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Review

Chapter 3: uninformed and informed searching were systematic algorithms
for solving problems with following characteristics:

♦ Observable

♦ Deterministic

♦ Known environment

♦ Solution were sequence of actions
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Outline

Assumptions relaxed: state space is not completely known.

♦ Hill-climbing

♦ Simulated annealing

♦ Genetic algorithms

♦ Local search in continuous spaces (briefly)
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Local search

Local search: algorithms that perform local search in the state space, eval-
uating and modifying one or more current states rather than systematically
exploring paths from an initial state.

♦ Operate using a single (or few) current node and gererally move only to
neighbors of the node.

♦ Paths followed are not retained

♦ No goal test and path cost

♦ Use very little memory usage and can find reasonable solutions in large
or infinte state space.

♦ Suitable form for problems in which all that matters is the solution state,
not the path cost to reach it. EX) Pure optimization problems, in which the
aim is to find the best state according to an objective function.
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Iterative improvement algorithms

In many optimization problems, path is irrelevant;
the goal state itself is the solution according to an objective function

Then state space = set of complete-state formulation configurations, i.e.
configuration of all atoms in proteins;

find optimal configuration, e.g., 8-queens problem

In such cases, can use iterative improvement algorithms;
keep a single “current” state, try to improve it

List of combinatorial optimization algorithms: genetic algorithms, simulated
annealing, Tabu search, ant colony optimization, river formation dynamics
(see swarm intelligence) and the cross entropy method.

Constant space, suitable for online as well as offline search
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Example: n-queens

Put n queens on an n× n board with no two queens on the same
row, column, or diagonal

Move a queen to reduce number of conflicts, our heuristic cost function h(n)
or objective function

h = 5 h = 2 h = 0

Almost always solves n-queens problems almost instantaneously
for very large n, e.g., n= 1 million
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Hill-climbing (or gradient ascent/descent)

Also called greedy local search

“Like climbing Everest in thick fog with amnesia”

function Hill-Climbing( problem) returns a state that is a local maximum

inputs: problem, a problem

local variables: current, a node

neighbor, a node

current←Make-Node(Initial-State[problem])

loop do

neighbor← a highest-valued successor of current

if Value[neighbor] ≤ Value[current] then return State[current]

current←neighbor

end

steepest-ascent version
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Hill-climbing contd.

Useful to consider state space landscape

current
state

objective function

state space

global maximum

local maximum

"flat" local maximum

shoulder
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Hill-climbing contd.

Unfortunately, hill climbing often get stuck for the following reasons:

♦ Local maxima
♦ Ridges
♦ Plateaux

Stochastic hill climbing choose at random(porbabilistically by steepness)
from among the uphill moves – coverges more slowely but can find better
solutions. Still gets stuck in the local minimal/maximal

Random-restart hill climbing try many restart from different start states and
choose the best one - trivially complete as probability approaching 1.

NP-hard problems typically have an exponential number of local maximas.
However, reasonalby good local maximum can often be found after a small
number of restarts.
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Simulated annealing

Idea: Pick a random move,

if the move that improves the objective function always accept the move,

otherwise accept the “bad” move with some probabilty less than 1.

Gradually decreasing “bad” move frequency.

Probability decreases exponentially with the “badness” of the move and as
the “temperature” T goes down

If the schedule lowers the T slowly enough, the algorithm will fund a global
optimum with probabilty approaching 1.
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Simulated annealing algorithm

function Simulated-Annealing( problem, schedule) returns a solution state

inputs: problem, a problem

schedule, a mapping from time to “temperature”

local variables: current, a node

next, a node

T, a “temperature” controlling prob. of downward steps

current←Make-Node(Initial-State[problem])

for t← 1 to ∞ do

T← schedule[t]

if T = 0 then return current

next← a randomly selected successor of current

∆E←Value[next] – Value[current]

if ∆E > 0 then current←next

else current←next only with probability e∆ E/T
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Properties of simulated annealing

At fixed “temperature” T , state occupation probability reaches
Boltzman distribution* (= Gibbs Distribution): Distribution function f(E)
probability that a particle is in energy state E.

f(E(x)) =
1

Ae
E(x)
kT

T decreased slowly enough =⇒ always reach best state x∗

Devised by Metropolis et al., 1953, for physical process modelling

Widely used in ab initio protein structure prediction, Very-large-scale in-
tegration (VLSI) for creating integrated circuits layout, airline scheduling,
etc.
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Local beam search

Idea: keep k states instead of 1; choose top k of all their successors

Not the same as k searches run in parallel!
Searches that find good states recruit other searches to join them

Problem: quite often, all k states end up on same local hill

Stochastic beam search:

Idea: choose k successors randomly, biased towards good ones

Observe the close analogy to natural selection!
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Genetic algorithms

= stochastic local beam search + generate successors from pairs of states

GAs are search and optimization techniques based on Darwin’s Principle
of Natural Selection.
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Population: k randomly generated states
Indivisual: states prepresented as a string of finite alphabets
Fitness function: objective function (higher values for better states)
Crossover point: random position in the state string
Mutation: each location in a state string is subjected to random mutation
with small independent probability
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Genetic algorithms contd.
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Genetic algorithms contd.

GAs require states encoded as strings (GPs use programs)

Crossover helps iff substrings are meaningful components

+ =

GAs 6= evolution: e.g., real genes encode replication machinery!
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Local search in continuous state spaces

Suppose we want to site three airports in Romania:
– 6-D state space defined by (x1, y2), (x2, y2), (x3, y3)
– objective function f(x1, y2, x2, y2, x3, y3) =

sum of squared distances from each city to nearest airport

Discretization methods turn continuous space into discrete space,
e.g., empirical gradient considers ±δ change in each coordinate

Gradient methods compute
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to increase/reduce f , e.g., by x← x + α∇f(x)

Sometimes can solve for ∇f(x) = 0 exactly (e.g., with one city).
Newton–Raphson (1664, 1690) iterates x← x−H−1f (x)∇f(x)
to solve ∇f(x) = 0, where Hij = ∂2f/∂xi∂xj
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