INFERENCE IN BAYESIAN NETWORKS - MCMC

Chapter 14.5.2

Chapter 14.5.2 1

Markov Chains

A Markov chain defines a probabilistic transition model $q(\mathbf{x} \rightarrow \mathbf{x}')$ over states \mathbf{x} : \diamondsuit for all x: $\Sigma \mathbf{x}' q(\mathbf{x} \rightarrow \mathbf{x}') = 1$

Temporal Dynamics:

 $P^{(t+1)}(X^{(t+1)} = x') = \sum \mathbf{x} P^{(t)}(X^{(t)} = x)q(\mathbf{x} \to \mathbf{x}')$

Stationary distribution

 $\pi_t(\mathbf{x}) = \text{probability in state } \mathbf{x} \text{ at time } t$ $\pi_{t+1}(\mathbf{x}') = \text{probability in state } \mathbf{x}' \text{ at time } t + 1$ $P^{(t+1)}(\mathbf{x}') \approx P^{(t)}(\mathbf{x}') = \sum \mathbf{x} P^{(t)}(x) q(\mathbf{x} \to \mathbf{x}')$

 π_{t+1} in terms of π_t and $q(\mathbf{x} \to \mathbf{x}')$

 $\pi_{t+1}(\mathbf{x}') = \sum_{\mathbf{x}} \pi_t(\mathbf{x}) q(\mathbf{x} \to \mathbf{x}')$

Stationary distribution: $\pi_t = \pi_{t+1} = \pi$

$$\pi(\mathbf{x}') = \Sigma_{\mathbf{x}} \pi(\mathbf{x}) q(\mathbf{x} \to \mathbf{x}') \qquad \text{for all } \mathbf{x}'$$

If π exists, it is unique (specific to $q(\mathbf{x} \rightarrow \mathbf{x'})$)

In equilibrium, expected "outflow" = expected "inflow"

Detailed balance

"Outflow" = "inflow" for each pair of states:

 $\pi(\mathbf{x})q(\mathbf{x}\to\mathbf{x}')=\pi(\mathbf{x}')q(\mathbf{x}'\to\mathbf{x})\qquad\text{for all }\mathbf{x},\ \mathbf{x}'$

Detailed balance \Rightarrow stationarity:

$$\Sigma_{\mathbf{x}} \pi(\mathbf{x}) q(\mathbf{x} \to \mathbf{x}') = \Sigma_{\mathbf{x}} \pi(\mathbf{x}') q(\mathbf{x}' \to \mathbf{x})$$
$$= \pi(\mathbf{x}') \Sigma_{\mathbf{x}} q(\mathbf{x}' \to \mathbf{x})$$
$$= \pi(\mathbf{x}')$$

MCMC algorithms typically constructed by designing a transition probability q that is in detailed balance with desired π

Markov blanket

Each node is conditionally independent of all others given its Markov blanket: parents + children + children's parents

Approximate inference using (MCMC)

Markov Chain Monte Carlo (MCMC)

Construct a Markov chain T whose unique stationary distribution is ${\cal P}$

Sample $\mathbf{x}^{(0)}$ from some $P^{(0)}$ and generate $\mathbf{x}^{(t+1)}$ from $q(\mathbf{x}^t \to \mathbf{x}')$

Initially the samples far from distribution P. Use the samples only after the chain has run long enought to "mix"

Gibbs sampling

Gibbs sampling is a variant of Markov Chain Monte Carlo (MCMC)

Sample each variable in turn, given all other variables

Sampling X_i , let $\overline{\mathbf{X}}_i$ be all other nonevidence variables Current values are x_i and $\overline{\mathbf{x}}_i$; e is fixed Transition probability is given by

 $q(\mathbf{x} \to \mathbf{x}') = q(x_i, \bar{\mathbf{x}}_i \to x'_i, \bar{\mathbf{x}}_i) = P(x'_i | \bar{\mathbf{x}}_i, \mathbf{e})$

This gives detailed balance with true posterior $P(\mathbf{x}|\mathbf{e})$:

$$\pi(\mathbf{x})q(\mathbf{x} \to \mathbf{x}') = P(\mathbf{x}|\mathbf{e})P(x'_i|\bar{\mathbf{x}}_i, \mathbf{e}) = P(x_i, \bar{\mathbf{x}}_i|\mathbf{e})P(x'_i|\bar{\mathbf{x}}_i, \mathbf{e})$$

= $P(x_i|\bar{\mathbf{x}}_i, \mathbf{e})P(\bar{\mathbf{x}}_i|\mathbf{e})P(x'_i|\bar{\mathbf{x}}_i, \mathbf{e})$ (chain rule)
= $P(x_i|\bar{\mathbf{x}}_i, \mathbf{e})P(x'_i, \bar{\mathbf{x}}_i|\mathbf{e})$ (chain rule backwards)
= $q(\mathbf{x}' \to \mathbf{x})\pi(\mathbf{x}') = \pi(\mathbf{x}')q(\mathbf{x}' \to \mathbf{x})$

Approximate inference using Gibbs

"State" of network = current assignment to all variables. Generate next state by sampling one variable given Markov blanket (mb) Sample each variable in turn, keeping evidence fixed

```
function GIBBS-ASK(X, e, bn, N) returns an estimate of P(X|e)
local variables: N[X], a vector of counts over each value of X, initially zero
Z, the nonevidence variables in bn
x, the current state of the network, initially copied from e
initialize x with random values for the variables in Z
for j = 1 to N do
for each Z_i in Z do
set the value of Z_i in x by sampling from P(Z_i|mb(Z_i))
given the values of MB(Z_i) in x
N[x] \leftarrow N[x] + 1 where x is the value of X in x
return NORMALIZE(N[X])
```

This algorithm cycles through the variables, but choosing a variable to sample at random each time also works

The Markov chain

With Sprinkler = true, WetGrass = true, there are four states:

Wander about for a while, average what you see

Example contd.

Estimate $\mathbf{P}(Rain|Sprinkler = true, WetGrass = true)$

Sample *Cloudy* or *Rain* given its Markov blanket, repeat. Count number of times *Rain* is true and false in the samples.

E.g., visit 100 states 31 have Rain = true, 69 have Rain = false

 $\hat{\mathbf{P}}(Rain|Sprinkler = true, WetGrass = true) = \text{NORMALIZE}(\langle 31, 69 \rangle) = \langle 0.31, 0.69 \rangle$

Theorem: chain approaches stationary distribution: long-run fraction of time spent in each state is exactly proportional to its posterior probability

Markov blanket sampling

Markov blanket of *Cloudy* is *Sprinkler* and *Rain* Markov blanket of *Rain* is *Cloudy, Sprinkler*, and *WetGrass*

Probability given the Markov blanket is calculated as follows: $P(x'_i|mb(X_i)) = P(x'_i|parents(X_i))\prod_{Z_j \in Children(X_i)} P(z_j|parents(Z_j))$

Easily implemented in message-passing parallel systems, brains

Main computational problems:

- 1) Difficult to tell if convergence has been achieved
- 2) Can be wasteful if Markov blanket is large:

 $P(X_i|mb(X_i))$ won't change much (law of large numbers)

MCMC analysis: Outline

Transition probability $q(\mathbf{x} \rightarrow \mathbf{x'})$

Occupancy probability $\pi_t(\mathbf{x})$ at time t

Equilibrium condition on π_t defines stationary distribution $\pi(\mathbf{x})$ Note: stationary distribution depends on choice of $q(\mathbf{x} \to \mathbf{x'})$

Pairwise detailed balance on states guarantees equilibrium

Gibbs sampling transition probability: sample each variable given current values of all others \Rightarrow detailed balance with the true posterior

For Bayesian networks, Gibbs sampling reduces to sampling conditioned on each variable's Markov blanket

Performance of approximation algorithms

Absolute approximation: $|P(X|\mathbf{e}) - \hat{P}(X|\mathbf{e})| \leq \epsilon$

Relative approximation: $\frac{|P(X|\mathbf{e}) - \hat{P}(X|\mathbf{e})|}{P(X|\mathbf{e})} \leq \epsilon$

Relative \Rightarrow absolute since $0 \le P \le 1 \pmod{(2^{-n})}$

Randomized algorithms may fail with probability at most δ

Polytime approximation: $poly(n, \epsilon^{-1}, \log \delta^{-1})$

Theorem (Dagum and Luby, 1993): both absolute and relative approximation for either deterministic or randomized algorithms are NP-hard for any $\epsilon, \delta < 0.5$

(Absolute approximation polytime with no evidence—Chernoff bounds)

Summary

Exact inference by variable elimination:

- polytime on polytrees, NP-hard on general graphs
- space = time, very sensitive to topology

Approximate inference by LW, MCMC:

- LW does poorly when there is lots of (downstream) evidence
- LW, MCMC generally insensitive to topology
- Convergence can be very slow with probabilities close to 1 or 0
- Can handle arbitrary combinations of discrete and continuous variables