
Classical Planning

Chapter 10

Chapter 10 1

Outline

♦ Search vs. planning

♦ PDDL operators

♦ Planning algorithms

♦ Situation calculus

Chapter 10 2

Search vs. planning

Planning: Devising a sequence of actions to achieve one’s goal.

We have seen two planning agents so far:
♦ Search-based problem solving agent

- can find sequences of actions that result in a goal state.
- but deals with atomic states (needs good domain-specific heuristics)

♦ hybrid logical agents: logical condition-action rule + searching
- can find plans without domain-specific heuristics

(uses domain-independent heuristics based on the
logical structure of the problem)

- but relies on ground (variable-free) propositional inference
(it may be over worked when there are many actions and states.)

We want representation for planning problems
that scales up to problems unable to be handled by earlier approaches.

Chapter 10 3

Classical planning environment

The assumptions for classical planning problems
♦ Fully observable

we see everything that matters
♦ Deterministic

the effects of actions are known exactly
♦ Static

no changes to environment other than those caused by agent actions
♦ Discrete

changes in time and space occur in quantum amounts
♦ Single agent

no competition or cooperation to account for

Chapter 10 4

How to represent Planning Problem

What is a good representation?
– Expressive enough to describe a wide variety of problems
– Restrictive enough for efficient algorithms to operate on it
– Planning algorithm should be able to take advantage

of the logical structure of the problem

Historical AI planning languages
– STRIPS was used in classical planners

Stanford Research Institute Problem Solver
– ADL addresses expressive limitations of STRIPS

Action Description Language
Adds features not in STRIPS

negative literals, quantified variables, conditional effects, equality
We’ll look at a simpler version of PDDL (currently used widely)

Chapter 10 5

How to represent Planning Problem

* figure adopted from [J. Rintane, ”Algorithms for Classical Planning.” IJCAI/AAAI 2011]

Chapter 10 6

PDDL

PDDL = Planning Domain Definition Language
← standard encoding language for “classical” planning tasks

Components of a PDDL planning task:
♦ Objects: Things in the world that interest us. ♦ Predicates: Properties
of objects that we are interested in;

can be true or false. ♦ Initial state: The state of the world that
we start in. ♦ Goal specification: Things that we want to be true.
♦ Actions/Operators: Ways of changing the state of the world.

PDDL can also be described as what we need for search algorithm:
1) initial state
2) actions that are available in a state
3) result of applying an action
4) and goal test

Chapter 10 7

PDDL operators: States

States: ♦ Factored representation used:
Each state is represented as a collection of variables

♦ Represented as a conjunction of fluent (ground, functionless atoms).

♦ Database semetics is used:
– Closed-world assumption: Fluent that are not mentioned are false.
– Unique names assumption: States named differently are distinct.

Following are not allowed:
At(x, y) (non-ground), ¬Poor (negation),
and At(Father(Fred), Sydney) (use function symbol)

Chapter 10 8

PDDL operators: States

PDDL state representation allows alternative algorithms
it can be manipulated either by logical inference techniques or by
set operations (sets may be easier to deal with)

* Fluents: Predicates and functions whose values vary from by time (situa-
tion).
Ground term: a term with no variables.
Literal: positive or negative atomic sentence.

Initial state is conjunction of ground atoms.

Goal is also a conjunction (∧) of literal (positive or negative) that may
contain variables.

The problem is solved when we can find a sequence of actions that end in a
state s that entails the goal.
Ex. state Rich∧Famous∧Miserable entails the goal Rich∧Famous,
Ex. state Plane(Plane1)∧At(Plane1, SFO) entails the goalAt(p, SFO)∧

Chapter 10 9

Plane(p).

Chapter 10 10

PDDL operators: Action schema

Actions: described by a set of action schemas
Implicitly define the ACTIONS(s) and RESULT (s, a).

Classical planning concentrates on problems where most actions leave most
things unchanged.

PDDL specify the result of an action in terms of what changes;
everything that stays the same is left unmentioned.

Action schema: composes of
1) Action name,
2) List of all the variable used in the schema,
3) A Precondition

defines the states in which the action can be executed
conjunctions of literals

4) An Effect
defines the result of executing the action
conjunctions of literals

Chapter 10 11

PDDL operators: Action schema

Action schema for flying a plane from one location to another:
Action(Fly(p, from, to),

PRECOND: At(p, from)∧Plane(p)∧Airport(from)∧Airprot(to)
EFFECT: ¬At(p, from) ∧ At(p, to)

Value subtituted for the variables:
Action(Fly(P1, SFO, JFK),

PRECOND:At(P1, SFO)∧Plane(P1)∧Airport(SFO)∧Airprot(JFK)
EFFECT: ¬At(P1, SFO) ∧ At(p, JFK)

Chapter 10 12

PDDL operators: Action schema

Action a is applicable in state s if the preconditions are staisfied by s.
i.e., s entails the precondition of a
i.e., s |= q iff every positive literal in q is in s and
every negated literal in q is not.

a ∈ Actions(s) ⇔ s |= Precond(a)

When an action schema a contains variables, it may have multiple applicable
instantiations.
– If an action a has v variables, then, in a domain with k unique names of
objects, it takes O(vk) time in the worst case to find the applicable ground
actions.
– Impractical when v and k are large

Chapter 10 13

PDDL operators: Result

Result of executing action a in state s is defined as a state s′

Result s′ is represented by the set of fluents formed by
1. Starting with s,
2. Remove the fluents that are negative literals in the action’s effects.

What we call the delete list or DEL(a) 3. Add the fluents that are positive
literals in the actions effects

What we call the add list or ADD(a)

Result(s, a) = (s−Del(a)) ∪ Add(a)
where Del(a) is the list of literals which appear negatively in the effect of
a, and Add(a) is the list of positive literals in the effect of a.

Ex. in Fly(P1, SFO, JFK) we removeAt(P1, SFO) and addAt(P1, JFK).

*In PDDL the times and states are implicit in the action schemas:
– The precondition always refers to time t and the effect to time t + 1.

Chapter 10 14

PDDL: Cargo transportation planning problem

PRECOND:

EFFECT:

PRECOND:

EFFECT:

PRECOND:

EFFECT:

Figure 10.1 A PDDL description of an air cargo transportation planning problem.

At means “available for use at a given location.”

In problem of spurious actions such as Fly(P1,JFK,JFK),
It is common to ignore such problems, because they seldom cause incor-

rect plans to be produced.

Chapter 10 15

An example domain: the blocks world

The domain consists of:
1. A table, a set of cubic blocks and a robot arm;
2. Each block is either on the table or stacked on top of another block
3. The arm can pick up a block and move it to another position
either on the table or on top of another block;
4. The arm can only pick up one block at time, so it cannot pick up a

block
which has another block on top.

A goal is a request to build one or more stacks of blocks specifed in terms
of what blocks are on top of what other blocks

Chapter 10 16

State descriptions

Blocks are represented by constants A,B,C, . . . etc. and an additional con-
stant Table representing the table.

The following predicates are used to describe states:

On(b, x) block b is on x, where x is either another block
or the table

Clear(x) there is a clear space on x to hold a block

Chapter 10 17

Planning algorithms

Planning problem = planning domain + initial state + goal

So far, in the search lectures, we only looked at forward search from the
initial state to a goal state

One of the nice advantages of the declarative representation of action schema
is that we can also search backward from the goal, looking for the initial stat.

(a) Forward (progression)
state-space search

(b) Backward (regression)
relevant-state search

(a)

(b)

At(P1, A)
Fly(P1, A, B)

Fly(P2, A, B)

Fly(P1, A, B)

Fly(P2, A, B)

At(P2, A)

At(P1, B)

At(P2, A)

At(P1, A)

At(P2, B)

At(P1, B)

At(P2, B)

At(P1, B)

At(P2, A)

At(P1, A)

At(P2, B)

Chapter 10 18

Planning algorithms: Forward state-space search

Forward (progression) state-space search:
♦ Search through the space of states, starting in the

initial state and using the problem’s actios to search
forward for a member of the set of goal states.

♦ Prone to explore irrelevant actions

♦ Planning problems often have large state space.

♦ The state-space is concrete,
i.e. there is no unassigned variables in the states.

Chapter 10 19

Planning algorithms: Backward state-space search

Backward (regression) relevant-state search:
♦ Search through set of relevant states,

staring at the set of states representing the goal and
using the inverse of actions to search backward for the init. state.

♦ Only considers actions that are relevant to the goal (or current state).
♦ Works only when we know how to regress from a state

description to the predecessor state description.
Ex. n-queens problem: not easy to describe states that are one move

away from goal.
♦ Need to deal with partially instantiated actions and

state, not just ground ones.
(Some variable may not be assigned values.)

♦ Keeps the branching factor lower than forward search, for most problem
domains

However, uses state sets rather than individual states - good heuristics
hard to get.

Chapter 10 20

Reason majority of current systems favor forward search.

Chapter 10 21

Planning algorithms: Backward state-space search

The PDDL representation was designed to make it easy to regress actions
- if a domain can be expressed in PDDL, then we can do regression search

Given a ground goal description g and a ground action a, the regression from
g over a gives us a state description g! defined by

g! = (gADD(a)) ⋃
Precond(a)

* Note that DEL(a) does not appear in the formula
while we know the fluents in DEL(a) are no longer true after the action,
we don‘t know whether or not they were true before (do nothing)

Chapter 10 22

Planning algorithms: Backward state-space search

Deciding which actions are candidates to regress over:

– In the forward direction we chose actions that were applicable
+ those actions that could be the next step in the plan.

– In backward search we want actions that are relevant
+ those actions that could be the last step in a plan leading up to the

current goal state.
+ at least one of the actions effects (+ or -) must unify with an element

of the goal.
+ action must not have any effect (+ or -) that negates an element of

the goal.

Chapter 10 23

PDDL: Block-world problem

Start State Goal State

B A

C

A

B

C

Initial state:
On(A, Table) ∧On(B,Table) ∧On(C,A)

Goal:
On(A,B) ∧On(B,C)

Chapter 10 24

PDDL: Block-world problem

PRECOND:

,

EFFECT:

PRECOND: ,

EFFECT:

Figure 10.3 A planning problem in the blocks world: building a three-block tower. One solution is

the sequence .

Chapter 10 25

Goal stack planning

We work backwards from the goal,
looking for an operator which has one or more of the goal literals
as one of its effects and then trying to satisfy the
preconditions of the operator.

The preconditions of the operator become subgoals that must be satisfed.

We keep doing this until we reach the initial state.

Goal stack planning uses a stack to hold goals
and actions to satisfy the goals,
and a knowledge base to hold the current state, action schemas and

domain axioms

Goal stack is like a node in a search tree;
if there is a choice of action, we create branches

Chapter 10 26

Goal stack planning pseudocode

Push the original goal on the stack.

Repeat until the stack is empty:
– If stack top is a compound goal, push its unsatisfed subgoals on the stack.
– If stack top is a single unsatisfed goal,

+ replace it by an action that makes it satisfed and
+ push the action‘s precondition on the stack.

– If stack top is an action,
+ pop it from the stack,
+ execute it and change the knowledge base by the action‘s effects.

– If stack top is a satisfed goal, pop it from the stack.

Chapter 10 27

Heuristics for planning

An admissible heuristic can be derived by defining a relaxed problem that is
easier to solve.
1. Heuristics that add edges to the graph.

♦ Ignore precondition heuristic:
Drop (all) preconditions from actions (adds edges to graphs).

from

Action(Fly(p, from, to),
PRECOND: At(p, from)∧Plane(p)∧Airport(from)∧Airport(to)
EFFECT: ¬At(p, from) ∧ At(p, to)

to

Action(Fly(p, from, to),
PRECOND:
EFFECT: ¬At(p, from) ∧ At(p, to)

Chapter 10 28

Still expensive (NP-hard)

It is also possible to ignore only selected preconditions of actions.

Chapter 10 29

Heuristics for planning cont.

♦ Ignore delete list heuristics:
Removing all negative literals from effects (makes monotonic progress

towards the goal).

from

Action(Fly(p, from, to),
PRECOND: At(p, from)∧Plane(p)∧Airport(from)∧Airport(to)
EFFECT: ¬At(p, from) ∧ At(p, to)

to

Action(Fly(p, from, to),
PRECOND: At(p, from)∧Plane(p)∧Airport(from)∧Airport(to)
EFFECT: ∧At(p, to)

The relaxed problems are still expensive (NP-hard).
Approximate solution can be found in polynomial time by hill-climbing

Chapter 10 30

Heuristics for planning cont.

2. Heuristics that decrease the number of states by forming a state abstrac-
tion

a many-to-one mapping from states in the ground representation of the
problem to the abstract representation.

♦ Ignore some fluents
Ex. Drop all the At fluents except for the ones involving one plane and

one package at each of the 5 airports.

Chapter 10 31

