TEMPORAL PROBABILITY MODELS
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Outline

$ Time and uncertainty
> Hidden Markov model: model structure

> Inference: filtering, prediction, smoothing
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Time and uncertainty

The world changes; we need to track and predict it
Diabetes management vs vehicle diagnosis
Basic idea: copy state and evidence variables for each time step

X, = set of unobservable state variables at time ¢
e.g., BloodSugar;, StomachContents,;, etc.

E, = set of observable evidence variables at time ¢
e.g., MeasuredBloodSugar;, PulseRate;, FoodEaten;

This assumes discrete time; step size depends on problem

Notation: X, = X, X .1,.... X1, X,
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Markov processes (Markov chains)

Construct a Bayes net from these variables: parents?
Markov assumption: X, depends on bounded subset of X,

First-order Markov process: P (X, X, ) = P(X;|X; )
Second-order Markov process: P (X, | X, 1) = P(Xy|X; 5, X; 1)
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Sensor Markov assumption: P(E,;| X, Eo, 1) = P(E,|X})

Stationary process: transition model P(X;|X; ;) and
sensor model P(E;|X;) fixed for all
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Hidden Markov models

X, is a single, discrete variable (usually E; is too)
Domain of X;is {1,...,5}

two or more state variables are combined into a single megavariable

This allows for a simple and elegant matrix implementation of the inference
algorithms:

Transition matrix T, = P(X, =j| X, | =1), eg, (0'7 0'3)

0.3 0.7

Sensor matrix O, for each time step, diagonal elements P(¢;| X, =1)
0.9 0 )

e.g., with Uy =true, O = ( 0 0.9
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Example

Ri_1| P(R¢)

t 0.7
f 0.3

First-order Markov assumption not exactly true in real world!

Possible fixes:
1. Increase order of Markov process
2. Augment state, e.g., add T'emp,;, Pressure;

Example: robot motion.
Augment position and velocity with Battery,
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(General inference tasks

Filtering: P(X,|e|)

belief state—input to the decision process of a rational agent

the posterior distribution over the most recent state given all evidence to
date

Prediction: P(X,,;|e,) for k >0
evaluation of possible action sequences;
like filtering without the evidence
the posterior distribution over future state given all evidence to date

Smoothing: P(X|e ;) for 0 < k < ¢
better estimate of past states, essential for learning
the posterior distribution over past state given all evidence to date

Most likely explanation: arg maxy,, P(x|ej,)

speech recognition, decoding with a noisy channel

Sequence of states that is most likely to have generated those observa-
tions(evidences)
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Filtering

Aim: devise a recursive state estimation algorithm:

P<Xt+1‘elzt+1) — f(et+17 P<Xt‘elzt>)

P(X¢iiler1) = P(Xiyilers, e1)
— CVP<et+1|X1t+17 el:t>P<Xt+1|e1:t>
= OéP<et+1|Xt+1)P(Xt+1|elzt)

|.e., prediction + estimation. Prediction by summing out X;:

P(X1leri1) = @P<et+1’Xt+1>ZXtP<Xt+1’Xt7 erq) P(x;|er)
= oP (e 1] Xp41) 2 P (X1 [x0) P(x€14)

f1:t+1 — FORWARD(flzt, et+1) where fl:t — P(Xt|61:t)
Time and space constant (independent of ?)

Chapter 15, Sections 1-2

8



Filtering example

0.500 0.627
0.500 0.373
True 0.500 0.2!18 0.383
False 0.500 0.182 0.117
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Prediction

Prediction can be seen simply as filtering without the addition of new evi-
dence.

P<Xt+k:+1‘elzt) — ZXf+k,P(Xt+k:+l‘Xt+k:)P<Xt+k‘elzt)
Computation involves only he transition model and not the sensor model.

As k — 0o, P(x;;|ei;) tends to the stationary distribution of the
Markov chain

Mixing time depends on how stochastic the chain is
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Smoothing

e

Divide evidence e, into e, €, 1.

P(Xjlei) = P(Xy|eir, €rti1:)
= oaP(Xy|err)P(err1:4| Xy, €1.r)
= aP(Xj|err)P (e 14| Xy)
= oty b1y

Backward message computed by a backwards recursion:

Pep14|Xi) = 2x,, Pleri1| X, Xpp1) P (%511 X))
= X } P(ek+1:t|Xk+1>P<Xk+1|Xk>

— Zxkﬂp(ekﬂ’Xk+1)P(ek:+2:t|Xk+1>P<Xk+1|Xk>
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Smoothing example

0.500 0.627
0.500 0.373
True  0.500 0.5!18 o.a‘ss e
False 0.500 0.182 0.117 orwar
O.E?SB 0.2!83
0.117 0.117 smoothed
0.690 1.000
-
0.410 1.000 backward

Forward—backward algorithm: cache forward messages along the way
Time linear in ¢ (polytree inference), space O(%|f])
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Forward—backward algorithm

function FORWARD-BACKWARD(ev, prior ) returns a vector of probability distributions

inputs: ev, a vector of evidence values for steps 1, ..., t
prior , the prior distribution on the initial state, P(Xo)
local variables: fv, a vector of forward messages for steps O, . . ., t
b, a representation of the backward message, initially all 1s
sv, a vector of smoothed estimates for steps 1, ..., t
fv[0J— prior

fori=1totdo

fv[i]< FORWARD(fv[i — 1] ev[i])
for i = t downto 1 do

sv[i]<— NORMALIZE(fv[i] X b)

b < BACKWARD(b, ev[i])
return sv

Figure 15.4  The forward—backward algorithm for smoothing: computing posterior probabilities of
a sequence of states given a sequence of observations.
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Most likely explanation

Most likely sequence # sequence of most likely states!!!!

Most likely path to each x,,
= most likely path to some x; plus one more step

)lglla%({f P<X17 sy Xt Xt—i—l‘el:t—l—l)
= P(e;1|X¢11) max (P<Xt+1‘xt) xiDeX P(x1,. .., X1, Xt\eu))

|dentical to filtering, except f;.; replaced by

mi.; = Xlr.n..ia(iil P(X17 cee oy Xt 1, Xt‘elzt)7

l.e., my(7) gives the probability of the most likely path to state 1.
Update has sum replaced by max, giving the Viterbi algorithm:

My = P<et+1‘Xt+1) H}QX <P<Xt+1‘xt)m1:t)
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Viterbi example
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