
CSE548, AMS542: Analysis of Algorithms, Spring 2015 Date: Apr 12

Homework #3
( Due: Apr 28 )

Task 1. [ 90 Points ] A Recursive Randomized Min-Cut Algorithm

Consider the randomized min-cut algorithm we saw in the class that returns a min-cut with prob-
ability ≥ 1 − 1

e . Given a connected undirected multigraph with n vertices, the strategy is to run

the following algorithm n2

2 times and return the smallest cut identified by those runs. Each run
uses an algorithm that starts with the original n-vertex graph and performs a sequence of n − 2
edge contractions. Each contraction is performed on an edge chosen uniformly at random from
the current set of edges. A contraction step contracts the two endpoints of the given edge into a
single vertex and removes all edges between them, but retains all other edges (and thus leading to
a multigraph). After n − 2 contraction steps only 2 vertices remain, and all edges between those
two vertices are returned as a potential min-cut.

(a) [ 10 Points ] Argue that each contraction step can be implemented to run in O (n) time, and
thus the randomized min-cut algorithm described above takes O

(
n4 log n

)
time to return a

min-cut with high probability.

Recursive-Randomized-Min-Cut( G, a, b, c )

(Input is an undirected multigraph G with n vertices, two integer constants a > 0 and c > 0, and one real-valued
constant b > 1. Output is a cut of G.)

1. if n ≤ c then

2. C ← a min-cut of G found using brute force (exhaustive) search

3. else

4. G′ ← multigraph obtained by applying n−
⌈
n
b

⌉
random contraction steps on G

5. for i← 1 to a do

6. C′ ← Recursive-Randomized-Min-Cut( G′, a, b, c )

7. if i = 1 or |C′| < |C| then C ← C′

8. return C

Figure 1: A recursive randomized min-cut algorithm.

Now consider the recursive algorithm given in Figure 1.

(b) [ 10 Points ] Let T (n) be the running time of the algorithm on a multigraph with n vertices.
Write a recurrence relation describing T (n) and solve it.

1



(c) [ 10 Points ] Let P (n) be the probability that the algorithm returns a min-cut when run on
a multigraph with n vertices. Write a recurrence relation describing P (n).

(d) [ 25 Points ] Let Pα(n) be the value of P (n) when a = b2 = α, where α > 1 is an integer.
Solve the recurrence for P2(n).

(e) [ 15 Points ] Show that limn→∞
Pα+1(n)
Pα(n)

= 1− 1
α2 for any integer α > 1.

(f) [ 5 Points ] Use your result from part (e) to show that limn→∞
Pα(n)
P2(n)

= α
2(α−1) holds for any

integer α > 1.

(g) [ 15 Points ] How would you use the algorithm in Figure 1 to obtain a min-cut of an n-
node multigraph w.h.p. in n, assuming a = b2? What is the running time of the resulting
algorithm?

Task 2. [ 40 Points ] Load Balancing

Consider a set of n� 0 of identical processors each identified with a unique integer between 0 and
n− 1. The processors execute jobs in rounds. In every round each processor receives at most 1 job
to execute, and all jobs arrive at the same time right after the start of the round. Let us assume
for simplicity that execution of every job takes exactly the same (very large) amount of time. Now
for load balancing the processors use the following approach. At the start of every round i ≥ 0,
processor (i mod n) chooses an integer ri uniformly at random from [0, n − 1], and distributes it
to all other processors. Then every processor j sends its job (if any) to processor ((j + ri) mod n)
for execution instead of executing the job itself. We will prove high probability bounds on the
maximum number of jobs executed by a processor in n such rounds. Clearly, a processor may end
up executing n jobs in the worst case.

Let m be the total number of jobs received by all processors in n rounds. Then prove the following
two statements.

(a) [ 20 Points ] If m ≥ n lnn, then w.h.p. in n no processor executes more than 5m
n jobs.

(b) [ 20 Points ] If m < n lnn, then w.h.p. in n no processor executes more than m
n + 4 lnn

jobs.

Task 3. [ 50 Points ] NAND Flash

I have n data items stored on a NAND flash drive, and I have a program that accesses each data
item at most once every time it is run. I will have to run the program n times, and count the
total number of times each data item is accessed by the program across all runs. I intend to use
an array C[1..n] of counters (initialized to 0’s) for this purpose. This counter array is also stored
on the flash drive (too large for the RAM).

I have heard that flash drives have limited write endurance. Repeated writes to a data block
degrades the oxide layer isolating its gates, and after a certain number of writes the block becomes
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bad or unsuitable for data storage. Though the device’s own erase algorithm tries to mitigate the
problem, I have decided to be a bit more careful.

My plan is to keep multiple copies of the counter array, and try to distribute the writes to the
copies as evenly as possible. The hope is to reduce the number of writes to each block by dividing
them among multiple blocks. Every time the program is run it will choose one copy of the counter
array, and perform all writes on that copy only. After the n runs of the program, I will add up
the counts in all copies to get the final count for each data item. Observe that since the program
may access different sets of data items in different runs and I am directing all writes of a run to
a single copy of the counter array, distributing the writes to every counter evenly among different
copies may not even be possible. After my many failed attempts to find a deterministic algorithm
that always gives good (not necessarily perfect) solutions, a friend of mine advised me to choose a
copy of the counter array independently and uniformly at random in every run.

In this task we consider a simplified scenario. Suppose we have only two copies C1 and C2 of the
counter array, and every run of the program chooses one of those two copies independently and
uniformly at random. For each i ∈ [1, n]. let wi = C1[i] + C2[i] and δi = C1[i] − C2[i]. Also let
∆ = max1≤i≤n |δi|. Observe that the lower the value of ∆ is, the better (i.e., more balanced) the
distribution of writes (between C1 and C2) is.

Now answer the following questions. In parts (a)–(b) below we consider any given index i ∈ [1, n].

(a) [ 10 Points ] Prove that expected value of C1[i] is wi
2 .

(b) [ 20 Points ] Prove that |δi| < 4
√
n lnn holds w.h.p. in n, provided wi > 4

√
n lnn.

(c) [ 20 Points ] Prove that ∆ < 4
√
n lnn holds w.h.p. in n.
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