INFORMED SEARCH ALGORITHMS

CHAPTER 4, SECTIONS 1-2

Chapter 4, Sections 1-2 1

Outline

> Best-first search
> A* search

> Heuristics

Chapter 4, Sections 1-2

2

Review: Tree search

function TREE-SEARCH(problem, frontier) returns a solution, or failure
frontier <— INSERT(MAKE-NODE(INITIAL-STATE[problem]), frontier)
loop do
if frontier is empty then return failure
node <— REMOVE(frontier)
if GoAL-TEST[problem] applied to STATE(node) succeeds return node
frontier <+ INSERTALL(EXPAND(node, problem), frontier)

A strategy is defined by picking the order of node expansion

Chapter 4, Sections 1-2

Best-first search

|dea: use an evaluation function for each node
— estimate of “desirability”

= Expand most desirable unexpanded node

Implementation:

frontier is a priority queue sorted in decreasing order of desirability

Special cases:
greedy search
A* search

Chapter 4, Sections 1-2

4

Romania with step costs in km

Zerind

Arad 140

92

118 .
[] Vaslui

Timisoara

[] Hirsova

[] Mehadia Urziceni

75 86

Dobreta [J

Craiova Eforie

] Giurgiu

Straight-line distance

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagar as
Giurgiu
Hirsova
|asi

L ugoj

M ehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Ur ziceni
Vadui
Zerind

Chapter 4, Sections 1-2

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
80
199
374

Greedy search

Evaluation function /(n) (heuristic)
= estimate of cost from 7 to the closest goal

E.g., hsip(n) = straight-line distance from 7 to Bucharest

Greedy search expands the node that appears to be closest to goal

Chapter 4, Sections 1-2 6

Greedy search example

366

Chapter 4, Sections 1-2

7

Greedy search example

374

Chapter 4, Sections 1-2

8

Greedy search example

s Cimisoarad Czerind >

329 374

366 176

Chapter 4, Sections 1-2 9

Greedy search example

s Cimisoarad

329

374

Chapter 4, Sections 1-2

10

Properties of greedy search

Complete??

Time??

Space??

Optimal??

Chapter 4, Sections 1-2

11

Properties of greedy search

Complete?? No—can get stuck in loops, e.g.,
lasi — Neamt — lasi — Neamt —
Complete in finite space with repeated-state checking

Time?? O(b™), but a good heuristic can give dramatic improvement

Space?? O(b")—keeps all nodes in memory

Optimal?? No

Chapter 4, Sections 1-2

12

A* search

|dea: avoid expanding paths that are already expensive
Evaluation function f(n) = g(n)+ h(n)

g(n) = cost so far to reach n
h(n) = estimated cost to goal from n
f(n) = estimated total cost of path through 7 to goal

A* search uses an admissible heuristic
i.e., h(n) < h*(n) where h*(n) is the true cost from n.
(Also require h(n) > 0, so h(G) = 0 for any goal G'.)

E.g., hsip(n) never overestimates the actual road distance

Theorem: A* search is optimal

Chapter 4, Sections 1-2

13

A" search example

366=0+366

Chapter 4, Sections 1-2

14

A" search example

393=140+253 447=118+329 449=75+374

Chapter 4, Sections 1-2 15

A" search example

449=75+374

646=280+366 415=239+176 671=291+380 413=220+193

Chapter 4, Sections 1-2 16

A" search example

~ Aad
sbu_ Cimisoarad C Zerind >

447=118+329 449=75+374

Carad D P>CFagaras> COradea > Enion Vi

646=280+366 415=239+176 671=291+380

CCraiova > Pitesti > C_Sibiu_3

526=366+160 417=317+100 553=300+253

Chapter 4, Sections 1-2 17

A" search example

~ Aad
~sbu_ Cimisoarad C Zerind >

447=118+329 449=75+374

Carad > (Fagaras> COradea > imniou Viced

646=280+366 671=291+380

G E@oed Caodb e oo

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

Chapter 4, Sections 1-2 18

A" search example

sbu_ Cimisoarad C Zerind >

447=118+329 449=75+374

Caad > Fagaras> COradea > @imicu Viced>

646=280+366 671=291+380

CSibiu_3 Pitest
591=338+253 450=450+0 526=366+160 553=300+253

>

CCraiova >

418=418+0 615=455+160 607=414+193

Chapter 4, Sections 1-2 19

Conditions for optimality of A*

admissible: h(n) is never overestimates the cost to reach the goal. (opti-
mistic) ex; straight-line distance.

consistent (or monotonic): (stronger condition) h(n) is required for A*
in graph search framework.

h(n) < c(n,a,n’) + h(n')

A heuristic h(n) is consistent if, for every node n and every successor n’ fo
n generated by any action a, the estimated cost of reaching the goal from
n is no greater than the step cost of geeting to n’ plus the estimated cost
of reaching the goal from n’

Chapter 4, Sections 1-2 20

Admissible heuristics

E.g., for the 8-puzzle:

hi(n) = number of misplaced tiles
ho(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

7 2 4

) 6

8 3 1
Start State

1 2 3
4 5 6
7 8

Goal State

Chapter 4, Sections 1-2

21

Admissible heuristics

E.g., for the 8-puzzle:

hi(n) = number of misplaced tiles
ho(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

7 2 4 1 2 3
) 6 4 5 6
8 3 1 7 8

Start State Goal State

hi(S) =77 6
ho(S) =77 4+043+3+1+0+2+1 = 14

Chapter 4, Sections 1-2 22

Dominance

If ho(n) > hyi(n) for all n (both admissible)
then /» dominates /17 and is better for search

Typical search costs:

d =14 IDS = 3,473,941 nodes
A*(hy) = 539 nodes
A*(hso) = 113 nodes

d =24 IDS =~ 54,000,000,000 nodes
A*(hy) = 39,135 nodes
A*(hy) = 1,641 nodes

Given any admissible heuristics /,, hy,
h(n) = max(hy(n), hy(n))

is also admissible and dominates 4, h,

Chapter 4, Sections 1-2 23

Relaxed problems

Admissible heuristics can be derived from the exact
solution cost of a relaxed version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere,
then /1(n) gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square,
then /5(n) gives the shortest solution

Key point: the optimal solution cost of a relaxed problem
is no greater than the optimal solution cost of the real problem

Chapter 4, Sections 1-2 24

Relaxed problems contd.

Well-known example: travelling salesperson problem (TSP)
Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in O(n?)
and is a lower bound on the shortest (open) tour

Chapter 4, Sections 1-2 25

Optimality of A* - Tree search

The tree-search version of A* is optimal if h(n) is admissible.

Suppose some suboptimal goal (-5 has been generated and is in the queue.

Let » be an unexpanded node on a shortest path to an optimal goal .
Sart

N

GO G,

=
03
D
I
=2
Q2
SD

since h(Gy) =0
g(G) since Gy is suboptimal

\YAY,
g
=

since h 1s admissible

Chapter 4, Sections 1-2 26

Since f(G5) > f(n), A* will never select (&, for expansion

Chapter 4, Sections 1-2 27

Optimality of A* - graph search

The graph-search version of A* is optimal if h(n) is consistent.

Lemma: A* using graph — search expands in nondecreasing order of f(n).
1. A heuristic is consistent if

h(n) < c¢(n,a,n’) + h(n')
If /, is consistent, we have

f(n')

|
Q

+ h(n)

|IAVARS
Q

l.e., f(n) is nondecreasing along any path.

Chapter 4, Sections 1-2 28

Optimality of A* - graph search cont.

2. Whenever A" selects a node n for expansion, the opimal path to that
node has been found.

(Proof by contradiction) - If optimal path has not been found when A* selects
a node, there would have to be another frontier node n’ on the optimal path
from the start node to n, by the graph separation property of graph-search;
because, f is nondecreasing along any path, n’ would have lower f-cost than
n and would have been selected ﬁrst.O

O
O—e—O O—e—0O
O—e—O Oo—eo—@ O
O O—.l

(a) (b) (c)

Chapter 4, Sections 1-2 29

Optimality of A* - graph search cont.

From 1. and 2. we can see that A* gradually adds “f-contours” of nodes
(cf. breadth-first adds layers)
Contour 7 has all nodes with /' = f;, where f; < fi.

Chapter 4, Sections 1-2 30

Properties of A*

Complete??

Time??

Space??

Optimal??

Chapter 4, Sections 1-2

31

Properties of A*

Complete?? Yes, unless there are infinitely many nodes with [< f(G)

Time?? Exponential in [relative error in /i X length of soln.]
Space?? Keeps all nodes in memory

Optimal?? Yes—cannot expand [, until f; is finished

A* expands all nodes with f(n) < C*
A* expands some nodes with f(n) = C"*
A* expands no nodes with f(n) > C*

Chapter 4, Sections 1-2 32

Summary

Heuristic functions estimate costs of shortest paths
Good heuristics can dramatically reduce search cost

Greedy best-first search expands lowest /
— incomplete and not always optimal

A* search expands lowest g + h
— complete and optimal
— also optimally efficient (up to tie-breaks, for forward search)

Admissible heuristics can be derived from exact solution of relaxed problems

Chapter 4, Sections 1-2 33

