
Inference in Bayesian networks - MCMC
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Markov Chains

A Markov chain defines a probabilistic transition model
q(x→ x

′) over states x:
♦ for all x: Σx’q(x→ x

′) = 1

Temporal Dynamics:
P (t+1)(X (t+1) = x′) = ΣxP (t)(X (t) = x)q(x→ x

′)
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Stationary distribution

πt(x) = probability in state x at time t
πt+1(x

′) = probability in state x′ at time t + 1

P (t+1)(x′) ≈ P (t)(x′) = ΣxP (t)(x)q(x→ x
′)

πt+1 in terms of πt and q(x→ x
′)

πt+1(x
′) = Σxπt(x)q(x→ x

′)

Stationary distribution: πt = πt+1 = π

π(x′) = Σxπ(x)q(x→ x
′) for all x′

If π exists, it is unique (specific to q(x→ x
′))

In equilibrium, expected “outflow” = expected “inflow”
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Detailed balance

“Outflow” = “inflow” for each pair of states:

π(x)q(x→ x
′) = π(x′)q(x′→ x) for all x, x

′

Detailed balance ⇒ stationarity:

Σxπ(x)q(x→ x
′) = Σxπ(x

′)q(x′ → x)

= π(x′)Σxq(x
′ → x)

= π(x′)

MCMC algorithms typically constructed by designing a transition
probability q that is in detailed balance with desired π
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Markov blanket

Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents
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Approximate inference using (MCMC)

Markov Chain Monte Carlo (MCMC)

Goal: compute P (x ∈ S)
but P is too hard to sample from directly

Construct a Markov chain T whose unique stationary distribution is P

Sample x(0) from some P (0) and generate x(t+1) from q(xt → x
′)

Initially the samples far from distribution P . Use the samples only after the
chain has run long enought to “mix”
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Gibbs sampling

Gibbs sampling is a variant of Markov Chain Monte Carlo (MCMC)

Sample each variable in turn, given all other variables

Sampling Xi, let X̄i be all other nonevidence variables
Current values are xi and x̄i; e is fixed
Transition probability is given by

q(x→ x
′) = q(xi, x̄i → x′i, x̄i) = P (x′i|x̄i, e)

This gives detailed balance with true posterior P (x|e):

π(x)q(x→ x
′) = P (x|e)P (x′i|x̄i, e) = P (xi, x̄i|e)P (x′i|x̄i, e)

= P (xi|x̄i, e)P (x̄i|e)P (x′i|x̄i, e) (chain rule)

= P (xi|x̄i, e)P (x′i, x̄i|e) (chain rule backwards)

= q(x′ → x)π(x′) = π(x′)q(x′ → x)
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Approximate inference using Gibbs

“State” of network = current assignment to all variables.
Generate next state by sampling one variable given Markov blanket (mb)
Sample each variable in turn, keeping evidence fixed

function Gibbs-Ask(X,e, bn,N) returns an estimate of P (X |e)

local variables: N[X ], a vector of counts over each value of X, initially zero

Z, the nonevidence variables in bn

x, the current state of the network, initially copied from e

initialize x with random values for the variables in Z

for j = 1 to N do

for each Zi in Z do

set the value of Zi in x by sampling from P(Zi |mb(Zi))

given the values of MB(Zi) in x

N[x ]←N[x ] + 1 where x is the value of X in x

return Normalize(N[X ])

This algorithm cycles through the variables, but choosing a variable to sample
at random each time also works
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The Markov chain

With Sprinkler= true,WetGrass= true, there are four states:

Cloudy

RainSprinkler

 Wet
Grass

Cloudy

RainSprinkler

 Wet
Grass

Cloudy

RainSprinkler

 Wet
Grass

Cloudy

RainSprinkler

 Wet
Grass

Wander about for a while, average what you see
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Example contd.

Estimate P(Rain|Sprinkler= true,WetGrass= true)

Sample Cloudy or Rain given its Markov blanket, repeat.
Count number of times Rain is true and false in the samples.

E.g., visit 100 states
31 have Rain= true, 69 have Rain= false

P̂(Rain|Sprinkler= true,WetGrass= true)
= Normalize(〈31, 69〉) = 〈0.31, 0.69〉

Theorem: chain approaches stationary distribution:
long-run fraction of time spent in each state is exactly
proportional to its posterior probability
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Markov blanket sampling

Markov blanket of Cloudy is
Cloudy

RainSprinkler

 Wet
Grass

Sprinkler and Rain

Markov blanket of Rain is
Cloudy, Sprinkler, and WetGrass

Probability given the Markov blanket is calculated as follows:
P (x′i|mb(Xi)) = P (x′i|parents(Xi))ΠZj∈Children(Xi)P (zj|parents(Zj))

Easily implemented in message-passing parallel systems, brains

Main computational problems:
1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large:

P (Xi|mb(Xi)) won’t change much (law of large numbers)
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MCMC analysis: Outline

Transition probability q(x→ x
′)

Occupancy probability πt(x) at time t

Equilibrium condition on πt defines stationary distribution π(x)
Note: stationary distribution depends on choice of q(x→ x

′)

Pairwise detailed balance on states guarantees equilibrium

Gibbs sampling transition probability:
sample each variable given current values of all others

⇒ detailed balance with the true posterior

For Bayesian networks, Gibbs sampling reduces to
sampling conditioned on each variable’s Markov blanket
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Performance of approximation algorithms

Absolute approximation: |P (X|e)− P̂ (X|e)| ≤ ǫ

Relative approximation: |P (X|e)−P̂ (X|e)|
P (X|e) ≤ ǫ

Relative ⇒ absolute since 0 ≤ P ≤ 1 (may be O(2−n))

Randomized algorithms may fail with probability at most δ

Polytime approximation: poly(n, ǫ−1, log δ−1)

Theorem (Dagum and Luby, 1993): both absolute and relative
approximation for either deterministic or randomized algorithms
are NP-hard for any ǫ, δ < 0.5

(Absolute approximation polytime with no evidence—Chernoff bounds)
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Summary

Exact inference by variable elimination:
– polytime on polytrees, NP-hard on general graphs
– space = time, very sensitive to topology

Approximate inference by LW, MCMC:
– LW does poorly when there is lots of (downstream) evidence
– LW, MCMC generally insensitive to topology
– Convergence can be very slow with probabilities close to 1 or 0
– Can handle arbitrary combinations of discrete and continuous variables
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