TEMPORAL PROBABILITY MODELS

Chapter 15, Sections 1-2

Chapter 15, Sections 1–2 1

Outline

- \diamondsuit Time and uncertainty
- \diamond Hidden Markov model: model structure
- \diamondsuit Inference: filtering, prediction, smoothing

Time and uncertainty

The world changes; we need to track and predict it

Diabetes management vs vehicle diagnosis

Basic idea: copy state and evidence variables for each time step

 $\mathbf{X}_t = \text{set of unobservable state variables at time } t$ e.g., $BloodSugar_t$, $StomachContents_t$, etc.

 $\mathbf{E}_t = \text{set of observable evidence variables at time } t$ e.g., $MeasuredBloodSugar_t$, $PulseRate_t$, $FoodEaten_t$

This assumes **discrete time**; step size depends on problem

Notation: $\mathbf{X}_{a:b} = \mathbf{X}_a, \mathbf{X}_{a+1}, \dots, \mathbf{X}_{b-1}, \mathbf{X}_b$

Markov processes (Markov chains)

Construct a Bayes net from these variables: parents?

Markov assumption: X_t depends on **bounded** subset of $X_{0:t-1}$

First-order Markov process: $\mathbf{P}(\mathbf{X}_t | \mathbf{X}_{0:t-1}) = \mathbf{P}(\mathbf{X}_t | \mathbf{X}_{t-1})$ Second-order Markov process: $\mathbf{P}(\mathbf{X}_t | \mathbf{X}_{0:t-1}) = \mathbf{P}(\mathbf{X}_t | \mathbf{X}_{t-2}, \mathbf{X}_{t-1})$

Sensor Markov assumption: $\mathbf{P}(\mathbf{E}_t | \mathbf{X}_{0:t}, \mathbf{E}_{0:t-1}) = \mathbf{P}(\mathbf{E}_t | \mathbf{X}_t)$

Stationary process: transition model $\mathbf{P}(\mathbf{X}_t | \mathbf{X}_{t-1})$ and sensor model $\mathbf{P}(\mathbf{E}_t | \mathbf{X}_t)$ fixed for all t

Hidden Markov models

 \mathbf{X}_t is a single, discrete variable (usually \mathbf{E}_t is too) Domain of X_t is $\{1, \ldots, S\}$

two or more state variables are combined into a single megavariable

This allows for a simple and elegant matrix implementation of the inference algorithms:

Transition matrix
$$\mathbf{T}_{ij} = P(X_t = j | X_{t-1} = i)$$
, e.g., $\begin{pmatrix} 0.7 & 0.3 \\ 0.3 & 0.7 \end{pmatrix}$

Sensor matrix \mathbf{O}_t for each time step, diagonal elements $P(e_t|X_t = i)$ e.g., with $U_1 = true$, $\mathbf{O}_1 = \begin{pmatrix} 0.9 & 0 \\ 0 & 0.2 \end{pmatrix}$

Example

First-order Markov assumption not exactly true in real world!

Possible fixes:

- 1. Increase order of Markov process
- 2. Augment state, e.g., add $Temp_t$, $Pressure_t$

Example: robot motion.

Augment position and velocity with $Battery_t$

General inference tasks

Filtering: $\mathbf{P}(\mathbf{X}_t | \mathbf{e}_{1:t})$

belief state—input to the decision process of a rational agent

the posterior distribution over the most recent state given all evidence to date

Prediction: $\mathbf{P}(\mathbf{X}_{t+k}|\mathbf{e}_{1:t})$ for k > 0

evaluation of possible action sequences; like filtering without the evidence the posterior distribution over future state given all evidence to date

Smoothing: $\mathbf{P}(\mathbf{X}_k | \mathbf{e}_{1:t})$ for $0 \le k < t$

better estimate of past states, essential for learning the posterior distribution over past state given all evidence to date

Most likely explanation: $\arg \max_{\mathbf{x}_{1:t}} P(\mathbf{x}_{1:t} | \mathbf{e}_{1:t})$

speech recognition, decoding with a noisy channel Sequence of states that is most likely to have generated those observations(evidences)

Filtering

Aim: devise a **recursive** state estimation algorithm:

 $\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = f(\mathbf{e}_{t+1}, \mathbf{P}(\mathbf{X}_t|\mathbf{e}_{1:t}))$

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t}, \mathbf{e}_{t+1})$$

= $\alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}, \mathbf{e}_{1:t})\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$
= $\alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1})\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$

I.e., prediction + estimation. Prediction by summing out \mathbf{X}_t :

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \Sigma_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t, \mathbf{e}_{1:t}) P(\mathbf{x}_t|\mathbf{e}_{1:t})$$

= $\alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \Sigma_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t) P(\mathbf{x}_t|\mathbf{e}_{1:t})$

 $\mathbf{f}_{1:t+1} = \text{FORWARD}(\mathbf{f}_{1:t}, \mathbf{e}_{t+1})$ where $\mathbf{f}_{1:t} = \mathbf{P}(\mathbf{X}_t | \mathbf{e}_{1:t})$ Time and space **constant** (independent of t)

Filtering example

Prediction

Prediction can be seen simply as filtering without the addition of new evidence.

 $\mathbf{P}(\mathbf{X}_{t+k+1}|\mathbf{e}_{1:t}) = \sum_{\mathbf{x}_{t+k}} \mathbf{P}(\mathbf{X}_{t+k+1}|\mathbf{x}_{t+k}) P(\mathbf{x}_{t+k}|\mathbf{e}_{1:t})$

Computation involves only he transition model and not the sensor model.

As $k \to \infty$, $P(\mathbf{x}_{t+k} | \mathbf{e}_{1:t})$ tends to the stationary distribution of the Markov chain

Mixing time depends on how stochastic the chain is

Divide evidence $\mathbf{e}_{1:t}$ into $\mathbf{e}_{1:k}$, $\mathbf{e}_{k+1:t}$:

$$\mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:t}) = \mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:k},\mathbf{e}_{k+1:t})$$

= $\alpha \mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:k})\mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_{k},\mathbf{e}_{1:k})$
= $\alpha \mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:k})\mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_{k})$
= $\alpha \mathbf{f}_{1:k}\mathbf{b}_{k+1:t}$

Backward message computed by a backwards recursion:

$$\mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k) = \sum_{\mathbf{x}_{k+1}} \mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k, \mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k)$$

= $\sum_{\mathbf{x}_{k+1}} P(\mathbf{e}_{k+1:t}|\mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k)$
= $\sum_{\mathbf{x}_{k+1}} P(\mathbf{e}_{k+1}|\mathbf{x}_{k+1}) P(\mathbf{e}_{k+2:t}|\mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k)$

Forward-backward algorithm: cache forward messages along the way Time linear in t (polytree inference), space $O(t|\mathbf{f}|)$

Forward–backward algorithm

```
function FORWARD-BACKWARD(ev, prior ) returns a vector of probability distributions
inputs: ev, a vector of evidence values for steps 1, ..., t
prior, the prior distribution on the initial state, P(X<sub>0</sub>)
local variables: fv, a vector of forward messages for steps 0, ..., t
b, a representation of the backward message, initially all 1s
sv, a vector of smoothed estimates for steps 1, ..., t
fv[0]—prior
for i = 1 to t do
fv[i]← FORWARD(fv[i - 1], ev[i])
for i = t downto 1 do
sv[i]← NORMALIZE(fv[i]×b)
b← BACKWARD(b, ev[i])
return sv
```

Figure 15.4 The forward–backward algorithm for smoothing: computing posterior probabilities of a sequence of states given a sequence of observations.

Most likely explanation

Most likely sequence \neq sequence of most likely states!!!!

Most likely path to each \mathbf{x}_{t+1}

= most likely path to some \mathbf{x}_t plus one more step

 $\max_{\mathbf{x}_{1}...\mathbf{x}_{t}} \mathbf{P}(\mathbf{x}_{1},\ldots,\mathbf{x}_{t},\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \max_{\mathbf{x}_{t}} \left(\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_{t}) \max_{\mathbf{x}_{1}...\mathbf{x}_{t-1}} P(\mathbf{x}_{1},\ldots,\mathbf{x}_{t-1},\mathbf{x}_{t}|\mathbf{e}_{1:t}) \right)$

Identical to filtering, except $\mathbf{f}_{1:t}$ replaced by

 $\mathbf{m}_{1:t} = \max_{\mathbf{x}_1...\mathbf{x}_{t-1}} \mathbf{P}(\mathbf{x}_1,\ldots,\mathbf{x}_{t-1},\mathbf{X}_t | \mathbf{e}_{1:t}),$

I.e., $\mathbf{m}_{1:t}(i)$ gives the probability of the most likely path to state i. Update has sum replaced by max, giving the Viterbi algorithm:

 $\mathbf{m}_{1:t+1} = \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}) \max_{\mathbf{x}_t} (\mathbf{P}(\mathbf{X}_{t+1} | \mathbf{x}_t) \mathbf{m}_{1:t})$

Viterbi example

