

Instructor: Sael Lee

CS549 Spring – Computational Biology

LECTURE 11: BIOMARKER DISCOVERY

Resources: Steven Skiena's CSE 549 lecture 15-18 slides

4/29/2013

WHAT IS A BIOMARKER?

- * **Biomarker**, or biological marker, is any type of indicator of biological state.
 - + "cellular, biochemical or molecular alterations that are measurable in biological media such as human tissues, cells, or fluids." - [B S Hulka (1990) New York: Oxford University Press]
- It <u>objectively measures</u> the states of biology in medicine, cell biology, geology, ecotoxicology, etc.
- The most popular uses are in medicine to measure states in:
 - + Normal biological process
 - + Pathogenic process
 - + Pharmacological responds to therapeutics

DISEASE PATHWAY AND POTENTIAL IMPACT OF BIOMARKER

Mayeux, R. (2004). Biomarkers: potential uses and limitations. *NeuroRx : the journal of the American Society for Experimental NeuroTherapeutics*, 1(2), 182–8.

4/29/2013

EXAMPLE OF BIOMARKERS IN CLINICAL USAGE

- × Diagnosis and management of
 - + cardiovascular disease,
 - + infections,
 - + immunological and genetic disorders,
 - + cancer
 - + nervous system disorders
 - + absorption and metabolism of exposures (drug / other treatments / toxic materials)
 - + Diseases risk prediction

CAPABILITIES OF BIOMARKERS ITABLE 1 OF MAXEUX, B. 2004]

- × Delineation of events between exposure and disease
- Establishment of dose-response
- × Identification of early events in the natural history
- Identification of mechanisms by which exposure and disease are related
- Reduction in misclassification of exposures or risk factors and disease
- **x** Establishment of variability and effect modification
- * Enhanced individual and group risk assessments

Mayeux, R. (2004). Biomarkers: potential uses and limitations. *NeuroRx : the journal of the American Society for Experimental NeuroTherapeutics*, 1(2), 182–8.

TYPES OF BIOMARKERS

POSSIBLE SHORT COMES OF BIOMARKERS

DATA USED FOR BIOMARKER DISCOVERY

- × Bio-specimens used:
 - + Blood, brain, cerebrospinal fluid, spinal fluid, muscle, nerve, skin, and other body fluids
 - + In both the healthy and diseased state
- × DNA, RNA, or protein
 - + EX> Microarray chips, Genome sequences,
- × Cytogenetic markers
 - + ex> chromosome structure
- × Tissue markers
 - + Microscope level visible differences
- × Behavior markers
- Measure toxicants in body fluids & tissues
- × Death of marker animals
 - + Ex> environmental conditions.

BIOMARKER FOR CANCER TREATMENT: GENENTECH DESCRIPTION

Youtube

Understanding Biomarkers - Genentech scientist Jeff Settleman

- Cancer research understanding cancer mechanism
- Risk of developing cancer
- Medication/treatment decision

MICROARRAY TECHNOLOGY

- Experimental techniques exist to enable biologists to measure the expression of a <u>single gene under certain</u> <u>conditions</u>. (in the past)
- Microarray technology enables one to do such experiments on a <u>vastly larger scale</u>. (currently)

× RNA-seq data: Becoming more popular

FOCUSING ON GENE EXPRESSION

- Certain technologies have been developed where different compounds are anchored to tiny <u>beads</u>, so reacting beads can be <u>labeled</u>, isolated, and identified.
- But the best solution is to attach distinct compounds to different regions of a solid substrate so you know <u>where</u> they are.

WHAT DOES MICROARRAY MEASURE

- Analysis of post translational modifications in genes
 - + ex.> methylation states.
- × Sequencing variants of a known genome
 - + detecting single nucleotide polymorphisms (SNPs)
- × Identifying a specific strain of virus
 - + (e.g. the Affymetrix HIV-1 array).
- Measuring differential expression of all genes in tumor and normal cells,
 - + to determine which genes may cause/cure cancer

- Identify which treatment a specific tumor should respond best to.
 - + Paired treatment
- Measuring differential expression of all genes in different tissue types,
 - + to determine what makes one cell type different than another.
- Measuring differential expression of all genes in different time
 - + Circadian rhythm
- Measuring copy number variants from chromosomal anomalies or cancer.
- × Obtaining individual's genotype / SNP data, e.g. 23andMe

DNA MICROARRAY

<u>cDNA microarray</u> YouTube 1. – Gabriel Mckinsey

DNA Microarray YouTube 2.

- Single stranded DNA/RNA molecules are anchored by one end to the plate/substrate.
 - + These molecules will seek to hybridize with complementary strands floating in solution.
- The target molecules are fluorescently labeled,
 - + so that the spots on the *chip/array* where hybridization occurs can be identified.
- The strength of the detected signal somewhat reflects the amount of stuff which binds to it,
 - + and thus the amount of the target in solution.
- × Such *quantitative* expression data is not very reliable, however.

THERE ARE MANY POSSIBLE SOURCE OF ERROR

- × Accuracy and fluctuations in scanning the fluorescent signals
- The strength of the bond formed between two single stranded DNA/RNA molecules is a function of
 - + (1) the length of the bonded molecules,
 - + (2) the base composition of the molecules, since A/T and C/G bond with different energies,
 - + (3) the number and location of base mismatches, since end mismatches cause less trouble.
- * Efficiency of hybridization of labeled cDNA to each slides
 - + Cross hybridization is a source of many false positive errors,
 - × a closely related DNA sequence binds at the probe in the absence of the desired target.
 - + Heat breaks these bonds, so the *stringency* of hybridization can be effected by changing the temperature and other conditions.
 - + *Self hybridization* occurs when probe molecules fold and hybridize with themselves, thus rendering them less effective at hybridizing with the target.
 - This occurs particularly in self palindromic probes.
- × Variations within and between oligonucleotide spots,
- × Efficiency of dye incorporation: Image Processing Issues

COMPLEXITY IN ANALYSIS OF MICROARRAY DATA

- Underlying biological processes being investigated are often not understood and are almost certainly complex
- Measures the steady-state level of an unstable molecule , mRNA
 - + Depends on the rate of transcription and degradation of the mRNA.

CLASSIFICATION AND CLUSTERING PROBLEM

 Finding Biomarkers using microarray data becomes feature selection (gene selection) problem in classification (supervised learning) and clustering (unsupervised learning)

FEATURE SELECTION AND BIOMARKER DISCOVERY

- Feature selection challenge specific to microarray data:
 - + Large feature (gene) and small number of data (samples)
 - + Reproducibility is low
 - × need stable feature selection method.
- × Cause of instability
 - + Algorithm design without considering stability
 - + The existence of multiple sets of true markers
 - + Small number of samples in high dimensional data

FEATURE SELECTION

- × Selected features can be singular or form groups.
 - + Singular: early onset genetic diseases
 - + Group feature: complex diseases
 - × cancer, diabetes, etc

- Incorporation of prior-knowledge in to feature selection.
 - + Best to incorporate all we know esp. since variable samples are always small
 - × Interaction between genes

TYPES OF FEATURE SELECTION METHOD

relevance of features is evaluated by looking only at the intrinsic properties of the data

* Often feature relevance score is used to evaluate each feature (gene)

Wrapper Methods

model hypothesis search is embed within the feature subset search

-> various subsets of features are generated and evaluated

optimal feature subset search is built into the classifier construction

-> a search in the combined space of feature subsets and hypotheses

Saeys, Y., Inza, I., & Larrañaga, P. (2007). A review of feature selection techniques in bioinformatics. *Bioinformatics*, 23(19), 2507–17.