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 Parameter models: A learning model that summarizes 
data with a set of parameters of fixed size.  
 Use the training data to learn the fixed set of model 

parameter w, that completely describes our hypothesis hw(x).  
 Model is fixed so the only w needed to be kept and all else 

(data etc.) can be thrown away.   
 the parameters have fixed size independent of number of 

training examples.  

 Limitations of parametric models: 
 The model is fixed and have less freedom in describing the 

non-canonical state space.   

PARAMETRIC MODELS 
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 Nonparametric model cannot be characterized by a 
bounded set of parameters.  

 Can’t assume a model for distribution densities 
 Might be a very complicated model with large number of 

parameters 
 Nonparametric estimation principle: “Similar inputs have 

similar outputs” 
 Find similar data instances in the training data and 

interpolate/average their outputs  

 
 

NONPARAMETRIC MODELS 



 Parametric estimation: all data instances affect the final glo
bal estimate 
 Global methods 

 Non-parametric estimation 
 No single global model 
 Local models are created as needed 
 Affected only by near-by instances 

 Called Instance-based learning (memory-based learning)  
 Let the data speak for it self.  
 # of parameters may grow with the size of training examples 
 Ex> hypothesis that retains all the training examples and uses them 

to do prediction on new data 

NONPARAMETRIC ESTIMATION 



  Lazy method 
 Store training data of size N 
 O(N) memory  
 O(N) search to for similar data 

 

 Parametric methods 
 d parameters, d<N 
 O(d) memory and processing 

 

MEMORY-BASED METHOD 



 Howto:  
1. use all the training example to make lookup table  
2. if new data come, look it up in the table  
3. if the new data is in the lookup table, you have the 

answer. 

 This does not generalize well 
 If the lookup table does not have the match for the new 

data, it will need to output default value.  

TABLE LOOKUP 



Improving the table lookup: k-nearest neighbor lookup 
 Given a query xq, find the k examples that are nearest 

to xq: kNN(k,xq)  
 
 
 

 Classification: use the kNN(k,xq) and take the 
(weighted) plurality vote. 

 Regression: use the kNN(k,xq) 
 take the mean or median  
 Or solve a linear regression problem on the neighbors.  

K-NEAREST NEIGHBOR MODELS 



 Decision surface formed by the training 
examples 
 

VORONOI DIAGRAM & EFFECT OF K 

Fig. decision boundary of 
KNN for k=1 and k=5. low k 
value are subject to over 
fitting and high k values are 
subjected to under fitting.  
Need to learn k 



Definition of distance is important factor in 
accuracy.  
 Minkowski distance Lp norm where 1 ≤ p ≤ ∞ 

 
 
 

 p=1 : Manhattan distance  
 p=2 : Euclidean distance  
 Scale variant -> each feature should be normalized 

to have same scales.  

DEFINING “NEAREST” IN KNN 



 Hamming distance: number of positions at which the 
corresponding symbols are different in two strings of 
equal length.  
 measures the minimum number of substitutions required to 

change one string into the other 

DEFINING “NEAREST” IN KNN CONT. 

• Mahalanobis distance 
–  based on correlations between variables by which 

different patterns can be identified and analyzed 

Two example distances: 100->011 has 
distance 3 (red path); 010->111 has distance 
2 (blue path) 

S is the covariance matrix 



EFFECT OF K 

Larger k produces smoother boundary effect and can reduce the  impact of 
class label noise. 
 
But when K = N, we always predict the majority class 



 kNN breaks down in high-dimensional space 
 “Neighborhood” becomes very large. 

 Assume 5000 points uniformly distributed in the unit 
hypercube we want to apply 5-nn.  Suppose our query point 
is at the origin.   
 In 1-dimension, we must go a distance of 5/5000 = 0.001 on the 

average to capture 5 nearest neighbors 
 In 2 dimensions, we must go to get a square that contains 0.001 of 

the volume. 
 In d dimensions, we must go (0.001) 1/d 

CURSE OF DIMENSIONALITY IN K-NN 



 Def: A balanced binary tree over data wit 
an arbitrary number of dimensions. 

 Construction 
 Start with set of examples 
 At root, split examples along the ith dim (i 

mode n) by testing  
         xi < m. (half in right, half in left) 
        (let m be median of examples at ith dim)  
 Recursively make a tree from the left and 

right set of examples  
 stopping when there are fewer than two 

examples left. 
 To choose a dimension to split on at 

each node of the tree,  
 select dimension  i mod n at level i of the 

tree. 
 split on the dimension that has the widest 

spread of values. 
 Note: may need to split on any given dimension 

several times as \proceed down the tree 

FINDING NEAREST NEIGHBORS WITH K-D TREES 

http://en.wikipedia.org/wiki/K-d_tree 

Presenter
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Extrapolation is an estimation of a value based on extending a known sequence of values or facts beyond the area that is certainly known.
Interpolation is an estimation of a value within two known values in a sequence of values.




 Exact lookup from a k-d tree is just like lookup from a 
binary tree, but nearest neighbor lookup is more complicated. 

 NN Searching: 
 Search down the branches, splitting the examples in half 
 Discard half of the example are discarded if query is far from 

the boundary  
 If query falls very close to the dividing boundary:  

 The query point itself might be on the left hand side of the boundary, 
but one or more of the k nearest neighbors might actually be on the 
right-hand side.  

 Test by computing the distance of the query point to the dividing 
boundary, and then searching both sides if we can’t find k examples on 
the left that are closer than this distance. 

 Because of boundary checking problem, k-d trees are 
appropriate only when there are many more examples than 
dimensions 
 Preferably at least 2n examples.  
 k-d trees work well with up to 10 dimensions with thousands of 

examples or up to 20 dimensions with millions of examples.  
 If we don’t have enough examples, lookup is no faster than a 

linear scan of the entire data set. 

FINDING NEAREST NEIGHBORS WITH K-D TREES CONT. 





 Hash codes rely on an exact match, how can we use 
hashing scheme for NN problem?  

 Hashes cannot solve NN(k, xq) exactly, but with a 
clever use of randomized algorithms, we can find an 
approximate solution 

 IDEA: Place near points grouped together in the same 
bin 

 Approximate near-neighbor problem:  
 If there is a point xj that is within a radius r of xq, 

than with high probability the algorithm will find a point 
xj’ that is within distance c*r of q.  

 If there is no point within radius r then the algorithm is 
allowed to report failure.  

 The values of c and “high probability” are parameters of 
the algorithm. 

LOCALITY-SENSITIVE HASHING  



 Define the hash function g(x) such that,  
 for any two points xj and xj’, the probability that 

they have the same hash code is small if their 
distance is more that c*r and is high if their 
distance is less than r. 

 Idea: if two points are close together in an 
n-D space, then they will necessarily be 
close when projected down onto a 1D space(a 
line). 
 We can discretize the line into bins (hash buckets) 

so that, with high probability, near points project 
down to exactly the same bin.  

 Thus, the bin for point xq contains many (but not 
all) points that are near to xq, as well as some 
points that are far away 

LOCALITY-SENSITIVE HASHING CONT. 



 Idea of locality-sensitive hash (LSH): create 
multiple random projections and combine them. 

 Creating LSH 
 Choose l different random projections (l subset of 

bit-string representation)  
 Create l hash tables, g1(x), g2(x), …,gl(x) 
 Enter all examples to hash table.  

 Searching LSH 
 For query xq , fetch the set of point in bin gk(x) 

for each k.   
 Union these sets together into a set of candidate 

point, C.  
 Compute actual distance xq for points in C.  

LOCALITY-SENSITIVE HASHING CONT. 



Piecewise linear nonparametric 
regression (Connect the dot):  

 Creates a function h(x) that, 
when given a query xq, solves the 
ordinary linear regression 
problem with just two points: the 
training examples immediately to 
the left and right of xq.  

 When noise is low performance not 
too bad, which is why it is a 
standard feature of charting in 
spreadsheets 

 But when the data are noisy, the 
resulting function is spiky, and 
does not generalize well 
 

 

NONPARAMETRIC REGRESSION 



 k-nearest-neighbors 
regression 
 improves on connect-the-dots 

using k nearest neighbors 
(here 3) instead of using 
just the two examples to the 
left and right of a query 
point xq 

 h(x) is the mean value of 
the k points,Sum(yj/k). 

 A larger value of k tends to 
smooth out the magnitude of 
the spikes, although the 
resulting function has 
discontinuities. 

NONPARAMETRIC REGRESSION CONT. 

Notice that at the outlying 
points, near x=0 and x=14, the 
estimates are poor because all 
the evidence comes from one 
side (the interior) 



 k-nearest-neighbor linear 
regression 
 finds the best line through the 

k examples 
 This does a better job of 

capturing trends at the 
outliers, but is still 
discontinuous. 

NONPARAMETRIC REGRESSION CONT. 



 Locally weighted regression 
 gives us the advantages of 

nearest neighbors, without 
the discontinuities. 

 Idea: weight the examples 
 For each query point xq, the 

examples that are close to xq 
are weighted heavily, and the 
examples that are farther 
away are weighted less 
heavily or not at all.  

 The decrease in weight over 
distance is always gradual, 
not sudden. 

NONPARAMETRIC REGRESSION CONT. 



 Use kernel function to 
decide how much to weight 
each example.  
 K(Distance(xj, xq)), where xq 

is a query point that is a 
given distance from xj 

 K should be symmetric around 0 
and have a maximum at 0. 

 The area under the kernel must 
remain bounded as we go to 
±INF. 

 latest research suggests that 
the choice of kernel shape 
doesn’t matter much but do have 
to be careful about the width 
of the kernel. 

NONPARAMETRIC REGRESSION CONT. 



 After selecting the kernel, regression 
follow:  

 For a given query point xq, solve the 
following weighted regression problem using 
gradient descent: 
 
 

 where Distance is any of the distance metrics 
discussed for nearest neighbors 

 The answer is 
 

 Note: we need to solve a new regression 
problem for every query point 

NONPARAMETRIC REGRESSION CONT. 
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