
LEARNING FROM EXAMPLES 
AIMA CHAPTER 18 (1-3) 

CSE 537 Fall 2015 

Instructor: Sael Lee 

Slides are mostly made from AIMA resources,   
Andrew W. Moore’s tutorials: http://www.cs.cmu.edu/~awm/tutorials and  
Bart Selman’s Cornell  CS4700 decision tree slides   

http://www.cs.cmu.edu/~awm/tutorials


 An agent is “learning” if it improves its performance on 
future tasks after making observations about the world. 

 Learning is essential for unknown environments, 
 i.e., when designer lacks omniscience 

 Learning is useful as a system construction method, 
 i.e., expose the agent to reality rather than trying to write it all down 

 Learning modifies the agent’s decision mechanisms to 
improve performance 
 i.e., designer may not know how to solve a problem and leaves the 

agent to learn itself  
 

 We will focus on specific type of learning problem that given 
a collection of input-output pairs, learn a function the 
predicts the output fro new input (supervised learning) 

LEARNING 



FORMS OF LEARNING 

 Any component of an agent can be improved by 
learning. 

 The improvement and the techniques to use to 
improve depends on four factors: 
 Which components to improve 
 What prior knowledge the agent already has.  
 What representation is used for data and component.  
 What feedback is available to learn from  



 

LEARNING AGENT 



COMPONENTS TO LEARN 

 Mapping conditions to action 
 Infer relevant information from the percept 
 Utility information (desirability of state) 
 Action-value information (desirability of action) 
 Goals that describe states that has the maximum 

utility  



REPRESENTATION AND PRIOR KNOWLEDGE  

 Examples 
 Logical sentences 
 Bayesian networks 

 
 For the following methods we will be looking at  

 Input: Factored representations (A vector of attribute values) 
 Output: continouse numerical value or a discrete value  

 



TYPES OF LEARNING 
Classification by representation 
 Inductive learning 

 Learning a general function or rule from specific input-output pair 

 Deductive (analytical) learning 
 Going from a known general rule to a new rule that is logically entailed but is useful 

because it allows more efficient processing.  

 
Classification by types of feedback  
 Unsupervised learning 

 Learns patterns in the input even though not explicit feedback (output) is supplied.  

 Reinforcement learning 
 Learns from a series of reinforcements – rewards or punishments  

 Supervised learning 
 Given example input-output pairs learns a function the maps input to output  

 Semi-supervised learning 
 Given a few labeled samples and some unlabeled examples and learns a function the 

maps input to output  
 



 What is being learned? 
 Parameters, structures (ex> Bayes net), hidden concepts 

 What for? 
 Prediction, diagnosis, summarization 

 How? 
 Passive vs Active,  
 Online vs Offline 

 Output? 
 Classification/ Regression/ Clusters 

 Other details 
 Generative model vs discriminative model  

VOCABULARIES OF LEARNING 



The task of supervised learning: 
Given a Training set of N example input-output pairs,  
 (x1, y1), … (xN, yN) 
where each yj was generated by an unknown function y = f(x),  
discover a function h (hypothesis) that approximates the true function f.  

SUPERVISED LEARNING 

AIAM Ch 18.2 
 

Measure accuracy of hypothesis with test set.  
Hypothesis generalizes well if it correctly predicts the value of y for novel 
examples.  

Supervised learning problem is :  
• Classification problem if y is discrete and finite 
• Regression problem if y is continuous number  



AIMA Chapter 18 (3) 

DECISION TREES 



 

LEARNING DECISION TREES 

 Input: an object or situation described by a set of attributes (or 
features) 

 Output: a “decision” – the predicts output value for the input. 
 
The input attributes and the outputs can be discrete or continuous. 
 
We will focus on decision trees for Boolean classification:  
 each example is classified as positive or negative. 
 
  

Task: 
– Given: collection of examples (x, f(x)) 
– Return: a function h (hypothesis) that approximates f 
– h is a decision tree 



DECISION TREE 

What is a decision tree? 
A tree with two types of 
nodes:  

Decision nodes: Specifies a 
choice or  test of some 
attribute with 2 or more 
alternatives;  every decision  
node is  part of a path to a leaf 
node 

 
Leaf node: Indicates 
classification of an example 

 

New York Times 
April 16, 2008 



DECISION THREE REPRESENTATION  

Problem: decide whether to wait for a table at a restaurant. What 
attributes would you use? 

 
Attributes used by in the book  

1. Alternate: is there an alternative restaurant nearby? 
2. Bar: is there a comfortable bar area to wait in? 
3. Fri/Sat: is today Friday or Saturday? 
4. Hungry: are we hungry? 
5. Patrons: number of people in the restaurant (None, Some, Full) 
6. Price: price range ($, $$, $$$) 
7. Raining: is it raining outside? 
8. Reservation: have we made a reservation? 
9. Type: kind of restaurant (French, Italian, Thai, Burger) 
10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60) 

What about 
 restaurant name? 

It could be great for  
generating a small tree 
but … 

It doesn’t generalize! 



ATTRIBUTE-BASED REPRESENTATIONS 

Examples described by attribute values (Boolean, discrete, continuous) 
E.g., situations where I will/won't wait for a table: 
 
 
 
 
 
 
 
 
 
 
 
Classification of examples is positive (T) or negative (F) 
 



REPRESENTATION FOR HYPOTHESES 
One possible representation for hypotheses 
E.g., here is a tree for deciding whether to wait: 



EXPRESSIVENESS OF DECISION TREES 

Any particular decision tree hypothesis for WillWait goal 
predicate can  be seen as a disjunction of a conjunction of tests, 
i.e., an assertion of the form: 
 
 ∀s  WillWait(s) ↔ (P1(s) ∨ P2(s) ∨ … ∨ Pn(s)) 
 
Where each condition Pi(s) is a conjunction of tests corresponding  
to the path from the root of the tree to a leaf with a positive 
outcome. 
 



EXPRESSIVENESS CONT. 

Decision trees can express any Boolean  function of the input attributes. 
E.g., for Boolean functions, truth table row → path to leaf: 
 
 
 
 
 
 
 
 
 



HYPOTHESIS SPACES 

How many distinct decision trees with n Boolean 
attributes? 

= number of Boolean functions 
 
= number of distinct truth tables with 2n rows  
 
With 6 Boolean attributes, there are 

18,446,744,073,709,551,616 possible trees! 

There are even more decision trees!  

= 22n 



EXPRESSIVENESS: 
BOOLEAN FUNCTION WITH 2 ATTRIBUTES     DTS         
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EXPRESSIVENESS: 
2 ATTRIBUTE     DTS         
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DECISION TREE LEARNING ALGORITHM 

 Decision trees can express any Boolean  function.  
 Goal: Finding a decision tree that agrees with training set. 
  We could construct a decision tree that has one path to a leaf for each 

example, where the path tests sets each attribute value to the value of the e
xample.  
 
 
 
 
 
 
 
 

 Overall Goal: get a good  classification with a small number of tests. 
 
 
 
 
 

Problem: This approach would just memorize example. 
How to deal with new examples? It doesn’t generalize! 

 (But sometimes hard to avoid --- e.g. parity function, 1, if an even number of 
inputs, or majority function, 1, if more than half of the inputs are 1). 

What is the problem with this from a learning point of view? 

We want a compact/smallest tree. 
But finding the smallest tree consistent with the examples is NP-hard! 



DATA (INPUT-OUTPUT)  

Examples described by attribute values (Boolean, discrete, continuous) 
E.g., situations where I will/won't wait for a table: 
 
 
 
 
 
 
 
 
 
 
 
 
Classification of examples is positive (T) or negative (F) 
 

output input- 



DECISION TREE LEARNING 

 Goal:  
 find a small tree consistent with the training examples 

 
 Idea:  

1. (recursively) choose "most significant" attribute as root of 
(sub)tree; 

2. Use  a divide-and-conquer greedy search through the space of 
possible decision trees. 

3. Greedy because there is no backtracking. It picks highest values 
first. 

 
 Divide-and-conquer greedy construction 

 Which attribute should be tested? 
 Heuristics and Statistical testing with current data 

 Repeat for descendants 
 



 “most significant attribute”: 
 One that makes the most difference to the classification of 

an example such that we may get to the correct 
classification with a small number of tests (= shallow tree) 

 

 Ex> Patrons is better attribute than types.  



 



EXAMPLE CONTD. 

 Decision tree learned from the 12 examples: 
 
 
 
 
 
 
 
 
 
 
 

Substantially simpler than “true” tree --- 
but a more complex hypothesis isn’t justified 
from just the data. 

Original Tree Learned Three  



EVALUATIONS OF ACCURACY OF THE LEARNING 

 One way is to look at a learning curve 
 Decide how many examples we need as well 
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