
Yonghui Wu

Fudan Univ. & Stony Brook SUNY

yhwu@fudan.edu.cn

� Tree

� A tree is a collection of n vertices. The collection can be
empty (n==0); otherwise a tree constitutes a
distinguished vertex r, called the root; and zero or more
nonempty subtrees that the root of each subtree is a
child of r, and r is the parent of each subtree root.

� Solving Hierarchical Problems by Tree Traversal;

� Union-Find Sets Supported by Tree Structure

Solving Hierarchical Problems by Tree

Traversal

� A hierarchy can be modelled mathematically as a
rooted tree:

� The root of the tree forms the top level, and the children
of the root are at the same level, under their common
parent.

� Vertices in a rooted tree constitute a partially ordered set.
And the relations between vertices constitute relations
of partial orders.

� tree traversal:

� Pre-order traversal:

� Visit the root;

� Pre-order traverse subtrees from left to right;

� Post-order traversal:

� Post-order traverse subtrees from left to right;

� Visit the root.

�Storage Representations for Trees

�Representation of Generalized list

�Representation of Parents

�Representation of Multiple linked list

Nearest Common Ancestors
� Source: ACM Taejon 2002

� IDs for Online Judge: POJ 1330

� A rooted tree is a well-known data structure in
computer science and engineering. An example is
shown below:

� In the figure, each node is labeled with an integer from {1, 2,...,16}.
Node 8 is the root of the tree. Node x is an ancestor of node y if
node x is in the path between the root and node y. For example,
node 4 is an ancestor of node 16. Node 10 is also an ancestor of
node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the
ancestors of node 16. Remember that a node is an ancestor of
itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is
called a common ancestor of two different nodes y and z if node
x is an ancestor of node y and an ancestor of node z. Thus, nodes
8 and 4 are the common ancestors of nodes 16 and 7. A node x is
called the nearest common ancestor of nodes y and z if x is a
common ancestor of y and z and nearest to y and z among their
common ancestors. Hence, the nearest common ancestor of
nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than
node 8 is.

� For other examples, the nearest common ancestor of
nodes 2 and 3 is node 10, the nearest common ancestor
of nodes 6 and 13 is node 8, and the nearest common
ancestor of nodes 4 and 12 is node 4. In the last
example, if y is an ancestor of z, then the nearest
common ancestor of y and z is y.

� Write a program that finds the nearest common
ancestor of two distinct nodes in a tree.

� Input

� The input consists of T test cases. The number of test cases
(T) is given in the first line of the input file. Each test case
starts with a line containing an integer N, the number of
nodes in a tree, 2≤N≤10,000. The nodes are labeled with
integers 1, 2,..., N. Each of the next N -1 lines contains a pair
of integers that represent an edge --the first integer is the
parent node of the second integer. Note that a tree with N
nodes has exactly N - 1 edges. The last line of each test case
contains two distinct integers whose nearest common
ancestor is to be computed.

� Output

� Print exactly one line for each test case. The line
should contain the integer that is the nearest common
ancestor.

� Analysis

� Because there is a path to the root for each node in a
tree, any pair of nodes have common ancestors. A tree
is represented with representation of parents and
representation of multiple linked list. Each node’s
level number is gotten by preorder traversal (the root’s
level number is 0, its children’s level number is 1, and
so on). The multiple linked list is represented by Class
vector. And an integer array is used to represent
parents and hierarchical data.

� The algorithm finding the nearest common ancestor
for node x and node y is as follow.

� while (x≠y)

� { if (the level number of x is great than the level
number of y)

� x=the parent of x;

� else

� y= the parent of y;

� }

� When the loop ends, x is the nearest common ancestor.

Hire and Fire
� Source: ACM Rocky Mountain 2004

� IDs for Online Judge: POJ 2003，，，，ZOJ 2348，，，，UVA
3048

� In this problem, you are asked to keep track of the
hierarchical structure of an organization's changing
staff. As the first event in the life of an organization,
the Chief Executive Officer (CEO) is named.
Subsequently, any number of hires and fires can occur.
Any member of the organization (including the CEO)
can hire any number of direct subordinates, and any
member of the organization (including the CEO) can
be fired. The organization's hierarchical structure can
be represented by a tree. Consider the example shown
by Figure 8.2:

� VonNeumann is the CEO of this organization.
VonNeumann has two direct subordinates: Tanenbaum
and Dijkstra. Members of the organization who are direct
subordinates of the same member are ranked by their
respective seniority. In the diagram, the seniority of such
members decrease from left to right. For example
Tanenbaum has higher seniority than Dijkstra.

� When a member hires a new direct subordinate, the newly
hired subordinate has lower seniority than any other direct
subordinates of the same member. For example, if
VonNeumann (in Figure 8.2) hires Shannon, then
VonNeumann's direct subordinates are Tanenbaum,
Dijkstra, and Shannon in order of decreasing seniority.

� When a member of the organization gets fired, there are two
possible scenarios. If the victim (the person who gets fired) had
no subordinates, then he/she will be simply dropped from the
organization's hierarchy. If the victim had any subordinates,
then his/her highest ranking (by seniority) direct subordinate
will be promoted to fill the resulting vacancy. The promoted
person will also inherit the victim's seniority. Now, if the
promoted person also had some subordinates then his/her
highest ranking direct subordinate will similarly be promoted,
and the promotions will cascade down the hierarchy until a
person having no subordinates has been promoted. In Figure 8.2,
if Tanenbaum gets fired, then Stallings will be promoted to
Tanenbaum's position and seniority, and Knuth will be
promoted to Stallings' previous position and seniority.

� Figure 8.3 shows the hierarchy resulting from Figure
8.2 after (1) VonNeumann hires Shannon and (2)
Tanenbaum gets fired:

� Input
� The first line of the input contains only the name of the

person who is initially the CEO. All names in the input file
consist of 2 to 20 characters, which may be upper or lower
case letters, apostrophes, and hyphens. (In particular, no
blank spaces.) Each name contains at least one upper case
and at least one lower case letter.

� The first line will be followed by one or more additional
lines. The format of each of these lines will be determined
by one of the following three rules of syntax:

� [existing member] hires [new member]
� fire [existing member]
� print

� Here [existing member] is the name of any individual
who is already a member of the organization, [new
member] is the name of an individual who is not a
member of the organization as yet. The three types of
lines (hires, fire, and print) can appear in any order,
any number of times.

� You may assume that at any time there is at least one
member (who is the CEO) and no more than 1000
members in the organization.

� Output

� For each print command, print the current hierarchy of the
organization, assuming all hires and fires since the
beginning of the input have been processed as explained
above. Tree diagrams (such as those in Figures 8.2 and 8.3)
are translated into textual format according to the
following rules:

� Each line in the textual representation of the tree will
contain exactly one name.

� The first line will contain the CEO's name, starting in
column 1.

� The entire tree, or any sub-tree, having the form

� will be represented in textual form as:

� The output resulting from each print command in the
input will be terminated by one line consisting of
exactly 60 hyphens. There will not be any blank lines
in the output.

� Analysis

� The hierarchical structure of an organization is a
rooted tree, where CEO is the root; and can be
represented as a multiple linked list. When members
are hired and fired, the hierarchical structure of an
organization is changed. Each node’s parents and its
level number should be recorded. Each sub-tree is
preceded by one more “+” than its root.

� The hierarchical structure of an organization and
commands are analyzed as follow.

� Because a member’s seniority should be considered,
the tree is an ordered tree. The seniority of children
decreases from left to right. A multiple linked list is
used as the storage mode. All children for a node are
stored in a queue. And the queue is defined as Class
list in STL.

� x hires y: y is added into a queue for x’s children, and
y’s parent pointer point to x;

� fire y: y’s highest ranking (by seniority) direct subordinate
will be promoted to fill the resulting vacancy. The
promoted person will also inherit y's seniority. And if the
promoted person also had some subordinates then his/her
highest ranking direct subordinate will similarly be
promoted, and the promotions will cascade down the
hierarchy until a person having no subordinates has been
promoted.

� print: The key is to set up the multiple linked list. CEO is
the root, and it is at level 0. Pre-order traversal is used for
the command. If the current node i is at level p, print p ‘+’
and the member name, and then children of node i is
visited recursively.

� STL Containers, such as string, map, and list, are used
to set up relationships between members’ names and
nodes, and to implement operations.

Union-Find Sets Supported by Tree

Structure

� In some applications, we need divide n elements into
several groups. Each group is a set. Because such
problems are mainly related to union and search for
sets, they are called union-find sets.

� For union-find sets, there are some disjoint sets S={S1, S2, …,
Sr}, where set Si has an element rep[Si], called a
representative. There are three operations for union-find
sets.

� 1. Make_Set(x): For union-find sets S={S1, S2, …, Sr}, a set
containing only one element {x} is added into union-find
set S, and rep[{x}]=x. x is not in any Si, 1≤i≤r, for any two
sets in S are disjoint. Initially for each element x,
Make_Set(x) is called.

� 2. join(x, y): Merge two different sets containing x and y
respectively. That is, Sx and Sy are deleted from S, and Sx
∪Sy is added into S.

� 3. set_find(x): Return representative rep[Sx] for Set Sx
containing x.

� There are two storage structures for union-find sets.

� Linear list: A set is represented as a doubly linked list,
where rep[Si] is the front of the list. Each element has a
pointer pointing to rep[Si].

� Tree Structure: A set is represented as a tree, where
the root is the representative for the set.

� Each node p has a pointer set[p] pointing to the root
node. If set[p]<0, p is the root node. Initially, a set is
constructed for each element, that is, set[x]=-1 (1≤x≤n).

� In search operation, we make use of the method that
the search is with "path compression", to reduce the
depth of the tree in the search process. For example, in
Figure 8.8(a), we need to search element y2 in the set.
The path is y2-y3-y1-x1 from y2. So set pointers for y2, y3,
and y1 point to x1(Figure 8.8(b)).

� The algorithm that the search is with "path compression" is as
follow.

� Firstly, from node x, through set pointers the root of the tree f
(set[f]<0) containing node x is found. Then set pointers for all
nodes on the path from x to f point to f to compress the path.
The search process is as follow.

� int set_find(int p) // Search the representative of the set
containing p, and compress the path

� {
� if (set[p]<0)
� return p;
� return set[p]=set_find(set[p]);
� }

� Merging two sets is to connect roots for the two
corresponding trees. That is, merging the set
containing x (the tree root is fx) and the set containing
y (the tree root is fy) is to let the set pointer for fx point
to fy (Figure 8.9).

� The merging algorithm is as follow.
� Calculate root fx in the tree for the union set containing x, and

calculate root fy in the tree for the union-find set containing y. If
fx==fy, then x and y are in the same union-find set; else merge
the set containing x into the set containing y, and let the set
pointer for fx point to fy:

� void join(int p, int q) // Merging the set containing p into
the set containing q

� {
� p=set_find(p);
� q=set_find(q);
� if (p!=q)
� set[p]=q;
� }

� Search with "path compression" can reduce the length
of a tree and can improve the time complexity. In
algorithm complexity, an union-find set represented as
a tree is better than as a linear list.

Find them, Catch them
� Source: POJ Monthly--2004.07.18

� IDs for Online Judge: POJ 1703

� The police office in Tadu City decides to say ends to the chaos, as
launch actions to root up the TWO gangs in the city, Gang Dragon and
Gang Snake. However, the police first needs to identify which gang a
criminal belongs to. The present question is, given two criminals; do
they belong to a same clan? You must give your judgment based on
incomplete information. (Since the gangsters are always acting secretly.)

� Assume N (N≤105) criminals are currently in Tadu City, numbered from
1 to N. And of course, at least one of them belongs to Gang Dragon, and
the same for Gang Snake. You will be given M (M≤105) messages in
sequence, which are in the following two kinds:

� 1. D [a] [b]
� where [a] and [b] are the numbers of two criminals, and they belong to

different gangs.
� 2. A [a] [b]
� where [a] and [b] are the numbers of two criminals. This requires you

to decide whether a and b belong to a same gang.

� Input

� The first line of the input contains a single integer T
(1≤T≤20), the number of test cases. Then T cases follow.
Each test case begins with a line with two integers N
and M, followed by M lines each containing one
message as described above.

� Output

� For each message "A [a] [b]" in each case, your
program should give the judgment based on the
information got before. The answers might be one of
"In the same gang.", "In different gangs." and "Not sure
yet."

� Analysis

� Criminals in Gang Dragon and criminals in Gang
Snake are two different sets respectively. Suppose set[d]
is the representative of the set containing d, and
set[d+n] is the representative of the “opposite” set,
1≤d≤2n. Function set_find(d) is used to find the
representative of the set containing d, and compress
the path.

� Initially set[d]=-1. That is to say, each criminal
constitutes a gang. Then messages are processed as
follow.

� Decide whether a and b belong to a same gang (s[0]=='
A').

� If a and b don’t belong to a same gang
(set_find(a)!=set_find(b)), and the gang that a belongs
to and the “opposite” gang for b are different
(set_find(a)!=set_find(b+n)), then we can’t decide
whether a and b belong to a same gang; else if the
representative of the set containing a is the same as
the representative of the set containing b
(set_find(a)==set_find(b)), a and b belong to a same
gang; else a and b belong to different gangs.

� Set up a and b belong to two different gangs (s[0]=='D
').

� If the gang that a belongs to isn’t the “opposite”
gang for b (set_find(a)!=set_find(b+n), then set up the
gang that a belongs to is as the “opposite” gang for b,
and the gang that b belongs to is also the “opposite”
gang for a (set[set_find(a)] = set_find(b+n);
set[set_find(b)] = set_find(a+n)).

Cube Stacking
� Source: USACO 2004 US Open

� IDs for Online Judge: POJ 1988

� Farmer John and Betsy are playing a game with N
(1≤N≤30,000) identical cubes labeled 1 through N. They
start with N stacks, each containing a single cube. Farmer
John asks Betsy to perform P (1≤P≤100,000) operation.
There are two types of operations: moves and counts.

� In a move operation, Farmer John asks Bessie to move the
stack containing cube X on top of the stack containing
cube Y.

� In a count operation, Farmer John asks Bessie to count the
number of cubes on the stack with cube X that are under
the cube X and report that value.

� Write a program that can verify the results of the game.

� Input

� Line 1: A single integer, P

� Lines 2..P+1: Each of these lines describes a legal
operation. Line 2 describes the first operation, etc.
Each line begins with a 'M' for a move operation or a 'C'
for a count operation. For move operations, the line
also contains two integers: X and Y. For count
operations, the line also contains a single integer: X.

� Note that the value for N does not appear in the input
file. No move operation will request a move a stack
onto itself.

� Output

� Print the output from each of the count operations in
the same order as the input file.

