatened?

Only 63 square are threatened in this configuration.
Since 1849, no one had been able to find an arrange-
ment with bishops on different colors to cover all squares.

Of course, this is not an important problem, but we will

use it as an example of how to attack a combinatorial
search problem.

How many positions to test?

Picking a square for each piece gives us the bound:
64!/(64 — 8)! = 178,462,987,637,760 ~ 10%°

Anything much larger than 108 is unreasonable to search
on a modest computer in a modest amount of time.

However, we can exploit symmetry to save work. With
reflections along horizontal, vertical, and diagonal axis,
the queen can go in only 10 non-equivallent positions.

Even better, we can restrict the white bishop to 16
spots and the queen to 16, while being certain that we
get all distinct configurations.

QQQ

16Xx16x32x64%x2080%2080 = 2,268,279,603,200 ~ 102

Backtracking

Backtracking is a systematic way to go through all the
possible configurations of a search space.

In the general case, we assume our solution is a vector
v = (a1,a,...,a,) Where each element a; is selected
from a finite ordered set S;,

We build from a partial solution of length k v = (a1, a>, ..., ax)
and try to extend it by adding another element. After
extending it, we will test whether what we have so far

is still possible as a partial solution.

If it is still a candidate solution, great. If not, we delete
ar and try the next element from S;:

Compute Si, the set of candidate first elements of v.
k=1
While k£ > 0 do
While S;, # 0 do (*advance*)
ar — anh element in S
Sk «— Sk — ag
if (a1,a>,...,a;) is solution, print!
k=k+1
compute S, the candidate kth elements given wv.
k= k — 1 (*backtrack¥*)

Recursive Backtracking

Recursion can be used for elegant and easy implemen-
tation of backtracking.

Backtrack(a, k)
if a is a solution, print(a)
else {
k=k+1
compute S;
while S, # 0 do
ar — anh element in S
Sk — Sk — QL
Backtrack(a, k)

}

Backtracking can easily be used to iterate through all
subsets or permutations of a set.

Backtracking ensures correctness by enumerating all
possibilities.

For backtracking to be efficient, we must prune the
search space.

Constructing all Subsets

How many subsets are there of an n-element set?

To construct all 2™ subsets, set up an array/vector
of n cells, where the value of a; is either true or false,
signifying whether the zth item is or is not in the subset.

To use the notation of the general backtrack algorithm,
Si = (true, false), and v is a solution whenever k > n.

What order will this generate the subsets of {1,2,3}7

(1) »(1,2) - (1,2,3)x —
(1,2,-)x—>(1,-) = (1,—,3)* —
(1,— -)x—(1,-) = (1) —
(=)= (—,2)>(—,2,3)x >
(-2,)xk—>(——)—=>(—,—,3)x =
(= —==)x=>(=-)=>(=)—=0

Constructing all Permutations

How many permutations are there of an n-element set?

To construct all n! permutations, set up an array/vector
of n cells, where the value of a; is an integer from 1
to n which has not appeared thus far in the vector,
corresponding to the zth element of the permutation.

To use the notation of the general backtrack algorithm,

S, =(1,...,n) —v, and v is a solution whenever k > n.
(1) —» (1,2)—>(1,2,3)x—>(1,2) > (1) = (1,3) —
(1,3,2)x —» (1,3)) - (1)—=-0—-(2)—=((2,1) >
(2,1,3)x —» (2,1)—=(2)—=((2,3) > (2,3,1)x—>(2,3) = O
2 - O0O—-0B)—=(3,1)(3,1,2)x > (3,1) »(3) —
(3,2) —- (3,2,1)x—>(3,2) = 3) =0

The n-Queens Problem

The first use of pruning to deal with the combinatorial
explosion was by the king who rewarded the fellow who
discovered chess!

In the eight Queens, we prune whenever one gueen
threatens another.

Covering the Chess Board

In covering the chess board, we prune whenever we
find there is a square which we cannot cover given the
initial configuration!

Specifically, each piece can threaten a certain maxi-
mum number of squares (queen 27, king 8, rook 14,
etc.) Whenever the number of unthreated squares ex-
ceeds the sum of the maximum number of coverage
remaining in unplaced squares, we can prune.

As implemented by a graduate student project, this
backtrack search eliminates 95% of the search space,
when the pieces are ordered by decreasing mobility.

With precomputing the list of possible moves, this pro-
gram could search 1,000 positions per second. But this
is too slow!

10'2/10° = 10° seconds > 1000 days

Although we might further speed the program by an
order of magnitude, we need to prune more nodes!

By using a more clever algorithm, we eventually were
able to prove no solution existed, in less than one day’'s
worth of computing.

You too can fight the combinatorial explosion!

The Backtracking Contest:
Bandwidth

The bandwidth problem takes as input a graph G, with
n vertices and m edges (ie. pairs of vertices). The
goal is to find a permutation of the vertices on the line
which minimizes the maximum length of any edge.

The bandwidth problem has a variety of applications,
including circuit layout, linear algebra, and optimizing
memory usage in hypertext documents.

The problem is NP-complete, meaning that it is ex-
ceedingly unlikely that you will be able to find an algo-
rithm with polynomial worst-case running time. It re-
mains NP-complete even for restricted classes of trees.

Since the goal of the problem is to find a permutation,
a backtracking program which iterates through all the
n! possible permutations and computes the length of
the longest edge for each gives an easy O(n!-m) al-
gorithm. But the goal of this assignment is to find as
practically good an algorithm as possible.

The Backtracking Contest:
Set Cover

The set cover problem takes as input a collection of
subsets S = {S1,...,Sn} of the universalset U = {1,...,n}.
The goal is to find the smallest subset of the subsets

T such that UiﬂlTi =U.

bt

Set cover arises when you try to efficiently acquire or
represent items that have been packaged in a fixed
set of lots. You want to obtain all the items, while
buying as few lots as possible. Finding a cover is easy,
because you can always buy one of each lot. However,
by finding a small set cover you can do the same job
for less money.

Since the goal of the problem is to find a subset, a
backtracking program which iterates through all the
2™ possible subsets and tests whether it represents a
cover gives an easy O(2™ - nm) algorithm. But the
goal of this assignment is to find as practically good
an algorithm as possible.

Rules of the Game

. Everyone must do this assignment separately. Just
this once, you are not allowed to work with your
partner. The idea is to think about the problem
from scratch.

. If you do not completely understand what the prob-
lem is, you don’t have the slightest chance of pro-
ducing a working program. Don’t be afraid to ask

. There will be a variety of different data files of
different sizes. Test on the smaller files first. Do
not be afraid to create your own test files to help
debug your program.

. The data files are available via the course WWW

page.

. You will be graded on how fast and clever your
program is, not on style. No credit will be given
for incorrect programs.

. The programs are to run on the whatever com-
puter you have access to, although it must be
vanilla enough that I can run the program on some-
thing I have access to.

. You are to turn in a listing of your program, along
with a brief description of your algorithm and any

interesting optimizations, sample runs, and the
time it takes on sample data files. Report the
largest test file your program could handle in one
minute or less of wall clock time.

. The top five self-reported times / largest sizes will
be collected and tested by me to determine the
winner.

Producing Efficient Programs

1. Don’t optimize prematurely: Worrying about
recursion vs. iteration is counter-productive until
you have worked out the best way to prune the
tree. That is where the money is.

2. Choose your data structures for a reason: What
operations will you be doing? Is case of inser-
tion/deletion more crucial than fast retrieval?

When in doubt, keep it simple, stupid (KISS).

3. Let the profiler determine where to do final
tuning: Your program is probably spending time
where you don't expect.

x iS majority element of a set S if the number of times
it occurs is > |S|/2. Give an O(n) algorithm to test
whether an unsorted array S of n elements has a ma-
Jority element.

Sorting the list and checking the median element vyields
an O(nlogn) algorithm — correct, but too slow.

Observe that if I delete two occurences of different
elements from the set, I have not changed the majority
element — since n is reduced by two while the count of
the majority element is decreased by at most one.

Thus we can scan the set from left to right, and keep
count of how many times we see the first element be-
fore we see an instance of a second element. We delete
this pair and continue. If we are left with one element
at the end, this is the only candidate for the majority
element.

We must verify that this candidate is in fact a majority
element, but that can be tested by counting in a second
O(n) sweep over the data.

Combinatorial Optimization

In most of the algorithmic problems we study, we seek
to find the best answer as quickly as possible.

Traditional algorithmic methods fail when (1) the prob-
lem is provably hard, or (2) the problem is not clean
enough to lead to a nice formulation.

In most problems, there is a natural way to (1) con-
struct possible solutions and (2) measure how good a
given solution is, but it is not clear how to find the
best solution short of searching all configurations.

Heuristic methods like simulated annealing give us a
general approach to search for good solutions.

Simulated Annealing

The inspiration for simulated annealing comes from
cooling molten materials down to solids. To end up
with the globally lowest energy state you must cool
slowly so things cool evenly.

In thermodynamic theory, the likelihood of a particular
particle jumping to a higher energy state is given by:

e(Ei—E,-)/(kBT)

where E;, E; denote the before/after energy states, kp
is the Boltzman constant, and T is the temperature.

Since minimizing energy is a combinatorial optimiza-
tion problem, we can mimic the physics for computing.

Simulated-Annealing()
Create initial solution S
Initialize temperature ¢
repeat
for : = 1 to iteration-length do
Generate a random transition from S to S;
If (C(S) <C(S;)) then S=5;
else if (e(C($)-C(EN/(kt) > random[0, 1))
then S = S;
Reduce temperature t
until (no change in C(S))
Return S

Components of Simulated
Annealing

There are three components to any simulated anneal-
ing algorithm for combinatorial search:

e Concise problem representation — The problem rep-
resentation includes both a representation of the
solution space and an appropriate and easily com-
putable cost function C(s) measuring the quality
of a given solution.

e Transition mechanism between solutions — To move
from one state to the next, we need a collection of
simple transition mechanisms that slightly modify
the current solution. Typical transition mecha-
nisms include swapping the position of a pair of
items or inserting/deleting a single item.

e Cooling schedule — These parameters govern how
likely we are to accept a bad transition, which
should decrease as a function of time. At the
beginning of the search, we are eager to use ran-
domness to explore the search space widely, so
the probability of accepting a negative transition
is high. The cooling schedule can be regulated by
the following parameters:

— Initial system temperature — Typically t;1 = 1.

— Temperature decrement function — Typically
tr = a-t_1, Where 0.8 < a« < 0.99. This implies

an exponential decay in the temperature, as
opposed to a linear decay.

— Number of iterations between temperature change
— Typically, 100 to 1,000 iterations might be
permitted before lowering the temperature.

— Acceptance criteria — A typical criterion is to
accept any transition from s; to s;+1 when C(s;41) >
C(s;) and to accept a negative transition when-
ever

_ (Cl3i41)=C(s)

e ot >r,
where r is a random number O < r < 1. The
constant ¢ normalizes this cost function, so
that almost all transitions are accepted at the
starting temperature.

— Stop criteria — Typically, when the value of the
current solution has not changed or improved
within the last iteration or so, the search is
terminated and the current solution reported.

We provide several examples to demonstrate how these
components can lead to elegant simulated annealing
algorithms for real combinatorial search problems.

Traveling Salesman Problem

Solution space — set of all (n—1)! circular permutations.

Cost function — sum up the costs of the edges defined
by S.

Transition mechanism — The most obvious transition
mechanism would be to swap the current tour positions
of a random pair of vertices S; and S;. This changes up
to eight edges on the tour, deleting the edges currently
adjacent to both S; and S;, and adding their replace-
ments. Better would be to swap two edges on the tour
with two others that replace it

Since only four edges change in the tour, the transi-
tions can be performed and evaluated faster. Faster
transitions mean that we can evaluate more positions
in the given amount of time.

In practice, problem-specific heuristics for TSP outper-
form simulated annealing, but the simulated annealing
solution works admirably, considering it uses very little
knowledge about the problem.

Maximum Cut

Given a weighted graph, partition the vertices to max-
imize the weight of the edges cut.

'}ng«
‘,«

g
&
p:se:

g

z
X<
D

<A
)¢

Ig‘
%

This NP-complete problem arises in circuit design ap-
plications.

Solution space — set of all 21 vertex partitions, rep-
resented as a bit string.

Cost function — the weight of the edges which are cut.

Transition mechanism — move one vertex across the
partition.

A f = (weight of old neighbors - weight of new neighbors)

This kind of procedure seems to be the right way to
do maxcut in practice.

Independent Set

An independent set of a graph G is a subset of vertices
S such that there is no edge with both endpoints in
S. The maximum independent set of a graph is the
largest such empty induced subgraph.

O O
oTo T T9
Pany Pany Pany
% N% N%
L Pan Pany
© N N
Pany Pany Pany
% N% N%
® Pany Pany
D N% %
Pany Pany Pany
N% N% N%

C—S&—"-b—°0

D

D

Solution space — set of all 2™ vertex subsets, repre-
sented as a bit string.

Cost function — C(S) = |S| — A - mg/T, where X is a
constant, T is the temperature, and mg is the number
of edges in the subgraph induced by S.

The dependence of C(S) on T ensures that the search
will drive the edges out faster as the system cools.

Transition mechanism — move one vertex in/out of the
subset.

More flexibility in the search space and quicker Af
computations result from allowing non-empty graphs
at the early stages of the cooling.

Chromatic Number

What is the smallest number of colors needed to color
vertices such that no edge links two vertices of the
same color?

/

\/

\ /
,'_A!

\/

\/

[
\ /]
A

!A
A

/\
[1\

v

(}

The solution is complicated by the fact that many ver-
tices have to shift (potentially) to reduce the chromatic
number by one.

To insure that the proposed colorings are biased in
favor of low cardinality subsets (i.e. 28 red, 1 blue, and
1 green is better than 10 red, 10, blue, and 10 green),
we will make certain colors more expensive than others.

By weighting the colors w;;1 < 2w; — w1 (ex: 100,
99, 97, 93, 85, 69, 37) we get faster convergence,
although certain configurations might be cheaper than
ones achieving the chromatic number! This can be
enforced with a more complicated scheme.

By Brooks’ Theorem, every graph can be colored with
A + 1 colors. In fact A colors suffice unless G is com-
plete or an odd-cycle.

Solution space — all possible partitions of vertices into
A + 1 color classes, where A is the maximum vertex
degree.

Cost function — ZiA:‘il w;(|Vi| — A|Es|), where A > 1 is
the penalty constant.

Transition mechanism — randomly move one vertex to
another subset.

Circuit Board Placement

In designing printed circuit boards, we are faced with
the problem of positioning modules (typically integrated
circuits) on the board.

Desired criteria in a layout include (1) minimizing the
area or aspect ratio of the board, so that it properly fits
within the allotted space, and (2) minimizing the total
or longest wire length in connecting the components.

Circuit board placement is an example of the kind of
messy, multicriterion optimization problems for which
simulated annealing is ideally suited.

We are given a collection of a rectangular modules
r1,...,7,, €ach with associated dimensions h; x I;. For
each pair of modules r;,r;, we are given the number
of wires w;; that must connect the two modules. We
seek a placement of the rectangles that minimizes area
and wire-length, subject to the constraint that no two
rectangles overlap each other.

Solution space — The positions of each rectangle. To
provide a discrete representation, the rectangles can be
restricted to lie on vertices of an integer grid.

Cost function — A natural cost function would be

C(S) — Aarea(sheight'swidth)+z Z(Awire'wij'dij+>\overlap(riﬂrj))
i=1 j=1

where Agrea, Awire, @aNd Agueriqp @re constants governing

the impact of these components on the cost function.

Transition mechanism — moving one rectangle to a dif-
ferent location, or swapping the position of two rect-
angles.

essons from the Backtracking
contest

e As predicted, the speed difference between the
fastest programs and average program dwarfed the
difference between a supercomputer and a micro-
computer. Algorithms have a bigger impact on
performance than hardware!

e Different algorithms perform differently on differ-
ent data. Thus even hard problems may be tractable
on the kind of data you might be interested in.

e None of the programs could efficiently handle all
instances for n ~ 30. We will find out why after
the midterm, when we discuss NP-completeness.

e Many of the fastest programs were very short and
simple (KISS). My bet is that many of the en-
hancements students built into them actually showed
them down! This is where profiling can come in
handy.

e T he fast programs were often recursive.

Winning Optimizations

Finding a good initial solution via randomization
or heuristic improvement helped by establishing a
good upper bound, to constrict search.

Using half the largest vertex degree as a lower
bound similarly constricted search.

Pruning a partial permutation the instant an edge
was > the target made the difference in going from
(say) 8 to 18.

Positioning the partial permutation vertices sepa-
rated by b instead of 1 meant significantly earlier
cutoffs, since any edge does the job.

Mirror symmetry can only save a factor of 2, but
perhaps more could follow from partitioning the
vertices into equivalence classes by the same neigh-
borhood.

Among n people, a celebrity is defined as someone who
is known by everyone but does not know anyone. We
seek to identify the celebrity (if one is present) by ask-
ing questions of the form “Hey, z, do you know person
y?”. Show how to find the celebrity using O(n) ques-
tions.

Note that there are n? possible questions to ask, so we
cannot ask them all.

What if we ask 1 if she knows 2, and 2 if she knows
17 If both know each other neither can be a celebrity.
If neither know each other, neither can be a celebrity.
If one of them knows the other, the former cannot be
a celebrity.

Thus in two questions we can eliminate at least one
person from celebrity status. Thus in 2(n — 1) ques-
tions, we have only one possible celebrity. It is now pos-
sible to check whether the survivor is really a celebrity
using n — 1 additional queries, by checking whether ev-
eryone else knows them.

An Eulerian cycle in a graph visits each edge exactly
once. A graph contains an Eulerian cycle iff it is con-
nected and the degree of each vertex is even. Give
an O(|E|) algorithm to find an Eulerian cycle if one
exists.

Observe that an cycle of edges defines a graph where
each vertex is of degree 2. Thus deleting a cycle from
an Eulerian graph leaves each vertex with even degree,
although the graph may not be connected.

We can use depth-first search to decompose the edges
of a graph into cycles. If the graph was connected,
these cycles must link together. Splicing them to-
gether gives an Eulerian cycle. For example, the cycle
(1,2,3,1) and (4,5,6,1,4) can be spliced together as
(4,5,6,1,2,3,1,4).

Although Eulerian cycle has an efficient algorithm, the
Hamiltonian cycle problem (visit each vertex exactly
once) is NP-complete.

The Theory of
NP-Completeness

Several times this semester we have encountered prob-
lems for which we couldn’t find efficient algorithms,
such as the traveling salesman problem. We also couldn’t
prove an exponential time lower bound for the problem.

By the early 1970s, literally hundreds of problems were
stuck in this limbo. The theory of NP-Compleness,
developed by Stephen Cook and Richard Karp, provided
the tools to show that all of these problems were really
the same problem.

Polynomial vs. Exponential

Time
n f(n)=mn | f(n)=n°| f(n)=2" f(n) =mn!
10 0.01 ps 0.1 ps 1 us 3.63 ms
20 0.02 us 0.4 pus 1 ms 77.1 years
30 0.03 us 0.9 us 1 sec 8.4 x 1015 years
40 0.04 pus 1.6 us 18.3 min
50 0.05 us 2.5 ps 13 days
100 0.1 us 10 us 4 x 1013 years
1,000 1.00 us 1 ms

The Main Idea

Suppose I gave you the following algorithm to solve the
bandersnatch problem:

Bandersnatch(G)
Convert G to an instance of the Bo-billy problem Y.
Call the subroutine Bo-billy on Y to solve this instance.
Return the answer of Bo-billy(Y) as the answer to G.

Such a translation from instances of one type of prob-
lem to instances of another type such that answers are
preserved is called a reduction.

Now suppose my reduction translates Gto Y in O(P(n)):

1. If my Bo-billy subroutine ran in O(P'(n)) I can
solve the Bandersnatch problem in O(P(n)+P'(n))

2. If I know that Q(P'(n)) is a lower-bound to com-
pute Bandersnatch, then Q(P'(n) — P(n)) must be
a lower-bound to compute Bo-billy.

The second argument is the idea we use to prove prob-
lems hard!

Convex Hull and Sorting

A nice example of a reduction goes from sorting num-
bers to the convex hull problem:

We must translate each number to a point. We can
map z to (z, z2).

5 11 13 17

Why? That means each integer is mapped to a point
on the parabola y = z?.

Since this parabola is convex, every point is on the
convex hull. Further since neighboring points on the
convex hull have neighboring = values, the convex hull
returns the points sorted by z-coordinate, ie. the orig-
inal numbers.

Sort(S)
For each i € S, create point (i,:2).
Call subroutine convex-hull on this point set.
From the leftmost point in the hull,
read off the points from left to right.

Creating and reading off the points takes O(n) time.

What does this mean? Recall the sorting lower bound
of Q(nlgn). If we could do convex hull in better than
nlgn, we could sort faster than Q(nlgn) — which vio-
lates our lower bound.

Thus convex hull must take Q(nlgn) as well!!!

Observe that any O(nlgn) convex hull algorithm also
gives us a complicated but correct O(nlgn) sorting
algorithm as well.

What is a problem?

A problem is a general question, with parameters for
the input and conditions on what is a satisfactory an-
swer or solution.

An instance is a problem with the input parameters
specified.

Example: The Traveling Salesman

Problem: Given a weighted graph G, what tour {v1,v2,...,v,}
minimizes Zfz_ll d[vi,viy1] + d[vn, v1].

Instance: d[vi,d2] = 10, d[vi,d3] = 5, d[vi,d4] = 9,
d[vo, d3] = 6, d[va,ds] = 9, d[vs,ds] = 3

10

Solution: {vi1,vs,v3,v4} cost= 27

A problem with answers restricted to yes and no is
called a decision problem. Most interesting optimiza-
tion problems can be phrased as decision problems
which capture the essence of the computation.

Example: The Traveling Salesman Decision Problem.

Given a weighted graph G and integer k, does there
exist a traveling salesman tour with cost < k7

Using binary search and the decision version of the
problem we can find the optimal TSP solution.

For convenience, from now on we will talk only about
decision problems.

Note that there are many possible ways to encode the
input graph: adjacency matrices, edge lists, etc. All
reasonable encodings will be within polynomial size of
each other.

The fact that we can ignore minor differences in en-
coding is important. We are concerned with the dif-
ference between algorithms which are polynomial and
exponential in the size of the input.

Satisfiability

Consider the following logic problem:

Instance: A set V of variables and a set of clauses C
over V.

Question: Does there exist a satisfying truth assign-
ment for C7

Example 1: V = wvi,v2 and C = {{v1,v2}, {v1,v2}}

A clause is satisfied when at least one literal in it is
TRUE. C is satisfied when v1 = v, =TRUE.

Example 2. V = v, vo,
C = {{v1,v2}, {v1,v2}, {v1}}

Although you try, and you try, and you try and you try,
you can get no satisfaction.

There is no satisfying assigment since v1 must be FALSE
(third clause), so v must be FALSE (second clause),
but then the first clause is unsatisfiable!

For various reasons, it is known that satisfiability is a
hard problem. Every top-notch algorithm expert in the
world (and countless other, lesser lights) have tried
to come up with a fast algorithm to test whether a
given set of clauses is satisfiable, but all have failed.
Further, many strange and impossible-to-believe things
have been shown to be true if someone in fact did find
a fast satisfiability algorithm.

Clearly, Satisfiability is in NP, since we can guess an
assignment of TRUE, FALSE to the literals and check
it in polynomial time.

P versus NP

The precise distinction between whether a problem is
in P or NP is somewhat technical, requiring formal lan-
guage theory and Turing machines to state correctly.

However, intuitively a problem is in P, (ie. polynomial)
if it can be solved in time polynomial in the size of the
input.

A problem is in NP if, given the answer, it is possible to
verify that the answer is correct within time polynomial
in the size of the input.

Example P — Is there a path from s to t in G of length
less than k.

Example NP — Is there a TSP tour in G of length less
than k. Given the tour, it is easy to add up the costs
and convince me it is correct.

Example not NP — How many TSP tours are there
in G of length less than k. Since there can be an
exponential number of them, we cannot count them
all in polynomial time.

Don't let this issue confuse you — the important idea
here is of reductions as a way of proving hardness.

3-Satisfiability

Instance: A collection of clause C where each clause
contains exactly 3 literals, boolean variable v.

Question: Is there a truth assignment to v so that each
clause is satisfied?

Note that this is a more restricted problem than SAT. If
3-SAT is NP-complete, it implies SAT is NP-complete
but not visa-versa, perhaps long clauses are what makes
SAT difficult?!

After all, 1-Sat is triviall
Theorem: 3-SAT is NP-Complete

Proof: 3-SAT is NP — given an assignment, just check
that each clause is covered. To prove it is complete,
a reduction from Sat «x 3 — Sat must be provided. We
will transform each clause independantly based on its
length.

Suppose the clause C; contains k literals.

e If k =1, meaning C; = {z1}, create two new vari-
ables v1,v, and four new 3-literal clauses:
{v1,v2, 21}, {v1,92,21}, {v1,v2,21}, {1,702, 21}.

Note that the only way all four of these can be
satisfied is if z is TRUE.

e If Kk =2, meaning {z1, 22}, create one new variable
v1 and two new clauses: {vi, 21,22}, {v1, 21, 22}

e If k = 3, meaning {z1, 22, 23}, copy into the 3-SAT
instance as it is.

e If £k > 3, meaning {z1,22,...,2,}, Create n — 3 new
variables and n—2 new clauses in a chain: {v;, z;,v;},

If none of the original variables in a clause are TRUE,
there is no way to satisfy all of them using the addi-
tional variable:

(F,F,T),(F,F,T),...,(F,F,F)

But if any literal is TRUE, we have n — 3 free variables
and n—3 remaining 3-clauses, so we can satisfy each of
them (F)F)T))(F)F)T))°")(F)T)F))‘°‘)(T)F)F))(T)F)F)

Since any SAT solution will also satisfy the 3-SAT in-
stance and any 3-SAT solution sets variables giving a
SAT solution — the problems are equivallent. If there
were n clauses and m total literals in the SAT instance,
this transform takes O(m) time, so SAT and 3-SAT.

Note that a slight modification to this construction
would prove 4-SAT, or 5-SAT,... also NP-complete.
However, it breaks down when we try to use it for 2-
SAT, since there is no way to stuff anything into the
chain of clauses. It turns out that resolution gives a
polynomial time algorithm for 2-SAT.

Having at least 3-literals per clause is what makes the
problem difficult. Now that we have shown 3-SAT

is NP-complete, we may use it for further reductions.
Since the set of 3-SAT instances is smaller and more
regular than the SAT instances, it will be easier to use
3-SAT for future reductions. Remember the direction

to reduction!

Sat x 3 — Sat x X

A Perpetual Point of Confusion

Note carefully the direction of the reduction.

We must transform every instance of a known NP-
complete problem to an instance of the problem we
are interested in. If we do the reduction the other way,
all we get is a slow way to solve z, by using a subroutine
which probably will take exponential time.

This always is confusing at first - it seems bass-ackwards.
Make sure you understand the direction of reduction
now - and think back to this when you get confused.

Integer Programming

Instance: A set v of integer variables, a set of inequal-
ities over these variables, a function f(v) to maximize,
and integer B.

Question: Does there exist an assignment of integers
to v such that all inequalities are true and f(v) > B?

Example:
U1 2 1) U2 2 0
vi +1v2<3
f(v) :2v, B =3
A solution to thisis v1 = 1, vo = 2.
Example:
U1 2 1) U2 2 0
vi +1v2<3
f(v) :2va, B =5

Since the maximum value of f(v) given the constraints
iIs 2 x 2 =4, there is no solution.

Theorem: Integer Programming is NP-Hard
Proof: By reduction from Satisfiability

Any set instance has boolean variables and clauses.
Our Integer programming problem will have twice as
many variables as the SAT instance, one for each vari-
able and its compliment, as well as the following in-
equalities:

For each variable v; in the set problem, we will add the
following constraints:

e 1<V;<0and 1<V;<0

Both IP variables are restricted to values of O or 1,
which makes them equivalent to boolean variables
restricted to true/false.

e 1<V, +V;<1

Exactly one of the IP variables associated with a
given sat variable is 1. This means that exactly
one of V; and V; are true!

e for each clause C; = {v1,v2,v3...v,} in the sat
instance, construct a constraint:

v1—|—62—|—63—|—...anl

Thus at least one IP variable must be one in each
clause! Thus satisfying the constraint is equivalent
to satisfying the clausel!

Our maximization function and bound are relatively
unimportant: f(v) =Vi B = 0.

Clearly this reduction can be done in polynomial time.

We must show:

1. Any SAT solution gives a solution to the IP prob-
lem.

In any SAT solution, a TRUE literal corresponds to
alin thelP, since if the expression is SATISFIED,
at least one literal per clause in TRUE, so the sum
in the inequality is > 1.

2. Any IP solution gives a SAT solution.

Given a solution to this IP instance, all variables
will be 0 or 1. Set the literals correspondly to 1
variable TRUE and the 0 to FALSE. No boolean
variable and its complement will both be true, so
it is a legal assignment with also must satisfy the
clauses.

Neat, sweet, and NP-completel

hings to Notice

. The reduction preserved the structure of the prob-
lem. Note that the reduction did not solve the
problem — it just put it in a different format.

. The possible IP instances which result are a small
subset of the possible IP instances, but since some
of them are hard, the problem in general must be
hard.

. The transformation captures the essence of why IP
is hard - it has nothing to do with big coefficients
or big ranges on variables; for restricting to 0/1
is enough. A careful study of what properties we
do need for our reduction tells us a lot about the
problem.

. It is not obvious that IP < NP, since the numbers
assigned to the variables may be too large to write
in polynomial time - don’'t be too hasty!

Give a polynomial-time algorithm to satisfy Boolean
formulas in disjunctive normal form.

Satisfying one clause in DFS satisfied the whole for-
mula. One clause can always be satisfied iff it does
not contain both a variable and its complement.

Why not use this reduction to give a polynomial-time
algorithm for 3-SAT? The DNF formula can become
exponentially large and hence the reduction cannot be
done in polynomial time.

Given an integer m X n matrix A, and in integer m-
vector b, the 0-1 integer programming problem asks
whether there is an integer n-vector x with elements in
the set (0,1) such that Ax <b. Prove that 0-1 integer
programming is NP-hard (hint: reduce from 3-SAT).

This is really the exact same problem as the previous
integer programming problem, slightly concealed by:

e T he linear algebra notation — each row is one con-
straint.

e All inequalities are < — multiply both sides by -1
to reverse the constraint from > to < if necessary.

Vertex Cover
Instance: A graph G = (V,E), and integer k<V

Question: Is there a subset of at most k vertices such
that every e € E has at least one vertex in the subset?

?/ ®

Here, four of the eight vertices are enough to cover. It
is trivial to find a vertex cover of a graph — just take all
the vertices. The tricky part is to cover with as small
a set as possible.

Theorem: Vertex cover is NP-complete.

Proof: VCin in NP — guess a subset of vertices, count
them, and show that each edge is covered.

To prove completeness, we show 3-SAT and VC. From
a 3-SAT instance with n variables and C clauses, we
construct a graph with 2N 4 3C vertices.

For each variable, we create two vertices connected by
an edge:

To cover each of these edges, at least n vertices must
be in the cover, one for each pair. For each clause, we
create three new vertices, one for each literal in each
clause. Connect these in a triangle.

At least two vertices per triangle must be in the cover
to take care of edges in the triangle, for a total of at
least 2C vertices.

Finally, we will connect each literal in the flat structure
to the corresponding vertices in the triangles which
share the same literal.

vl

vl v2 V2 v3 “v3 v4 v4
vl V4 vl V4

Claim: This graph will have a vertex cover of size N +
2C if and only if the expression is satisfiable.

By the earlier analysis, any cover must have at least
N+ 2C vertices. To show that our reduction is correct,
we must show that:

1. Every satisfying truth assignment gives a cover.

Select the N vertices cooresponding to the TRUE
literals to be in the cover. Since it is a satisfying
truth assignment, at least one of the three cross
edges associated with each clause must already be
covered - pick the other two vertices to complete
the cover.

2. Every vertex cover gives a satisfying truth assign-
ment.

Every vertex cover must contain n first stage ver-
tices and 2C second stage vertices. Let the first
stage vertices define the truth assignment.

To give the cover, at least one cross-edge must
be covered, so the truth assignment satisfies.

For a cover to have N4 2C vertices, all the cross edges
must be incident on a selected vertex.

Let the N selected vertices from the first stage coore-
spond to TRUE literals. If there is a satisfying truth
assignment, that means at least one of the three cross
edges from each triangle is incident on a TRUE vertex.

By adding the other two vertices to the cover, we cover
all edges associated with the clause.

Every SAT defines a cover and Every Cover Truth val-
ues for the SAT!

Example: Vi = Vo = True, V3 = V4 = Flalse.

vi vi v2 v2 v3 “v3 v4 V4

vl v4 vl v4

Starting from the Right
Problem

As you can see, the reductions can be very clever
and very complicated. While theoretically any N P-
complete problem can be reduced to any other one,
choosing the correct one makes finding a reduction
much easier.

3—SatxVC

As you can see, the reductions can be very clever
and complicated. While theoretically any NP-complete
problem will do, choosing the correct one can make it
much easier.

Maximum Clique

Instance: A graph G = (V, E) and integer j <w.

Question: Does the graph contain a cligue of 5 vertices,
ie. is there a subset of v of size 3 such that every pair
of vertices in the subset defines an edge of G7

Example: this graph contains a clique of size 5.

When talking about graph problems, it is most natural
to work from a graph problem - the only NP-complete
one we have is vertex cover!

Theorem: Clique is NP-complete

Proof: If you take a graph and find its vertex cover, the
remaining vertices form an independent set, meaning
there are no edges between any two vertices in the
independent set, for if there were such an edge the
rest of the vertices could not be a vertex cover.

NV

Y \VA

D vertex incover

@® etexin Independant
set

Clearly the smallest vertex cover gives the biggest in-
dependent set, and so the problems are equivallent —
Delete the subset of vertices in one from the total set
of vertices to get the order!

Thus finding the maximum independent set must be
NP-complete!

In an independent set, there are no edges between two
vertices. In a clique, there are always between two
vertices. Thus if we complement a graph (have an
edge iff there was no edge in the original graph), a
clique becomes an independent set and an independent
set becomes a Cliquel

- 7
°
Max Clique=5 Max Clique=2
Max IS=2 Max1S=5

Thus finding the largest cligue is NP-complete:

If VC is a vertex cover in G, then V — VC is a clique
in G'. If C is a clique in G, V — C is a vertex cover in
G'.

Integer Partition (Subset Sum)

Instance: A set of integers S and a target integer t.

Problem: Is there a subset of S which adds up exactly
to t7?

Example: S = {1,4,16,64,256,1040,1041,1093,1284, 1344}

and T = 3754
Answer: 1+ 16+ 64+ 256+ 1040 4+ 1093+ 1284 =T

Observe that integer partition is a number problem, as
opposed to the graph and logic problems we have seen
to date.

Theorem: Integer Partition is NP-complete.

Proof: First, we note that integer partition is in NP.
Guess a subset of the input number and simply add
them up.

To prove completeness, we show that vertex cover «
integer partition. We use a data structure called an
incidence matrix to represent the graph G.

4 e3 e el €0 (0)
vo|l 0 1 1 1 1 €0 €3

vif, 0 1 0 0 © (3 ()
v2l 1 0 1 0 0 el e2

v3f 1 0 0 1 0

vl 0 0 0 0 1 — 2

How many 1's are there in each column? Exactly two.

How many 1's in a particular row? Depends on the
vertex degree.

The reduction from vertex cover will create n+m num-
bers from G.

The numbers from the vertices will be a base-4 real-
ization of rows from the incidence matrix, plus a high
order digit:

z; = 418l + SPC b0, 5] x 49
ie. Vo = 10100 becomes 4° + (4% 4 42).

The numbers from the edges will be y; = 47,

The target integer will be

|E|-1

t =k x 4Bl 4 22x4j

7=0

Why? Each column (digit) represents an edge. We
want a subset of vertices which covers each edge. We
can only use k x vertex/numbers, because of the high
order digit of the target.

zo = 100101 = 1041 =z, = 111000 = 1344 y; =
000010 =4

We might get only one instance of each edge in a cover
- but we are free to take extra edge/numbers to grab
an extra 1 per column.

VC in G — Integer Partition in S

Given k vertices covering G, pick the k£ cooresponding
vertex/numbers. Each edge in G is incident on one
or two cover vertices. If it is one, includes the coore-
sponding edge/number to give two per column.

Integer Partitionin S — VC in G

Any solution to S must contain exactly k vertex/numbers.
Why? It cannot be more because the target in that
digit is k and it cannot be less because, with at most 3
1’s per edge/digit-column, no sum of these can carry
over into the next column. (This is why base-4 number
were chosen).

This subset of k£ vertex/numbers must contain at least
one edge-list per column, since if not there is no way
to account for the two in each column of the target
integer, given that we can pick up at most one edge-
list using the edge number. (Again, the prevention of
carrys across digits prevents any other possibilites).

Neat, sweet, and NP-completel

Notice that this reduction could not be performed in
polynomial time if the number were written in unary
5=11111. Big numbers is what makes integer parti-
tion hard!

Prove that subgraph isomorphism is NP-complete.

1. Guessing a subgraph of G and proving it is isomor-
phism to h takes O(n?) time, so it is in NP.

2. Clique and subgraph isomorphism. We must trans-
form all instances of clique into some instances of
subgraph isomorphism. Clique is a special case of
subgraph isomorphism!

Thus the following reduction suffices. Let G = G’
and H = K, the complete subgraph on k nodes.

Other NP-complete Problems

e Partition - can you partition n integers into two
subsets so that the sums of the subset are equal?

e Bin Packing - how many bins of a given size do
you need to hold n items of variable size?

e Chromatic Number - how many colors do you need
to color a graph?

e N X N checkers - does black have a forced win
from a given position?

e Scheduling, Code Optimization, Permanent Eval-
uation, Quadratic Programming, etc.

Open: Graph Isomorphism, Composite Number, Mini-
mum Length Triangulation.

Polynomial or Exponential?

Just changing a problem a little can make the difference
between it being in P or NP-complete:

P N P-complete
Shortest Path Longest Path
Eulerian Circuit | Hamiltonian Circuit
Edge Cover Vertex Cover

The first thing you should do when you suspect a prob-
lem might be NP-complete is look in Garey and John-
son, Computers and Intractability. It contains a list of
several hundred problems known to be NP-complete.
Either what you are looking for will be there or you
might find a closely related problem to use in a reduc-
tion.

Techniques for Proving
N P-completeness

1. Restriction - Show that a special case of the prob-
lem you are interested in is NP-complete. For
example, the problem of finding a path of length
k is really Hamiltonian Path.

2. Local Replacement - Make local changes to the
structure. An example is the reduction SAT «
3—SAT. Another example is showing isomorphism
is no easier for bipartite graphs:

For any graph, replacing an edge with makes it

bipartite.

3. Component Design - These are the ugly, elaborate
constructions

The Art of Proving Hardness

Proving that problems are hard is an skill. Once you
get the hang of it, it is surprisingly straightforward and
pleasurable to do. Indeed, the dirty little secret of NP-
completeness proofs is that they are usually easier to
recreate than explain, in the same way that it is usually
easier to rewrite old code than the try to understand
it.

I offer the following advice to those needing to prove
the hardness of a given problem:

e Make your source problem as simple (i.e. restricted)
as possible.

Never use the general traveling salesman problem
(TSP) as a target problem. Instead, use TSP
on instances restricted to the triangle inequality.
Better, use Hamiltonian cycle, i.e. where all the
weights are 1 or co. Even better, use Hamiltonian
path instead of cycle. Best of all, use Hamilto-
nian path on directed, planar graphs where each
vertex has total degree 3. All of these problems
are equally hard, and the more you can restrict
the problem you are reducing, the less work your
reduction has to do.

e Make your target problem as hard as possible.

Don’t be afraid to add extra constraints or free-
doms in order to make your problem more general
(at least temporarily).

e Select the right source problem for the right rea-
son.

Selecting the right source problem makes a big
difference is how difficult it is to prove a problem
hard. This is the first and easiest place to go
wrong.

I usually consider four and only four problems as
candidates for my hard source problem. Limiting
them to four means that I know a lot about these
problems — which variants of these problems are
hard and which are soft. My favorites are:

— 3-Sat — that old reliable. .. When none of the
three problems below seem appropriate, I go
back to the source.

— Integer partition — the one and only choice for
problems whose hardness seems to require us-
ing large numbers.

— Vertex cover — for any graph problems whose
hardness depends upon selection. Chromatic
number, clique, and independent set all involve
trying to select the correct subset of vertices
or edges.

— Hamiltonian path — for any graph problems
whose hardness depends upon ordering. If you
are trying to route or schedule something, this
is likely your lever.

o Amplify the penalties for making the undesired
transition.

You are trying to translate one problem into an-
other, while making them stay the same as much
as possible. The easiest way to do this is to be
bold with your penalties, to punish anyone trying
to deviate from your proposed solution. “If you
pick this, then you have to pick up this huge set
which dooms you to lose.” The sharper the con-
sequences for doing what is undesired, the easier
it is to prove if and only if.

e Think strategically at a high level, then build gad-
gets to enforce tactics.

You should be asking these kinds of questions.
“How can I force that either A or B but not both
are chosen?’ “How can I force that A is taken
before B?" “How can I clean up the things I did
not select?”

e Alternate between looking for an algorithm or a
reduction if you get stuck.

Sometimes the reason you cannot prove hardness
is that there is an efficient algorithm to solve your
problem! When you can’t prove hardness, it likely
pays to change your thinking at least for a little
while to keep you honest.

Now watch me try itl!

To demonstrate how one goes about proving a problem
hard, I accept the challenge of showing how a proof can
be built on the fly.

I need a volunteer to pick a random problem from the
4004+ hard problems in the back of Garey and John-
son.

Hamiltonian Cycle
Instance: A graph G

Question: Does the graph contains a HC, i.e. an or-
dered of the vertices {vi,vo,...,v,}7

This problem is intimately relates to the Traveling Sales-
man.

Question: Is there an ordering of the vertices of a
weighted graph such that w(vi,v,) + > w(v;,viq1) < k?

Clearly, HC o« TSP. Assigh each edge in G weight
1, any edge not in G weight 2. This new graph has
a Traveling Salesman tour of cost n iff the graph is
Hamiltonian. Thus TSP is NP-complete if we can
show HC is NP-complete.

Theorem: Hamiltonian Circuit is NP-complete

Proof: Clearly HC is in NP-guess a permutation and
check it out. To show it is complete, we use vertex
cover. A vertex cover instance consists of a graph
and a constant k, the minimum size of an acceptable
cover. We must construct another graph. Each edge
in the initial graph will be represented by the following
component:

u6 \Y/5)

All further connections to this gadget will be through
vertices v1, ve, u1 and ug. T he key observation about
this gadget is that there are only three ways to traverse
all the vertices:

®
e ®
AN Ve
AN /
N 4
N7
X
e < 0
4 AN
7 AN

Note that in each case, we exit out the same side we
entered. Each side of each edge gadget is associated
with a vertex. Assuming some arbitrary order to the

edges incident on a particular vertex, we can link suc-
cessive gadgets by edges forming a chain of gadgets.
Doing this for all vertices in the original graph creates
n intertwined chains with n entry points and n exits.

vl
v2 v3

V2 V3

v4

vl
vk

v4

Thus we have encoded the information about the initial
graph. What about &7 We set up k£ additional vertices
and connect each of these to the n start points and n
end points of each chain.

Total size of new graph: GE + K vertices and 12F +
2kN 4+ 2F edges — construction is polynomial in size
and time.

We claim this graph has a HC iff G has a VC of size
k.

1. Suppose {v1,v2,...,v,} is a HC.

Assume it starts at one of the k selector vertices. It
must then go through one of the chains of gadgets
until it reaches a different selector vertex.

Since the tour is a HC, all gadgets are traversed.
The k chains correspond to the vertices in the
cover.

Note that if both vertices associated with an edge
are in the cover, the gadget will be traversal in two
pieces - otherwise one chain suffices.

To avoid visiting a vertex more than once, each
chain is associated with a selector vertex.

2. Now suppose we have a vertex cover of size < k.

We can always add more vertices to the cover to
bring it up to size k.

For each vertex in the cover, start traversing the
chain. At each entry point to a gadget, check if
the other vertex is in the cover and traverse the
gadget accordingly.

Select the selector edges to complete the circuit.

Neat, sweet, and NP-complete.

To show that Longest Path or Hamiltonian Path is NP-
complete, add start and stop vertices and distinguish
the first and last selector vertices.

Start
® k-1
® dlector
: vertices
Stop

This has a Hamiltonian path from start to stop iff the
original graph has a vertex cover of size k.

Give an efficient greedy algorithm that finds an optimal
vertex cover of a tree in linear time.

In a vertex cover we need to have at least one vertex
for each edge.

Every tree has at least two leaves, meaning that there
is always an edge which is adjacent to a leaf. Which
vertex can we never go wrong picking? The non-leaf,
since it is the only one which can also cover other
edges!

After trimming off the covered edges, we have a smaller
tree. We can repeat the process until the tree as 0 or
1 edges. When the tree consists only of an isolated
edge, pick either vertex.

All leaves can be identified and trimmed in O(n) time
during a DFS.

Dealing with N P-complete
Problems

Option 1: Algorithm fast in the
Average case

Examples are Branch-and-bound for the Traveling Sales-
man Problem, backtracking algorithms, etc.

Option 2: Heuristics

Heuristics are rules of thumb; fast methods to find a
solution with no requirement that it be the best one.

Note that the theory of NP-completeness does not
stipulate that it is hard to get close to the answer,
only that it is hard to get the optimal answer.

Often, we can prove performance bounds on heuristics,
that the resulting answer is within C times that of the
optimal one.

Approximating Vertex Cover

As we have seen, finding the minimum vertex cover is
NP-complete. However, a very simple strategy (heuris-
tic) can get us a cover at most twice that of the opti-
mal.

While the graph has edges
pick an arbitrary edge v, u
add both » and v to the cover
delete all edges incident on either uw and v

If the graph is represented by an adjacency list this can
be implemented in O(m + n) time.

This heuristic must always produce cover, since an
edge is only deleted when it is adjacent to a cover
vertex.

Further, any cover uses at least half as many vertices
as the greedy cover.

"N
.

Why? Delete all edges from the graph except the edges
we selected.

No two of these edges share a vertex. Therefore, any
cover of just these edges must include one vertex per
edge, or half the greedy cover!

Things to Notice

e Although the heuristic is simple, it is not stupid.
Many other seemingly smarter ones can give a far
worse performance in the worst case.

Example: Pick one of the two vertices instead of
both (after all, the middle edge is already covered)
The optimal cover is one vertex, the greedy heuris-
tic is two vertices, while the new/bad heuristic can
be as bad as n — 1.

e Proving a lower bound on the optimal solution is
the key to getting an approximation result.

e Making a heuristic more complicated does not nec-
essarily make it better. It just makes it more dif-
ficult to analyze.

e A post-processing clean-up step (delete any un-
ecessessary vertex) can only improve things in prac-
tice, but might not help the bound.

The Euclidean Traveling
Salesman

In the traditional version of TSP - a salesman wants
to plan a drive to visit all his customers exactly once
and get back home.

Euclidean geometry satisfies the triangle inequality, d(u, w) <

d(u,v) + d(v,w).

TSP remains hard even when the distances are Eu-
clidean distances in the plane.

\Y

Note that the cost of airfares is an example of a dis-
tance function which violates the triangle inequality.

However, we can approximate the optimal Euclidean
TSP tour using minimum spanning trees.

Claim: the cost of a MST is a lower bound on the
cost of a TSP tour.

Why? Deleting any edge from a TSP tour leaves a
path, which is a tree of weight at least that of the
MST! If we were allowed to visit cities more than
once, doing a depth-first traversal of a MST, and then

walking out the tour specified is at most twice the cost
of MST. Why? We will be using each edge exactly
twice.

Every edge is used exactly twice in the DFS tour: 1.
However, how can we avoid revisiting cities?

We can take a shortest path to the next unvisited ver-
tex. The improved touris1 -2—-3—-5—-8—-9—-6—
4 -7 —10—- 11 — 1. Because we replaced a chain of
edges by the edge, the triangle inequality ensures the
tour only gets shorter. Thus this is still within twice

optimall

Finding the Optimal Spouse

. There are up to n possible candidates we will see
over our lifetime, one at a time.

. We seek to maximize our probability of getting the
single best possible spouse.

. Our assessment of each candidate is relative to
what we have seen before.

. We must decided either to marry or reject each
candidate as we see them. There is no going back
once we reject someone.

. Each candidate is ranked from 1 to n, and all per-
mutations are equally likely.

For example, if the input permutation is
(4)2)3)5)6) 1)

we see (3,1,2) after three candidates.

Picking the first or last candidate gives us a probability
of 1/n of getting the best.

Since we seek maximize our chances of getting the
best, it never pays to pick someone who is not the
best we have seen.

The optimal strategy is clearly to sample some fraction
of the candidates, then pick the first one who is better
than the best we have seen.

But what is the fraction?

For a given fraction 1/f, what is the probability of
finding the best?

Suppose 7+ 1 is the highest ranked person in the first
n/f candidates. We win whenever the best candidate
occurs before any number from 2 to i in the last n(1 —

1/f)/f candidates.
There is a 1/7 probability of that, so,

_=da-b

1
=1

In fact, the optimal is obtained by sampling the first
n/e candidates.

Does this really work? Well, it did for mel

