
LEARNING FROM EXAMPLES: NON-PARAMETRIC MODELS
AIMA CHAPTER 18.8

CSE 537 Fall 2015

 Instructor: Sael Lee

Slides are mostly made from AIMA resources

 Parameter models: A learning model that summarizes
data with a set of parameters of fixed size.
 Use the training data to learn the fixed set of model

parameter w, that completely describes our hypothesis hw(x).
 Model is fixed so the only w needed to be kept and all else

(data etc.) can be thrown away.
 the parameters have fixed size independent of number of

training examples.

 Limitations of parametric models:
 The model is fixed and have less freedom in describing the

non-canonical state space.

PARAMETRIC MODELS
AIMA Ch 18.8

 Nonparametric model cannot be characterized by a
bounded set of parameters.

 Can’t assume a model for distribution densities
 Might be a very complicated model with large number of

parameters
 Nonparametric estimation principle: “Similar inputs have

similar outputs”
 Find similar data instances in the training data and

interpolate/average their outputs

NONPARAMETRIC MODELS

 Parametric estimation: all data instances affect the final glo
bal estimate
 Global methods

 Non-parametric estimation
 No single global model
 Local models are created as needed
 Affected only by near-by instances

 Called Instance-based learning (memory-based learning)
 Let the data speak for it self.
 # of parameters may grow with the size of training examples
 Ex> hypothesis that retains all the training examples and uses them

to do prediction on new data

NONPARAMETRIC ESTIMATION

 Lazy method
 Store training data of size N
 O(N) memory
 O(N) search to for similar data

 Parametric methods
 d parameters, d<N
 O(d) memory and processing

MEMORY-BASED METHOD

 Howto:
1. use all the training example to make lookup table
2. if new data come, look it up in the table
3. if the new data is in the lookup table, you have the

answer.

 This does not generalize well
 If the lookup table does not have the match for the new

data, it will need to output default value.

TABLE LOOKUP

Improving the table lookup: k-nearest neighbor lookup
 Given a query xq, find the k examples that are nearest

to xq: kNN(k,xq)

 Classification: use the kNN(k,xq) and take the
(weighted) plurality vote.

 Regression: use the kNN(k,xq)
 take the mean or median
 Or solve a linear regression problem on the neighbors.

K-NEAREST NEIGHBOR MODELS

 Decision surface formed by the training
examples

VORONOI DIAGRAM & EFFECT OF K

Fig. decision boundary of
KNN for k=1 and k=5. low k
value are subject to over
fitting and high k values are
subjected to under fitting.
Need to learn k

Definition of distance is important factor in
accuracy.
 Minkowski distance Lp norm where 1 ≤ p ≤ ∞

 p=1 : Manhattan distance
 p=2 : Euclidean distance
 Scale variant -> each feature should be normalized

to have same scales.

DEFINING “NEAREST” IN KNN

 Hamming distance: number of positions at which the
corresponding symbols are different in two strings of
equal length.
 measures the minimum number of substitutions required to

change one string into the other

DEFINING “NEAREST” IN KNN CONT.

• Mahalanobis distance
– based on correlations between variables by which

different patterns can be identified and analyzed

Two example distances: 100->011 has
distance 3 (red path); 010->111 has distance
2 (blue path)

S is the covariance matrix

EFFECT OF K

Larger k produces smoother boundary effect and can reduce the impact of
class label noise.

But when K = N, we always predict the majority class

 kNN breaks down in high-dimensional space
 “Neighborhood” becomes very large.

 Assume 5000 points uniformly distributed in the unit
hypercube we want to apply 5-nn. Suppose our query point
is at the origin.
 In 1-dimension, we must go a distance of 5/5000 = 0.001 on the

average to capture 5 nearest neighbors
 In 2 dimensions, we must go to get a square that contains 0.001 of

the volume.
 In d dimensions, we must go (0.001) 1/d

CURSE OF DIMENSIONALITY IN K-NN

 Def: A balanced binary tree over data wit
an arbitrary number of dimensions.

 Construction
 Start with set of examples
 At root, split examples along the ith dim (i

mode n) by testing
 xi < m. (half in right, half in left)
 (let m be median of examples at ith dim)
 Recursively make a tree from the left and

right set of examples
 stopping when there are fewer than two

examples left.
 To choose a dimension to split on at

each node of the tree,
 select dimension i mod n at level i of the

tree.
 split on the dimension that has the widest

spread of values.
 Note: may need to split on any given dimension

several times as \proceed down the tree

FINDING NEAREST NEIGHBORS WITH K-D TREES

http://en.wikipedia.org/wiki/K-d_tree

Presenter
Presentation Notes
Extrapolation is an estimation of a value based on extending a known sequence of values or facts beyond the area that is certainly known.
Interpolation is an estimation of a value within two known values in a sequence of values.

 Exact lookup from a k-d tree is just like lookup from a
binary tree, but nearest neighbor lookup is more complicated.

 NN Searching:
 Search down the branches, splitting the examples in half
 Discard half of the example are discarded if query is far from

the boundary
 If query falls very close to the dividing boundary:

 The query point itself might be on the left hand side of the boundary,
but one or more of the k nearest neighbors might actually be on the
right-hand side.

 Test by computing the distance of the query point to the dividing
boundary, and then searching both sides if we can’t find k examples on
the left that are closer than this distance.

 Because of boundary checking problem, k-d trees are
appropriate only when there are many more examples than
dimensions
 Preferably at least 2n examples.
 k-d trees work well with up to 10 dimensions with thousands of

examples or up to 20 dimensions with millions of examples.
 If we don’t have enough examples, lookup is no faster than a

linear scan of the entire data set.

FINDING NEAREST NEIGHBORS WITH K-D TREES CONT.

 Hash codes rely on an exact match, how can we use
hashing scheme for NN problem?

 Hashes cannot solve NN(k, xq) exactly, but with a
clever use of randomized algorithms, we can find an
approximate solution

 IDEA: Place near points grouped together in the same
bin

 Approximate near-neighbor problem:
 If there is a point xj that is within a radius r of xq,

than with high probability the algorithm will find a point
xj’ that is within distance c*r of q.

 If there is no point within radius r then the algorithm is
allowed to report failure.

 The values of c and “high probability” are parameters of
the algorithm.

LOCALITY-SENSITIVE HASHING

 Define the hash function g(x) such that,
 for any two points xj and xj’, the probability that

they have the same hash code is small if their
distance is more that c*r and is high if their
distance is less than r.

 Idea: if two points are close together in an
n-D space, then they will necessarily be
close when projected down onto a 1D space(a
line).
 We can discretize the line into bins (hash buckets)

so that, with high probability, near points project
down to exactly the same bin.

 Thus, the bin for point xq contains many (but not
all) points that are near to xq, as well as some
points that are far away

LOCALITY-SENSITIVE HASHING CONT.

 Idea of locality-sensitive hash (LSH): create
multiple random projections and combine them.

 Creating LSH
 Choose l different random projections (l subset of

bit-string representation)
 Create l hash tables, g1(x), g2(x), …,gl(x)
 Enter all examples to hash table.

 Searching LSH
 For query xq , fetch the set of point in bin gk(x)

for each k.
 Union these sets together into a set of candidate

point, C.
 Compute actual distance xq for points in C.

LOCALITY-SENSITIVE HASHING CONT.

Piecewise linear nonparametric
regression (Connect the dot):

 Creates a function h(x) that,
when given a query xq, solves the
ordinary linear regression
problem with just two points: the
training examples immediately to
the left and right of xq.

 When noise is low performance not
too bad, which is why it is a
standard feature of charting in
spreadsheets

 But when the data are noisy, the
resulting function is spiky, and
does not generalize well

NONPARAMETRIC REGRESSION

 k-nearest-neighbors
regression
 improves on connect-the-dots

using k nearest neighbors
(here 3) instead of using
just the two examples to the
left and right of a query
point xq

 h(x) is the mean value of
the k points,Sum(yj/k).

 A larger value of k tends to
smooth out the magnitude of
the spikes, although the
resulting function has
discontinuities.

NONPARAMETRIC REGRESSION CONT.

Notice that at the outlying
points, near x=0 and x=14, the
estimates are poor because all
the evidence comes from one
side (the interior)

 k-nearest-neighbor linear
regression
 finds the best line through the

k examples
 This does a better job of

capturing trends at the
outliers, but is still
discontinuous.

NONPARAMETRIC REGRESSION CONT.

 Locally weighted regression
 gives us the advantages of

nearest neighbors, without
the discontinuities.

 Idea: weight the examples
 For each query point xq, the

examples that are close to xq
are weighted heavily, and the
examples that are farther
away are weighted less
heavily or not at all.

 The decrease in weight over
distance is always gradual,
not sudden.

NONPARAMETRIC REGRESSION CONT.

 Use kernel function to
decide how much to weight
each example.
 K(Distance(xj, xq)), where xq

is a query point that is a
given distance from xj

 K should be symmetric around 0
and have a maximum at 0.

 The area under the kernel must
remain bounded as we go to
±INF.

 latest research suggests that
the choice of kernel shape
doesn’t matter much but do have
to be careful about the width
of the kernel.

NONPARAMETRIC REGRESSION CONT.

 After selecting the kernel, regression
follow:

 For a given query point xq, solve the
following weighted regression problem using
gradient descent:

 where Distance is any of the distance metrics
discussed for nearest neighbors

 The answer is

 Note: we need to solve a new regression
problem for every query point

NONPARAMETRIC REGRESSION CONT.

	Learning from Examples: Non-parametric models�AIMA Chapter 18.8
	Parametric models
	Nonparametric models
	Nonparametric estimation
	Memory-Based Method
	Table lookup
	K-Nearest neighbor models
	Voronoi Diagram & effect of k
	Defining “Nearest” in kNN
	Defining “Nearest” in kNN cont.
	Effect of K
	Curse of dimensionality in k-NN
	Finding nearest neighbors with k-d trees
	Finding nearest neighbors with k-d trees cont.
	Slide Number 15
	Locality-sensitive hashing
	Locality-sensitive hashing cont.
	Locality-sensitive hashing cont.
	Nonparametric regression
	Nonparametric regression cont.
	Nonparametric regression cont.
	Nonparametric regression cont.
	Nonparametric regression cont.
	Nonparametric regression cont.

