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Constraint satisfaction problems (CSPs)

Standard search problem:
state is a “black box”– any old data structure that supports
goal test, eval, successor

CSP:
♦ state is defined by variables Xi with values from domain Di:

factor representation
♦ goal test is a set of constraints specifying allowable

combinations of values for subsets of variables
♦ A problem is solved when each variable has a value that satisfies

all the constraints.

CSP allows useful general-purpose heuristic algorithms with more power than
standard search algorithms that use problem-specific heuristics by taking
advantage of the structure of states.
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Defining CSPs

CSP consists of three components, X , D, and C:
– set of variables X = X1, X2, ..., Xn.
– set of domains D = D1, D2, ..., Dn.
– set of constraints that specify allowable combinations of values.

Di consists of a set of allowable values, v1, ..., vk for Xi.
Ci consists of a pair < scope, rel >, where scope is a tuple of variables
that participate in the constraint and rel is a relation that defines the values
that those variables can take on.

ex. ”two variables must have different values“:
< (X1, X2), [(A,B), (B,A)] > or < (X1, X2), X1! = X2 >.
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Example: Map-Coloring

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania
Variables WA, NT , Q, NSW , V , SA, T
Domains Di = {red, green, blue}
Constraints: adjacent regions must have different colors

e.g., WA 6= NT (if the language allows this), or
(WA,NT ) ∈ {(red, green), (red, blue), (green, red), (green, blue), . . .}

AIMA-3rd Chapter 6 5



Example: Map-Coloring contd.

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

TasmaniaSolutions are assignments satisfying all constraints, e.g.,
{WA= red,NT = green,Q= red,NSW = green, V = red, SA= blue, T = green}

Solution to CSP is consistent, complete assignment of variables that
defines the states.
Consistent assignment assigns values to variables such that all asignment
is legal.
Complete assignment assigns values to all variable in the state.
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Constraint graph

Binary CSP: each constraint relates at most two variables

Constraint graph: nodes are variables, arcs show constraints

Victoria

WA

NT

SA

Q

NSW

V

T

General-purpose CSP algorithms use the graph structure
to speed up search. E.g., Tasmania is an independent subproblem!
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Types of Vairable in CSP

Discrete variables
Finite domains; size d ⇒ O(dn) complete assignments

– e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)
– e.g., 8-queens problem where variables Qi are the positions of each

queen in columes 1...8.
Infinite domains (integers, strings, etc.)

– e.g., job scheduling without a deadline, variables are start/end days
for each job

– need a constraint language, e.g., precedence constraint StartJob1+
5 ≤ StartJob3

– linear constraints on integers solvable, but no solutions to nonlinear
constrains on integer variable.

Continuous variables
– e.g., start/end times for Hubble Space Telescope observations
– linear constraints solvable in polynomial time by Linear Programming

methods, where constraints must be linear equalities or inequalities.
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Types of constraints in CSP

Unary constraints involve a single variable,
e.g., SA 6= green

Binary constraints involve pairs of variables,
e.g., SA 6= WA

Global constraints involve arbitrary number of variables,
e.g., cryptarithmetic column constraints

Preferences (soft) constraints, e.g., red is better than green

often representable by a cost for each variable assignment
→ constrained optimization problems

AIMA-3rd Chapter 6 9



Example: Cryptarithmetic puzzles

Example of global constraint and n-ary constraints.

OWTF U R

+
OWT
OWT

F O U R

X2 X1X3

Variables: F T U W R O and aux. variable X1 X2 X3

Domains: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
Constraints

alldiff(F, T, U,W,R,O)
O +O = R + 10 ·X1

X1 +W +W = U + 10 ·X2

X2 + T + T = O + 10 ·X3

X3 = F .
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Real-world CSPs

Real-world problems are mix of hard constaints and perference constrains.

Assignment problems
e.g., who teaches what class

Timetabling problems
e.g., which class is offered when and where?

Hardware configuration
Spreadsheets
Transportation scheduling
Factory scheduling
Floorplanning

* Notice that many real-world problems involve real-valued variables
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Standard search formulation (incremental)

Let’s start with the straightforward, dumb approach, then fix it

States are defined by the values assigned so far

♦ Initial state: the empty assignment, { }

♦ Successor function: assign a value to an unassigned variable
that does not conflict with current assignment.
⇒ fail if no legal assignments (not fixable!)

♦ Goal test: the current assignment is complete

– This is the same for all CSPs!
– Every solution appears at depth n with n variables

⇒ use depth-first search
– Path is irrelevant, so can also use complete-state formulation
– b= (n− ℓ)d at depth ℓ, hence n!dn leaves!!!!
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Constraint propagation: Local consistancies

In CSP, an algorithm can not only search but also choose to do a specific
type of inference called constaint propagation.

Constaint propagation:
– use the constraints to reduce the number of legal values for a variable,

which propagates to reduce legal values for another variable.
– can be intertwined with search, or maybe done as prepocessing step.

The process of enforcing local consistency in each part of the constaint
graph causes inconsistent values to be eliminated thought the graph.

– Node consistency
– Arc consistency
– Path consistency
– K-consistency
– Global-consistency
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Node consistency

A single variable in the constraint graph is node-consistent if all the values
in the variable’s domain satisfy the variable’s unary constraints.

A network (graph) is node-consistent if every variable in the network is node-
consistent.

All unary constaints can be transformed into binary one. (we will look at
binary constaint solvers and assume unary constaints can be solved as well.)
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Arc-consistency

A variable CSP is arc-consistent if every value in its domain satisfies the
variable’s binary constraints

A network (graph) is arc-consistent if every variable in the network is arc-
consistent.

E.g., constaint Y = X2 where domain of X and Y are digits
explicit form: < (X, Y ), (0, 0), (1, 1), (2, 4), (3, 9) >
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Arc-consistency: algorithm AC-3

function AC-3( ) returns false if an inconsistency is found and true otherwise

inputs: , a binary CSP with components

local variables: , a queue of arcs, initially all the arcs in

while is not empty do

REMOVE-FIRST( )

if REVISE( , ) then

if size of then return

for each in .NEIGHBORS - do

add ( ) to

return

function REVISE( , ) returns true iff we revise the domain of

for each in do

if no value in allows ( , ) to satisfy the constraint between and then

delete from

return
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Arc-consistency: algorithm AC-3 cont.

Queue maintained can be just a set. (order does not matter)

Complexity of AC-3: O(cd3)
Assume a CSP with n variables, each with domain size at most d, and

with c binary constraints (arcs).
Each arc (Xk, Xi) can be inserted in the queue only d times because Xi

has at most d values to delete.
Checking consistency of an arc can be done in O(d2) time,
so we get O(cd3) total worst-case time.

Arc consistency can be generalized to n-ary constaints. (generalized arc
consistent)
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Path-consistency

Path consistency tightens the binary constraints by using implicit constraints
that are inferred by looking at triples of variables.

A two-variable set Xi, Xj is path-consistent with respect to a third variable
Xm if,
for every assignment Xi = a,Xj = b consistent with the constraints on
Xi, Xj, there is
an assignment to Xm that satises the constraints on Xi, Xm and Xm, Xj.

* The PC-2 algorithm (Mackworth, 1977) achieves path consistency in much
the same way that AC-3 achieves arc consistency.

AIMA-3rd Chapter 6 18



k-consistency

A CSP is k-consistent if, for any set of k1 variables and for any consistent
assignment to those variables, a consistent value can always be assigned to
any kth variable.

1-consistency says that, given the empty set, we can make any set of one
variable consistent (node consistency)
2-consistency is the same as arc consistency.
For binary constraint networks, 3-consistency is the same as path consistency.

A CSP is strongly k-consistent if it is k-consistent and is also (k 1)-
consistent, (k 2)-consistent, ... all the way down to 1-consistent.
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Global-consistency

Note: global constraint is one involving an arbitrary number of variables (but
not necessarily all variables)

Global constraints occur frequently in real problems and can be handled by
special-purpose algorithms that are more efcient than the general-purpose
methods described so far. e.g., Alldiff

One simple form of inconsistency detection for Alldiff constraints works as
follows:

if m variables are involved in the constraint, and if they have n possible
distinct values altogether, andm > n, then the constraint cannot be satised.

Generalized algorithm for detecting inconsistency in Alldiff :
– remove any variable in the constraint that has a singleton domain,
– delete that variables value from the domains of the remaining variables
– repeat as long as there are singleton variables.
– If at any point an empty domain is produced or there are more variables
than domain values left, then an inconsistency has been detected.
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Global-consistency

resource constraint (atmost constraint)
e.g., The constraint that no more than 10 personnel are assigned in total

is written as Atmost(10, P1, P2, P3, P4).

CSP is bounds consistent if for every variable X , and for both the lower-
bound and upper-bound values of X , there exists some value of Y that
satises the constraint between X and Y for every variable Y

AIMA-3rd Chapter 6 21



Backtracking search

Some problems,e.g. Sudoku can be solved by inference over constraints. But
many other CSPs cannot be solved by inference alone; we must search for a
solution as well.

We utilized commutative property of CSPs. A proble is commutative if the
order of application of any given set of action has no effect on the outcome.

−→ Only need to consider assignments to a single variable at each node
⇒ b= d and there are dn leaves
O(dn) leaves constructed.

Depth-first search for CSPs with single-variable assignments and backtracks
when a variable has no legal values left to assign is called backtracking
search

– basic uninformed algorithm for CSPs
– keeps only a single representation of a state and alters that represen-

tation rather than creating new ones

AIMA-3rd Chapter 6 22



Backtracking search algorithm

function BACKTRACKING-SEARCH( ) returns a solution, or failure

return BACKTRACK( , )

function BACKTRACK( , ) returns a solution, or failure

if is complete then return

SELECT-UNASSIGNED-VARIABLE( )

for each in ORDER-DOMAIN-VALUES( , , ) do

if is consistent with then

add = to

INFERENCE( , , )

if then

add to

BACKTRACK( , )

if then

return

remove = and from

return

Figure 6.5 A simple backtracking algorithm for constraint satisfaction problems. The algo-

rithm is modeled on the recursive depth-first search of Chapter ??. By varying the functions

SELECT-UNASSIGNED-VARIABLE and ORDER-DOMAIN-VALUES, we can implement the general-

purpose heuristics discussed in the text. The function INFERENCE can optionally be used to impose

arc-, path-, or k-consistency, as desired. If a value choice leads to failure (noticed either by INFERENCE

or by BACKTRACK), then value assignments (including those made by INFERENCE) are removed from

the current assignment and a new value is tried.
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Backtracking example
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Backtracking example
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Backtracking example
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Backtracking example
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