

CSE537

AIMA CHAPTER 10.3: PLANNING GRAPHS

Resource: based on material & slide by Rob St. Amant (NCSU) and by Berthe Y. Choueiry (U of Nebraska)

SEARCH AND PLANNING

- × Planning: generate seq. of actions to achieve one's goals
- × We have seen two examples of planning agents so far:
 - + search-based problem-solving agent of Ch.3
 - \times can find sequences of actions that result in a goal state.
 - × but deals with atomic states (needs good domain-specific heuristics)
 - + hybrid logical agent of Chapter 7.
 - \times can find plans without domain-specific heuristics
 - (uses domain-independent heuristics based on the logical structure of the problem)
 - but relies on ground (variable-free) propositional inference (it may be over worked when there are many actions and states.)
- × We want representation for **planning problems**
 - + that **scales up** to problems unable to be handled by earlier approach es.

CLASSICAL PLANNING ENVIRONMENT

The assumptions for classical planning problems

- × Fully observable
 - + we see everything that matters
- × Deterministic
 - + the effects of actions are known exactly
- × Static
 - + no changes to environment other than those caused by agent actions

× Discrete

+ changes in time and space occur in quantum amounts

× Single agent

+ no competition or cooperation to account for

FACTORED REPRESENTATION IN PLANNING LANGUAGE

× What is a good representation?

- + Expressive enough to describe a wide variety of problems
- + Restrictive enough for efficient algorithms to operate on it
- + Planning algorithm should be able to take advantage
 - × of the logical structure of the problem
- × Historical AI planning languages
 - + STRIPS was used in classical planners
 - × Stanford Research Institute Problem Solver
 - + ADL addresses expressive limitations of STRIPS
 - × Action Description Language
 - \times Adds features not in STRIPS
 - * negative literals, quantified variables, conditional effects, equality

+ We'll look at a simpler version of de facto standard language called PDDL

- PDDL and most of the planning language use *factored* representation for states
 - + Each state is represented as a collection of variables
- × Planning Domain Definition Language
 - To see its expressive power, recall propositional agent in the Wumpus World, which requires 4Tn² actions to describe a m ovement of 1 square
 - + PDDL captures this with a single Action Schema

PDDL: STATE

- Each state is represented as a conjunction of fluents: groun d, functionless atoms.
 - + Ex> Poor ^ Unknown might represent the state of a hapless agent,
 - + Ex> a state in a package delivery problem might be At(Truck1,Melb ourne) ^ At(Truck2,Sydney)

Database semantics is used

- + the **closed-world assumption:** any fluents that are not mentioned ar e false,
- + the **unique names assumption**: ex>*Truck1* and *Truck2* are distinct
- fluents not allowed: At(x, y) (because it is non-ground), ¬Poor (because it is a negation), and At (Father (Fred), Sydney) (because it use s a function symbol).
- × This state representation allows alternative algorithms
 - + it can be manipulated either by *logical inference* techniques or by
 - + set operations (sets may be easier to deal with)

PDDL: ACTION SCHEMAS

× Actions are defined by a set of *action schemas*

- These implicitly define the ACTIONS(s) & RESULT(s, a) functions required to apply search techniques
- Classical planning concentrates on problems where m ost actions leave most things unchanged.
 - + PDDL specify the result of an action in terms of what change s;

everything that stays the same is left unmentioned.

PDDL: ACTION SCHEMAS

- Ground (variable-free) action are represented by single action schema - a *lifted* representation
 - + lifts from propositional logic to a restricted subset of First-or der logic

× Consists of

- + the schema name,
- + list of variables used,
 - × Consider variables as universally quantified, choose any values we w ant to instantiate them

+ a precondition

× PRECOND: defines states in which an action can be executed

+ an effect

× EFFECT: defines the result of executing the action

EXAMPLE ACTION SCHEMA

- **x** Each represents a set of variable-free actions
 - + Form: Action Schema = predicate + preconditions + effects
 - + Example action schema for flying a plane from one location t o another :
 - Action(Fly(p, from, to),

PRECOND: At(p, from) \land Plane(p) \land Airport(from) \land Airport(to) EFFECT: \neg AT(p, from) \land At(p, to))

- Action that results from substituting values for all the variables:
 - Action(Fly(P1,SFO,JFK),
 - PRECOND:At(P1,SFO) л Plane(P1) л Airport(SFO) л Airport(JFK) EFFECT:¬At(P1,SFO) л At(P1,JFK))

APPLYING ACTION SCHEMA

- × Action a is applicable in state s
 - + s entails the precondition of a
 - × If a's preconditions are satisfied in s ("a is applicable in s")

 $a \in ACTIONS(s)) \Leftrightarrow s \mid = PRECOND(a)$

- + Given variables in *a*, there can be multiple applicable instant iations
 - × For v variables in a domain with k unique object names, worst case ti me to find applicable ground actions is $O(v^k)$

+ Leads to one approach for solving PDDL planning problems

Propositionalize by replacing action schemas with sets of ground actions

then applying a propositional solver like SATPlan

imes Impractical for large v & k

PDDL: RESULT

- Result of executing action a in state s is state s' RESULT(s, a) = (s - DEL(a)) U ADD(a)
 - + Start with s
 - + Remove negative literal in the action's effect (the *delete list*, DEL(a))
 - Add positive literals in action's EFFECTs (the add list, ADD(a))
 - + For example, with the action Fly(P1,SF0,JFK),
 - × we would remove At(P1,SF0) and
 - × add At(P1,JFK).
- Any variable in the effect must also appear in the precondition.
 - + When the precondition is matched against the state s, all the vari ables will be bound, and RESULT(s,a) will therefore have only grou nd atoms.

PDDL: ACTION SCHEMAS

1. Variables & ground terms

- + Variables in effects must also be in precondition
 - \times so matching to state s yields results with all variables bound
 - i.e. that contain only ground terms
 - \times Ground states are closed under the RESULT operation.

2. Handling of time

- + No explicit time terms
- + Instead time is implicitly represented in PDDL schemas
 - × Preconditions always refer to time: t
 - × Effects always refer to time: t + 1
- 3. A set of schemas defines a *planning domain*
 - + A specific *problem* within the domain is defined with the addition of an initial state and a goal.

PDDL: INITIAL STATES, GOALS, SOLUTIONS

- × Initial state
 - + Conjunction of ground terms
- × Goal
 - + Conjunction of positive and negative literals that contain variable.
 - × Both ground terms & those containing variables
 - \times EX> At (p, SFO) \wedge Plane (p).
 - + Variables are treated as existentially quantified
 - \times EX> so this goal is to have *any* plane at SFO
- × Solution
 - + A sequence of actions ending in s that entails the goal
 - + EX> state Rich \wedge Famous \wedge Miserable entails the goal Rich \wedge Famous,
 - + EX> state Plane(P1) Λ At (P1, SFO) entails At(p, SFO) Λ Plane (p)
- × We have defined planning as a search problem:
 - + have an initial state, an ACTIONS function, a RESULT function, and a goal test

WHY PLANNING GRAPHS

- * All of the heuristics we have suggested can suffer from inaccuracies.
- A special data structure called a planning graph can b e used to give better heuristic estimates.
- We can search for a solution over the space formed by the planning graph, using an algorithm called GRAPH PLAN.
 - + These heuristics can be applied to any of the search techniq ues we have seen so far.

PLANNING GRAPHS

- Graphplan was developed in 1995 by Avrim Blum an d Merrick Furst, at CMU.
- Constructs compact constraint encoding of state spa ce from operators and initial state, which prunes ma ny invalid plans.
- * A planning graph compactly encodes the space of consistent plans, while pruning . . .
 - + Partial states and actions at each time i that are not reachable from the initial state.
 - + Pairs of actions and propositions that are mutually inconsistent at time i.
 - + Plans that cannot reach the goals.

PLANNING GRAPHS PROPERTIES

- A polynomial-size approximation to tree-based state space searching that can be constructed quickly
- × The plan graph does not eliminate all infeasible plans.
- Planning graph cannot answer definitely whether goal G is reachable form initial state SO, but it can estimate how ma ny steps it takes to reach the goal.
 - + Always correct when it reports the goal is not reachable
 - + Never overestimate the number of steps (admissible heuristic)
- × Planning graphs
 - + Provide a possible basis for better search heuristics
 - + Can be use directly, for extracting a solution to a planning proble m, by applying the GRAPHPLAN algorithm

Problem "Have cake and eat cake too"

PDDL Problem Description

```
Init(Have(Cake))
Goal(Have(Cake) ∧ Eaten(Cake))
Action(Eat(Cake)
PRECOND: Have(Cake)
EFFECT: ¬Have(Cake) ∧ Eaten(Cake))
Action(Bake(Cake)
PRECOND: ¬ Have(Cake)
EFFECT: Have(Cake))
```

corresponding planning graph

PLANNING GRAPH DESCRIPTION

- × Planning graph
 - + Is a directed graph organize d in time steps **levels**
 - + Consist of alternating
 - × S_i level: contains all the literal s that could result from any p ossible choice of action in A_{i-1}
 - A_i level: contains all the action s that are applicable in S_i.
 - × Precondition link
 - × Effects link
 - Mutual exclusion (mutex) link
 s: links joining nodes that can not persist simultaneously

Proposition	Action	Proposition	Action
Init State	Time 1	Time 1	Time 2

- > Start at level S_0 , determine action level A_0 & next level S_1
 - A₀: all actions whose preconditions are satisfied in the previous level (i nitial state)
 - > Lines connect PRECONDs at S_0 to EFFECTs at S_1
 - Also, for each literal in S_i, there's a persistence action (square box) & li ne to it in the next level S_{i+1}
- Level A₀ contains the actions that could occur
 - Conflicts between actions are represented by arcs: mutual exclusion or mutex links

PLANNING GRAPH CAKE EXAMPLE

Level S₁ contains all the literals that could result

- From picking any subset of actions in A₀
- So S₁ is a belief state consisting of the set of all possible states
 - Each is a subset of literals with no mutex links between members
- Conflicts between literals that cannot occur together are represented by the mu tex links.
- The level generation process is repeated
- Termination condition (*leveling off*):
 - When consecutive levels are identical

MUTEX LINKS - ACTION

- Mutex relation holds between 2 <u>actions</u> at a level when
 - 1. Inconsistent effects
 - > One action negates the effect of another
 - Eat(Cake) and Have(Cake) have inconsistent effects because they disagree on the effect Have(Cake).
 - 2. Interference
 - > An effect of one action negates a precondition of the other;
 - > Ex> Eat(Cake) interferes with the persistence of Have(Cake) by negating its precondition.
 - 3. Competing needs
 - > A precondition of one action is mutex with a precondition of the other
 - > Ex> Bake(cake) & Eat(cate) <- compete on the value of Have(cake)

MUTEX LINKS - LITERALS

Mutex relation holds between 2 literals at a level when

- 1. One is the negation of the other
- 2. Inconsistent support
 - > If each possible action pair that could achieve the literals is mutex
 - > Ex> Have(Cake) & Eaten(Cake) at S_1
 - > (the only way of achieving Have(Cake), the persistence action, is mutex with the only way of achieving Eaten (Cake),)

PLANNING GRAPHS COMPLEXITY

 Construction has complexity polynomial in the size of t he planning problem:

 $O(n(a + I)^2)$

- × Given I literals and <mark>a</mark> actions,
- \times each S_i has no more than
 - * I nodes and
 - \star I² mutex links, and
- \times each A_i has no more than
 - * *a* + *I* nodes (including the no-ops),
 - \star (a + I)² mutex links, and
 - * 2(al + I) precondition and effect links.
- × entire graph with n levels has a size of $O(n(a + I)^2)$

PROPERTIES OF COMPLETED PLANNING GRAPH

- Provides information about the problem & candidate heuri stics
- A goal literal g that does not appear in the final level canno t be achieved by any plan
- The level cost, the level at which a goal literal first appears , is useful as a <u>cost estimate</u> of achieving that goal literal
- Note that level cost is admissible, though possibly inaccur ate since it <u>counts levels</u>, not actions
 - + Planning graphs allow several actions at each level, whereas the heuristic counts just the level and not the number of actions.
 - + We could find a better alternative level cost by using a serial plan ning graph variation, restricted to one action per level
 - × Add mutex links between every pair of nonpersistence actions

PLANNING GRAPHS & HEURISTICS

Planning Graph provides

- + Possible heuristics for the cost of a conjunction of goals
- + 1. *Max-level* heuristic : highest level of any conjunct in the goal
 - × Admissible, possibly not accurate
- + 2. *Level sum* heuristic: the sum of level costs of conjuncts in the g oal
 - × Incorporates the subgoal independence assumption
 - $\star\,$ So may be inadmissible to degree the assumption does not hold
 - $\star\,$ Works well in practice for problems that are largely decomposable
- + 3. Set-level heuristic: level where all goal conjuncts are present wi thout mutex links
 - × Admissible,
 - × Dominates the max-level heuristic
 - × Works well on tasks with good deal of interaction among subplans.
 - $\times\,$ However, ignores interactions among three or more literals.

PLANNING GRAPHS & HEURISTICS

- × A Planning Graph is a relaxed version of the problem
 - + If a goal literal g does not appear, no plan can achieve it,
 - + If it does appear, is not guaranteed to be achievable
 - + Why?
 - The PG <u>only captures pairwise conflicts</u> & there could be higher orde r conflicts likely not worth the computational expense of checking for them
 - Similar to Constraint Satisfaction Problems where arc consistency was a valuable pruning tool
 - × 3-consistency or even higher order consistency would have made fin ding solutions easier but was not worth the additional work
 - + Example where PG fails to detect unsolvable problem
 - × Blocks world problem with goal of A on B, B on C, C on A
 - * Any pair of subgoals are achievable, so no mutexes
 - * Problem only fails at stage of searching the PG

THE GRAPHPLAN ALGORITHM

× GRAPHPLAN algorithm

+ Generates the Planning Graph & extracts a solution directly

```
function GRAPHPLAN(problem) return solution or failure

graph \leftarrow INITIAL-PLANNING-GRAPH(problem)

goals \leftarrow CONJUNCTS(problem. GOAL)

nogoods \leftarrow an empty hash table

for tl = 0 to \infty do

if goals all non-mutex in S<sub>t</sub> of graph then

solution \leftarrow EXTRACT-SOLUTION(graph, goals, NUMLEVELS(graph), nogoods)

if solution \neq failure then return solution

if graph and nogoods have both leveled off then return failure

graph \leftarrow EXPAND-GRAPH(graph, problem)
```

EXTRACT-SOLUTION: search for a plan that solves the problem. EXPAND-GRAPH: adds a new level

EXAMPLE: SPARE TIRE PROBLEM

PDDL of spare tire problem (problem of changing a flat tire)

```
Init(At(Flat, Axle) \land At(Spare, Trunk))
                                                 Goal is to have a good spare tire
                                                 properly mounted onto the car's axle,
Goal(At(Spare, Axle))
                                                 Initial state has a flat tire on the axle
Action(Remove(Spare, Trunk)
                                                 and a good spare tire in the trunk.
     PRECOND: At(Spare, Trunk)
     EFFECT: ¬At(Spare, Trunk) ∧ At(Spare, Ground))
Action(Remove(Flat, Axle)
     PRECOND: At(Flat, Axle)
     EFFECT: ¬At(Flat, Axle) ∧ At(Flat, Ground))
Action(PutOn(Spare, Axle)
     PRECOND: At(Spare, Ground) \land \neg At(Flat, Axle)
     EFFECT: At(Spare, Axle) ^ ¬At(Spare, Ground))
Action(LeaveOvernight
     PRECOND:
     EFFECT: \neg At(Spare, Ground) \land \neg At(Spare, Axle)
               \wedge \neg At(Spare, Trunk) \wedge \neg At(Flat, Ground) \wedge \neg At(Flat, Axle))
```


Notes:

- This figure shows the complete Planning Graph for the problem
- Arcs show mutex relations (arcs between literals are omitted to avoid clutter)
- > Omits unchanging positive literals (for example, Tire(Spare))
- > Omits irrelevant negative literals
- Bold boxes & links indicate the solution plan

S_0 is initialized to 5 literals

- from the problem initial state and the relevant negative literals
- no goal literal in S_o so <u>EXPAND-GRAPH add</u> <u>actions</u>
 - > those with preconditions satisfied in S_0
 - also adds persistence actions for literals in S₀
 - adds the effects at level S₁, analyzes & adds m utex relations
- repeat until the goal is in level S_i or failure

Init(At(Flat, Axle) At(Spare, Trunk))

Goal(At(Spare, Axle))

Action(Remove(Spare, Trunk) PRECOND: At(Spare, Trunk) EFFECT: ¬At(Spare, Trunk) ∧ At(Spare, Ground)) Action(Remove(Flat, Axle) PRECOND: At(Flat, Axle) EFFECT: ¬At(Flat, Axle) ∧ At(Flat, Ground)) Action(PutOn(Spare, Axle) PRECOND: At(Spare, Ground) ∧ ¬At(Flat, Axle) EFFECT: At(Spare, Axle) ∧ ¬At(Spare, Ground)) Action(LeaveOvernight PRECOND: EFFECT: ¬At(Spare, Ground) ∧ ¬At(Spare, Axle) ∧ ¬At(Spare, Trunk) ∧ ¬At(Flat, Ground) ∧ ¬At(Flat, Axle))

EXPAND-GRAPH adds constraints: mutex relations

- > inconsistent effects (action x vs action y)
 - Remove(Spare, Trunk) & LeaveOvernight:
 - > At(Spare, Ground) & ¬At(Spare, Ground)
- > interference (effect negates a precondition)
 - > Remove(Flat, Axle) & LeaveOvernight:
 - At(Flat, Axle) as PRECOND & ¬At(Flat, Axle) as EFFECT
- competing needs (mutex preconditions)
 - > PutOn(Spare, Axle) & Remove(Flat, Axle):
 - > At(Flat, Axle) & ¬At(Flat, Axle)
- inconsistent support (actions to produce literals are mutex)
 - in S2, At(Spare, Axle) & At(Flat, Axle): only way to achieve At(Spar e, Axle) is by PutOn(Spare,Axle) and that is mutex with the only a ction for obtaining At(Flat,Axle).

Init(At(Flat, Axle) < At(Spare, Trunk))

Goal(At(Spare, Axle))

```
Action(Remove(Spare, Trunk)

PRECOND: At(Spare, Trunk)

EFFECT: ¬At(Spare, Trunk) ∧ At(Spare, Ground))

Action(Remove(Flat, Axle)

PRECOND: At(Flat, Axle)

EFFECT: ¬At(Flat, Axle) ∧ At(Flat, Ground))

Action(PutOn(Spare, Axle)

PRECOND: At(Spare, Ground) ∧ ¬At(Flat, Axle)

EFFECT: At(Spare, Axle) ∧ ¬At(Spare, Ground))

Action(LeaveOvernight

PRECOND:

EFFECT: ¬ At(Spare, Ground) ∧ ¬ At(Spare, Axle)

∧ ¬ At(Spare, Trunk) ∧ ¬ At(Flat, Ground)

∧ ¬ At(Flat, Axle) )
```


In S2, the goal literals exist, and they are not mutex with any other

- Just 1 goal literal so obviously not mutex with any other goal
- Since a solution may exist, EXTRACT-SOLUTION tries to find it

EXTRACT-SOLUTION as backward search problem (other methods possible)

- Initial state: last level of the PG, S_n, along with the goals from the planning problem
- Actions from S_i
 - > Select any conflict-free actions in A_{i-1} with effects covering the goals
 - Conflict free = no 2 actions are mutex & no pair of their preconditions are mutex
- Goal: <u>Reach a state at level S₀ such that all goals are satisfied</u>
- Cost: 1 for each action

GRAPHPLAN SOLUTIONS

× If EXTRACT-SOLUTION fails

- + At that point it <u>records</u> (level, goals) as a "no-good"
- + Subsequent calls can fail immediately if they require the same g oals at that level
- × Complexity
 - + We already know planning problems are computationally hard (P SPACE-complete)
 - × Require good heuristics
 - + Heuristic for choosing an action at each level in backward search
 - Greedy search with level cost of literals
 - × 1. Pick literal with highest level cost
 - \times 2. To achieve it, pick actions with easier preconditions
 - * Choose action with smallest sum (or max) of level costs for its preconds

GRAPHPLAN SOLUTIONS

× Alternative to backward search for a solution

- + EXTRACT-SOLUTION could formulate a Boolean CSP
 - × variables are actions at each level
 - × values are Boolean: an action is either *in* or *out* of the plan
 - constraints are mutex relations & the need to satisfy each goal & pre condition

GRAPHPLAN TERMINATION

GRAPHPLAN will in fact terminate and return failure when there is n o solution.

- * Recall that level off means consecutive PG levels are identical
- Now note that a graph may level off before a solution can be fou nd, on a problem for which there is a solution
 - + Ex. Air Cargo: 1 plane and n pieces of cargo at airport A, all of which have airport B as their destination. Where only one piece of cargo can fit in the plane at a time.
 - Graph levels off at level 4, from which full solution can't be extracted (that would r equire 4n 1 steps)
- We need to take account of the no-goods (goals that were not ac hievable) as well
 - + If it is possible that there might be fewer no-goods in the next level, then we should continue
- Graph itself and the no-goods have both leveled off, with no solu tion found, we can terminate with failure

GRAPHPLAN TERMINATION

- x Does GRAPHPLAN terminate?
- Evidences that both graph and no-goods will level off
 - + Literals increase monotonically (and there are finite # of them)
 - imes Once a literal appears, its persistence action causes it to stay
 - + Actions increase monotonically (and there are finite # of them)
 - × Once preconditions (literals) of an action appear at one level, they will a ppear at subsequent levels, and thus so will the action.
 - + Mutexes decrease monotonically
 - \times Of 2 actions are mutex at $A_{i},$ they are also mutex at all previous levels wh ere they appear
 - \star The graph simplifying conventions may not show it
 - × Same holds for 2 literals
 - + No-goods decrease monotonically
 - If a set of goals is not achievable at level i, they are not achievable at an y previous level