

CSE 537 Fall 2015

LEARNING FROM EXAMPLES: NON-PARAMETRIC MODELS AIMA CHAPTER 18.8

× Instructor: Sael Lee

Slides are mostly made from AIMA resources

PARAMETRIC MODELS

- * Parameter models: A learning model that summarizes data with a set of parameters of **fixed size**.
 - + Use the training data to learn the fixed set of model parameter **w**, that completely describes our hypothesis $h_w(\mathbf{x})$.
 - + Model is fixed so the only **w** needed to be kept and all else (data etc.) can be thrown away.
 - + the parameters have fixed size independent of number of training examples.
- **×** Limitations of parametric models:
 - + The model is fixed and have less freedom in describing the non-canonical state space.

NONPARAMETRIC MODELS

- Nonparametric model cannot be characterized by a bounded set of parameters.
- × Can't assume a model for distribution densities
- Might be a very complicated model with large number of parameters
- Nonparametric estimation principle: <u>"Similar inputs have</u> <u>similar outputs"</u>
 - + Find similar data instances in the training data and interpolate/average their outputs

NONPARAMETRIC ESTIMATION

- Parametric estimation: all data instances affect the final glo bal estimate
 - + Global methods
- Non-parametric estimation
 - + No single global model
 - + Local models are created as needed
 - + Affected only by near-by instances
- Called Instance-based learning (memory-based learning)
 - + Let the data speak for it self.
 - + # of parameters may grow with the size of training examples
 - + Ex> hypothesis that retains all the training examples and uses them to do prediction on new data

MEMORY-BASED METHOD

- × Lazy method
 - + Store training data of size N
 - + O(N) memory
 - + O(N) search to for similar data
- × Parametric methods
 - + d parameters, d<N
 - + O(d) memory and processing

TABLE LOOKUP

- × Howto:
 - 1. use all the training example to make lookup table
 - 2. if new data come, look it up in the table
 - 3. if the new data is in the lookup table, you have the answer.
- × This does not generalize well
 - + If the lookup table does not have the match for the new data, it will need to output default value.

K-NEAREST NEIGHBOR MODELS

Improving the table lookup: k-nearest neighbor lookup

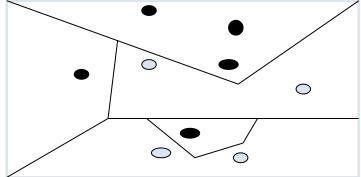
× Given a query \mathbf{x}_q , find the *k* examples that are nearest to \mathbf{x}_q : kNN(*k*, \mathbf{x}_q)

$$d_1(x) \le d_2(x) \le \cdots \le d_N(x)$$

- Classification: use the kNN(k,xq) and take the (weighted) plurality vote.
- × Regression: use the $kNN(k, \mathbf{x}_{a})$
 - + take the mean or median
 - + Or solve a linear regression problem on the neighbors.

VORONOI DIAGRAM & EFFECT OF K

* Decision surface formed by the training examples



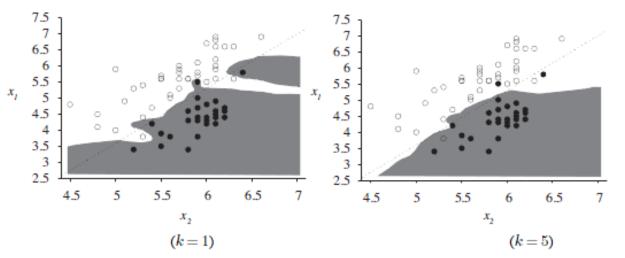


Fig. decision boundary of KNN for k=1 and k=5. low k value are subject to over fitting and high k values are subjected to under fitting. Need to learn k

DEFINING "NEAREST" IN KNN

Definition of distance is important factor in accuracy.

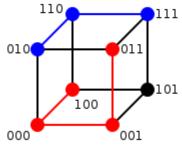
× Minkowski distance L^p norm where $1 \le p \le \infty$

$$\left(\sum |x_i - y_i|^p\right)$$

- + p=1 : Manhattan distance
- + p=2 : Euclidean distance
- + Scale variant -> each feature should be normalized to have same scales.

DEFINING "NEAREST" IN KNN CONT.

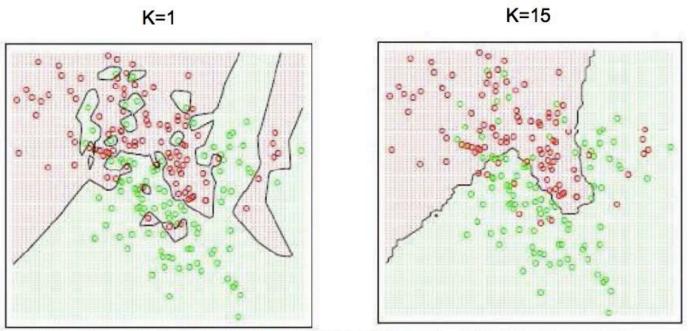
- Hamming distance: number of positions at which the corresponding symbols are different in two strings of equal length.
 - + measures the minimum number of substitutions required to change one string into the other



Two example distances: 100->011 has distance 3 (red path); 010->111 has distance 2 (blue path)

- Mahalanobis distance
 - based on correlations between variables by which different patterns can be identified and analyzed

 $D_M(x) = \sqrt{(x-\mu)^T S^{-1}(x-\mu)}$ S is the covariance matrix



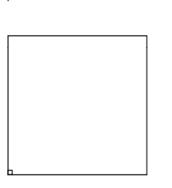
Figures from Hastie, Tibshirani and Friedman (Elements of Statistical Learning)

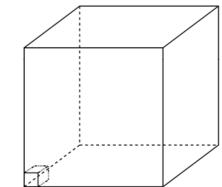
Larger k produces smoother boundary effect and can reduce the impact of class label noise.

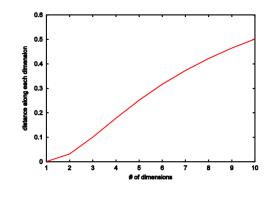
But when K = N, we always predict the majority class

CURSE OF DIMENSIONALITY IN K-NN

- × kNN breaks down in high-dimensional space
 - + "Neighborhood" becomes very large.
- Assume 5000 points uniformly distributed in the unit hypercube we want to apply 5-nn. Suppose our query point is at the origin.
 - + In 1-dimension, we must go a distance of 5/5000 = 0.001 on the average to capture 5 nearest neighbors
 - + In 2 dimensions, we must go to get a square that contains 0.001 of the volume.
 - + In d dimensions, we must go (0.001) 1/d

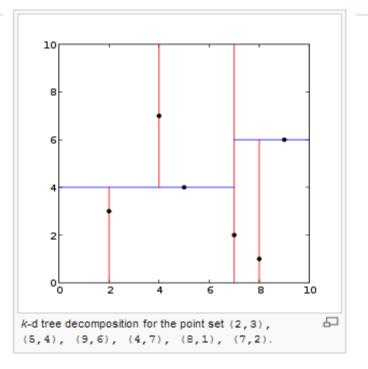


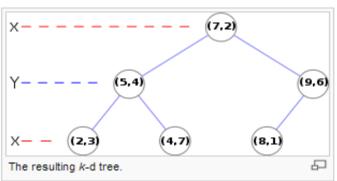




FINDING NEAREST NEIGHBORS WITH K-D TREES

- Def: A balanced binary tree over data wit an arbitrary number of dimensions.
- × Construction
 - + Start with set of examples
 - At root, split examples along the *i*th dim (*i* mode *n*) by testing
 - $x_i < m$. (half in right, half in left)
 - (let m be median of examples at ith dim)
 - Recursively make a tree from the left and right set of examples
 - stopping when there are fewer than two examples left.
- To choose a dimension to split on at each node of the tree,
 - select dimension i mod n at level i of the tree.
 - split on the dimension that has the widest spread of values.
- Note: may need to split on any given dimension several times as \proceed down the tree



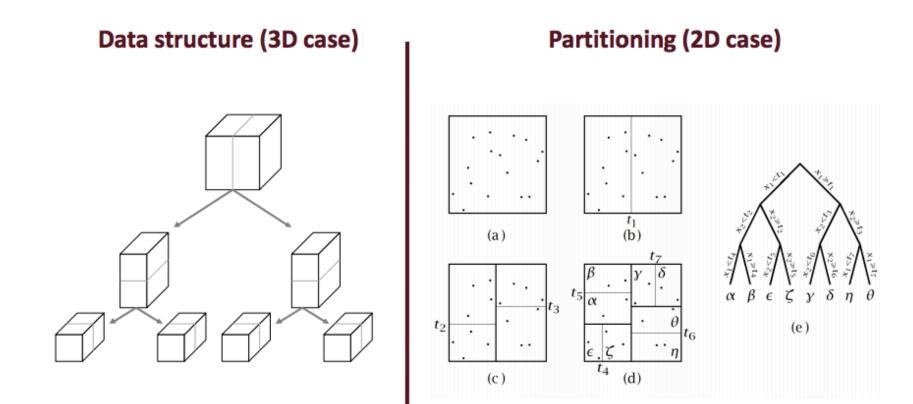


http://en.wikipedia.org/wiki/K-d_tree

FINDING NEAREST NEIGHBORS WITH K-D TREES CONT.

- Exact lookup from a k-d tree is just like lookup from a binary tree, but nearest neighbor lookup is more complicated.
- x NN Searching:
 - + Search down the branches, splitting the examples in half
 - Discard half of the example are discarded if query is far from the boundary
 - + If query falls very close to the dividing boundary:
 - The query point itself might be on the left hand side of the boundary, but one or more of the k nearest neighbors might actually be on the right-hand side.
 - × Test by computing the distance of the query point to the dividing boundary, and then searching both sides if we can't find k examples on the left that are closer than this distance.
- Because of boundary checking problem, k-d trees are appropriate only when there are many more examples than dimensions
 - + Preferably at least 2ⁿ examples.
 - + k-d trees work well with up to 10 dimensions with thousands of examples or up to 20 dimensions with millions of examples.
 - + If we don't have enough examples, lookup is no faster than a linear scan of the entire data set.

k-d tree example



LOCALITY-SENSITIVE HASHING

- * Hash codes rely on an *exact* match, how can we use hashing scheme for NN problem?
- Hashes cannot solve NN(k, xq) exactly, but with a clever use of randomized algorithms, we can find an approximate solution
- x IDEA: Place near points grouped together in the same bin
- x Approximate near-neighbor problem:
 - + If there is a point x_j that is within a radius r of x_q , than with high probability the algorithm will find a point x_i ' that is within distance c*r of q.
 - + If there is no point within radius r then the algorithm is allowed to report failure.
 - + The values of c and "high probability" are parameters of the algorithm.

LOCALITY-SENSITIVE HASHING CONT.

x Define the hash function g(x) such that,

- + for any two points x_j and x_j', the probability that they have the same hash code is small if their distance is more that c*r and is high if their distance is less than r.
- Idea: if two points are close together in an n-D space, then they will necessarily be close when projected down onto a 1D space(a line).
 - + We can discretize the line into bins (hash buckets) so that, with high probability, near points project down to exactly the same bin.
 - + Thus, the bin for point xq contains many (but not all) points that are near to xq, as well as some points that are far away

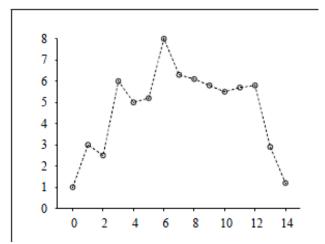
LOCALITY-SENSITIVE HASHING CONT.

- x Idea of locality-sensitive hash (LSH): create multiple random projections and combine them.
- × Creating LSH
 - + Choose L different random projections (L subset of bit-string representation)
 - + Create l hash tables, $g_1(x)$, $g_2(x)$, ..., $g_1(x)$
 - + Enter all examples to hash table.
- × Searching LSH
 - + For query x_q , fetch the set of point in bin $g_k(x)$ for each k.
 - + Union these sets together into a set of candidate point, C.
 - + Compute actual distance x_q for points in C.

NONPARAMETRIC REGRESSION

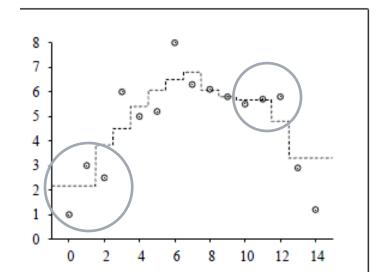
Piecewise linear nonparametric regression (Connect the dot):

- + Creates a function h(x) that, when given a query xq, solves the ordinary linear regression problem with just two points: the training examples immediately to the left and right of xq.
- + When noise is low performance not too bad, which is why it is a standard feature of charting in spreadsheets
- + But when the data are noisy, the resulting function is spiky, and does not generalize well



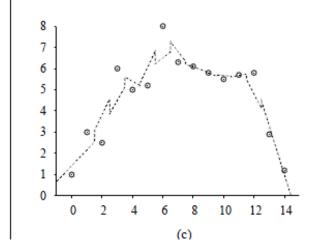
* k-nearest-neighbors regression

- + improves on connect-the-dots using k nearest neighbors (here 3) instead of using just the two examples to the left and right of a query point xq
- + h(x) is the mean value of the k points,Sum(yj/k).
- + A larger value of k tends to smooth out the magnitude of the spikes, although the resulting function has discontinuities.

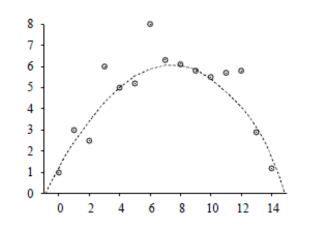


Notice that at the outlying points, near x=0 and x=14, the estimates are poor because all the evidence comes from one side (the interior)

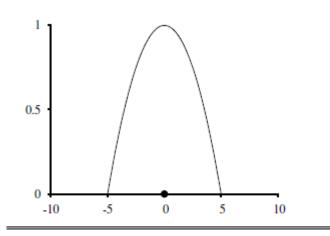
- * k-nearest-neighbor linear regression
 - + finds the best line through the
 k examples
 - This does a better job of capturing trends at the outliers, but is still discontinuous.



- x Locally weighted regression
- x gives us the advantages of nearest neighbors, without the discontinuities.
- x Idea: weight the examples
 - + For each query point xq, the examples that are close to xq are weighted heavily, and the examples that are farther away are weighted less heavily or not at all.
 - The decrease in weight over distance is always gradual, not sudden.



- * Use kernel function to decide how much to weight each example.
 - + K(Distance(xj, xq)), where xq is a query point that is a given distance from xj
 - + K should be symmetric around 0 and have a maximum at 0.
 - The area under the kernel must remain bounded as we go to ±INF.
 - + latest research suggests that the choice of kernel shape doesn't matter much but do have to be careful about the width of the kernel.



A quadratic kernel, $\mathcal{K}(d) = \max(0, 1 - (2|x|/k)^2),$

- * After selecting the kernel, regression
 follow:
- x For a given query point xq, solve the following weighted regression problem using gradient descent:

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{j} \mathcal{K}(Distance(\mathbf{x}_q, \mathbf{x}_j)) (y_j - \mathbf{w} \cdot \mathbf{x}_j)^2 ,$$

- where Distance is any of the distance metrics discussed for nearest neighbors
- x The answer is

$$h(\mathbf{x}_q) = \mathbf{w}^* \cdot \mathbf{x}_q.$$

x Note: we need to solve a new regression
problem for every query point