
APPLICATION OF BINARY TREES

Yonghui Wu

ICPC Asia Programming Contest 1st Training Committee – Chair

yhwu@fudan.edu.cn

�Binary Tree

� A binary tree is a tree in which no

node can have more than two

children (referred to as the left

child and the right child).

�Converting Ordered Trees to Binary

Trees

� Paths of Binary Trees

� Traversal of Binary Trees

CONVERTING ORDERED TREES TO BINARY

TREES

� In the real world some problems can be

modeled as ordered trees. In order to save

memory and process conveniently, ordered

trees should be converted to

corresponding binary trees.

� "Corresponding binary trees" refers to

preorder traversal and postorder traversal

for an ordered tree are same as preorder

traversal and postorder traversal for a

converted binary tree.

�The process of converting an ordered tree

T to a binary tree T 1 is as follows:

� The root of T is as the root of T1;

� The first child of T is as the root of the

left subtree of T1 x;

� If x has children, its first child is as the

root of its left subtree; and if x has

siblings, its first sibling is as the root of

its right subtree.

�A forest can also be transferred into
a binary tree.

� Firstly all trees are transferred
into binary trees.

� Then all binary trees are
transferred into a corresponding
binary tree: from the first binary
tree, the next tree’s root is as the
right child of the previous tree’s
root.

TREE GRAFTING

�Source: ACM Rocky Mountain

2007

�IDs for Online Judge: POJ 3437，，，，
UVA 3821

� Trees have many applications in computer

science. Perhaps the most commonly used trees

are rooted binary trees, but there are other types

of rooted trees that may be useful as well. One

example is ordered trees, in which the subtrees

for any given node are ordered. The number of

children of each node is variable, and there is no

limit on the number. Formally, an ordered tree

consists of a finite set of nodes T such that

� there is one node designated as the root, denoted

root(T);

� the remaining nodes are partitioned into subsets T1,

T2, ..., Tm, each of which is also a tree (subtrees).

� Also, define root(T1), ..., root(Tm) to be the
children of root(T)的, with root(Ti) being the i-th
child. The nodes root(T1), ..., root(Tm) are siblings.

� It is often more convenient to represent an
ordered tree as a rooted binary tree, so that each
node can be stored in the same amount of
memory. The conversion is performed by the
following steps:

� 1. remove all edges from each node to its children;

� 2. for each node, add an edge to its first child in T (if
any) as the left child;

� 3. for each node, add an edge to its next sibling in T
(if any) as the right child.

� This is illustrated by the following:

� In most cases, the height of the tree (the number

of edges in the longest root-to-leaf path) increases

after the conversion. This is undesirable because

the complexity of many algorithms on trees

depends on its height.

� You are asked to write a program that computes

the height of the tree before and after the

conversion.

� Input

� The input is given by a number of lines giving the

directions taken in a depth-first traversal of the

trees. There is one line for each tree. For example,

the tree above would give dudduduudu, meaning

0 down to 1, 1 up to 0, 0 down to 2, etc. The input

is terminated by a line whose first character is #.

You may assume that each tree has at least 2

and no more than 10000 nodes.

� Output

� For each tree, print the heights of the tree before

and after the conversion specified above. Use the

format:

� Tree t: h1 => h2

� where t is the case number (starting from 1), h1

is the height of the tree before the conversion,

and h2 is the height of the tree after the

conversion.

�Analysis

� The problem is about the

transformation from a tree into a binary

tree.

� For the figure showed in the problem,

the depth-first traversal for the tree (a)

is ‘dudduduudu’, and the transferred

binary tree is showed in (b).

� Suppose the root is at level 0, and so on; the

heights of the tree before and after the

conversion are height1 and height2, respectively;

the current level number is level.

� For each ‘d’ in a direction taken in a depth-first

traversal of a tree, ‘d’ means down (level++). In

Figure , the first ‘d’ visits vertex 1, and vertex 1

is at level 1; the second ‘d’ visits vertex 2 at level

2; the third ‘d’ visits vertex 4 at level 3, the fourth

‘d’ visits vertex 5 at level 4, and the fifth ‘d’ visits

vertex 3 at level 3, from vertex 2.

� Node X’s level number in the binary tree=

� The level number for X’s parent in the binary tree

� +

� the sequence number for X as a child in original tree

� Function calc_height(level, *height1) is used to return

the height of the transformed tree, where for the tree

before it is transformed , the current level number is

level, and the height of the tree is height1:

� Initially the height of the transformed tree height=0;

� If the current level number is larger than

height1(level>*height1), the height of the tree is adjusted

(*height1= level);

� For each ‘d’ in a direction taken in a depth-first traversal of

a tree (the number of current ‘d’ is n+1) (for (n=0; (c=

fgetc(in))== 'd'; n++)): The current level number is level+1;

calc_height(level+1, height1) runs recursively; get the

height after transformation (t=calc_height(level+1, height1)

+ n+1). If (t > height), then height = t.

� Return the height of the transformed tree height.

PATHS OF BINARY TREES

� Paths in a tree are paths from the root to other

nodes. In a tree there is no cycle, therefore there

is unique path from the root to any node.

� In a complete binary tree with n nodes, nodes’

numbers are from 0 to n-1, and nodes are numbered

top-down, and from left to right.

� For a node i, if it has parent, then its parent is node

(1≤i≤n-1); if it has left child (2*i+1≤n-1), then its left child

is node 2*i+1; if it has right child (2*i+2≤n-1), then its left

child is node 2*i+2.

� If i is even and i≠0, the left sibling for node i is node i-1;

and if i is odd and i≠n-1, the right sibling for node i is node

i+1.

� The level where node i is at is , that is, the length

of the path from node i to the root is .

� Based on it, a complete binary tree can be stored in

an array.

1

2

i − 
  

2log (1)i +  

2log (1)i +  

BINARY TREE

� Source: TUD Programming Contest 2005

(Training Session), Darmstadt, Germany

� IDs for Online Judge: POJ 2499

� Binary trees are a common data structure in
computer science. In this problem we will look at
an infinite binary tree where the nodes contain a
pair of integers. The tree is constructed like this:

� The root contains the pair (1, 1).

� If a node contains (a, b) then its left child
contains (a + b, b) and its right child (a, a + b).

� Given the contents (a, b) of some node of the
binary tree described above, suppose you are
walking from the root of the tree to the given
node along the shortest possible path. Can you
find out how often you have to go to a left child
and how often to a right child?

� Input

� The first line contains the number of scenarios.

Every scenario consists of a single line containing

two integers i and j (1≤i, j≤2*109) that represent

a node (i, j). You can assume that this is a valid

node in the binary tree described above.

� Output

� The output for every scenario begins with a line

containing "Scenario #i:", where i is the number

of the scenario starting at 1. Then print a single

line containing two numbers l and r separated by

a single space, where l is how often you have to

go left and r is how often you have to go right

when traversing the tree from the root to the

node given in the input. Print an empty line after

every scenario.

� Analysis

� Becuase the root contains the pair (1, 1), and if a

node contains (a, b) then its left child contains (a

+ b, b) and its right child (a, a + b); numbers in

each pair are positive numbers, and for each pair,

we can determine it is left child or right child by

comparing the two numbers. For example, if a

node contains (a + b, b), its parent must be (a, b)

gotten by (a+b)- b. Therefore the path from the

root to a node root can be gotten and how often

you have to go to a left child and how often to a

right child can be found out. The path is unique.

� For a pair (a, b), greedy algorithm is used to

calculate how often you have to go to a left child

and how often to a right child.

� When a>b, then from (a, b) it takes steps

to the left, in each step the left parameter – b;

otherwise it takes steps to the right, and in

each step the right parameter – a; finally it

reaches (1, 1).

1a

b

− 
  

1b

a

− 
  

TRAVERSAL OF BINARY TREES

� Preorder Traversal

� Inorder Traversal

� Postorder Traversal

� Preorder Traversal:

� Visit the tree root;

� Traverse the left subtree by recursively calling the

preorder function;

� Traverse the right subtree by recursively calling the

preorder function;

� Inorder Traversal:

� Traverse the left subtree by recursively calling the

inorder function;

� Visit the tree root;

� Traverse the right subtree by recursively calling the

inorder function;

� Postorder Traversal:

� Traverse the left subtree by recursively calling the

postorder function;

� Traverse the right subtree by recursively calling the

postorder function;

� Visit the tree root;

� In preorder traversal, the tree root is visited
firstly.

� In postorder traversal, the tree root is visited
finally.

� In inorder traversal, the substring before the tree
root is the result of inorder traversal for the left
subtree, and the substring after the tree root is
the result of inorder traversal for the right
subtree.

� Therefore the results of preorder traversal and
inorder traversal, and the results of postorder
traversal and inorder traversal, can determine the
structure of a binary tree.

� But the results of preorder traversal and postorder
traversal can’t determine the structure of a binary
tree.

� From the results of postorder traversal and

inorder traversal of a binary tree, the result

of preorder traversal of a binary tree can be

gotten.

� Suppose the result of inorder traversal for a binary
tree s’=s1’…sk’ …sn’, and the result of postorder
traversal for a binary tree s”=s1”……sn”. Obviously,
from s1”……sn” produced by postorder traversal, sn” is
the tree root. In s1’…sk’ …sn’ produced by inorder
traversal there is a character sk’ which is equal to sn”,
and if k>1, the left subtree exists and the substring
s1’…sk-1’ before sk’ is the result of inorder traversal for
the left subtree, the prefix of the result of postorder
traversal s1”…sk-1” is result of postorder traversal for
the left subtree; and if k<n, the right subtree exists
and the substring sk+1’ …sn’ after sk’ is the result of
inorder traversal for the right subtree, and sk”…sn-1”
is is the result of postorder traversal for the right
subtree.

� If there exists the left subtree or the right subtree,
the above process is called recursively.

� From the results of preorder traversal and

inorder traversal of a binary tree, the result

of postorder traversal of a binary tree can

be gotten.

� In like manner, the first character of the result of preorder
traversal is the tree root. Suppose s’=s1’…sk’ …sn’ is the
result of the result of inorder traversal of a binary tree, and
s”=s1”……sn” is the result of preorder traversal of a binary
tree. Obviously s1”, the first character of the result of
preorder traversal, is the tree root of the binary tree.
Suppose sk’ equals to s1” in s1’…sk’ …sn’.

� If k>1, the left subtree exists; s1’…sk-1’ is the result of
inorder traversal of the left subtree; and s2”…sk” is the
result of preorder traversal of the left subtree.

� If k<n, the right subtree exists; sk+1’ …sn’ is the result of
inorder traversal of the right subtree; and sk+1”…sn” is the
result of preorder traversal of the right subtree.

� If there exists the left subtree or the right subtree, the
above process is called recursively. Finally the root s1” (or
sk’) is outputted.

TREE RECOVERY

� Source: Ulm Local 1997

� IDs for Online Judge: POJ 2255，，，，ZOJ 1944，，，，
UVA 536

� Little Valentine liked playing with binary trees

very much. Her favorite game was constructing

randomly looking binary trees with capital letters

in the nodes. This is an example of one of her

creations:

� To record her trees for future generations, she

wrote down two strings for each tree: a preorder

traversal (root, left subtree, right subtree) and an

inorder traversal (left subtree, root, right

subtree). For the tree drawn above the preorder

traversal is DBACEGF and the inorder traversal

is ABCDEFG.

� She thought that such a pair of strings would

give enough information to reconstruct the tree

later (but she never tried it).

� Now, years later, looking again at the strings,

she realized that reconstructing the trees was

indeed possible, but only because she never had

used the same letter twice in the same tree.

� However, doing the reconstruction by hand, soon

turned out to be tedious. So now she asks you to

write a program that does the job for her!

� Input

� The input will contain one or more test cases.

� Each test case consists of one line containing two

strings preord and inord, representing the

preorder traversal and inorder traversal of a

binary tree. Both strings consist of unique capital

letters. (Thus they are not longer than 26

characters.)

� Input is terminated by end of file.

� Output

� For each test case, recover Valentine's binary

tree and print one line containing the tree's

postorder traversal (left subtree, right subtree,

root).

� Analysis

� Based on definitions of preorder traversal and

inorder traversal, for a tree, the first character in

preorder traversal is the root of the tree; and in

inorder traversal, the string before the character

is inorder traversal of its left subtree, the string

after the character is inorder traversal of its right

subtree.

� A recursive function recover(preordl, preordr,

inordl, inordr) is used to produce the tree's

postorder traversal based on preorder traversal

and inorder traversal of the tree, where preorder

traversal of the tree is preord, preordl and preordr

are pointers for the front pointer and the rear

pointer respectively; and inorder traversal of the

tree is inord, inordl and inordr are pointers for

the front pointer and the rear pointer

respectively.

� Calculation the root’s position in the inorder traversal of
the tree (inord[root]==preord[preordl]);

� Calculate the size of the left subtree ll (root-inordl) and the
size of the right subtree lr (inordr- root);

� If the left subtree isn’t empty (ll>0), then recover(preordl,
preordl+ll, inordl, root-1), where preordl and preordl+ll are
front pointer and rear pointer for preorder traversal of the
left subtree; and inordl and root-1 are front pointer and
rear pointer for inorder traversal of the left subtree;

� If the right subtree isn’t empty (lr>0), then
recover(preordl+ll+1, preordr, root+1, inordr), where
preordl+ll+1 and preordr are front pointer and rear pointer
for preorder traversal of the right subtree; and root+1 and
inordr are front pointer and rear pointer for inorder
traversal of the right subtree;

� Output the root inord[root]).

