
CSE548, AMS542: Analysis of Algorithms, Spring 2014 Date: Mar 29

Homework #2
( Due: Apr 11 )

Closest-Point( P, n, p )

(Input is an array P [1 : n] of n > 0 points in the plane, and a special point p such that no circle centered at
p passes through more than one point in P . This function returns the point in P which is closest to p.)

1. j ← 1

2. for i← 2 to n do

3. if dist(p, P [i]) < dist(p, P [j]) then {if p is closer to P [i] than P [j]}
4. j ← i

5. return P [j]

Task 1. [ 80 Points ] Average Case Analysis

The function Closest-Point( P, n, p ) given above finds the point in P [1 : n] which is closest to
the given point p. We assume that no circle centered at p passes through more than one point in
P . Observe that the number of times the assignment (j ← i) in line 4 is executed depends on the
order in which the points appear in P . This task asks you to compute the number of times line 4
is executed averaged over all n! possible permutations of the points in P .

Let cn,k = number of permutations of n points for which line 4 is executed exactly k times, and
also let fn,k =

cn,k

n! be the fraction of all possible permutations each of which results in precisely
k executions of line 4. Then clearly, our required average An and its variance Vn are given by the
following expressions.

An =
∑
k

kfn,k and Vn =
∑
k

k2fn,k −A2
n

(a) [ 20 Points ] Consider the following generating function for fn,k’s.

Fn(z) = fn,0 + fn,1z + fn,2z
2 + . . . + fn,nz

n

Show that An = F ′n(1) and Vn = F ′′n (1) + F ′n(1)− (F ′n(1))2.

(b) [ 20 Points ] Prove that for n > 0, cn,k can be described using the following recurrence
relation.

cn,k =


1 if (n = 1 ∧ k = 0),
0 if (k < 0) ∨ (n = 1 ∧ k 6= 0),
(n− 1)cn−1,k + cn−1,k−1 otherwise.

(c) [ 40 Points ] Use your results from parts (a) and (b) to show that An = Hn − 1 and

Vn = Hn −H
(2)
n , where Hn =

∑
1≤k≤n

1
k < lnn + 1 and H

(2)
n =

∑
1≤k≤n

1
k2

< π2

6 .
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(a) Node x is straight ⇒ its right child is thin (b) Node x is twisted ⇒ its right child is thick

Figure 1: A non-leaf node is straight provided its right child is thin, otherwise it is twisted.

(a) min-heap-ordered (b) min-heap-ordered (c) after min-heap-order preserving (d) Union(T1, T2) is obtained by twisting all but the

binary tree T1 binary tree T2 merging of backbones of T1 and T2 last node on the merged backbone of T1 and T2

Figure 2: Unioning two min-heap-ordered binary trees.

Task 2. [ 100 Points ] I’ve Come to Set a Twisted Thing Straight (Suzanne Vega/Solitude)

Consider an arbitrary binary tree T with T.root pointing to the root node of the tree. If T.root =
null then T is empty. Each node x of T contains three fields: x.key, x.left and x.right. An
arbitrary numerical value can be stored in x.key. If x has a left child/subtree then x.left points
to that child, otherwise x.left = null. Similarly for x.right. The number of nodes in the subtree
rooted at x (including x itself) is given by Size( x ). If x is not the root then Parent( x ) is the
parent of x. See Figure 1 for an example. Note that x does not store Size( x ) and Parent( x ).
We have defined them for convenience.

We say that a non-root node x is thin provided Size( x ) ≤ Size( Parent( x ) )/2, otherwise x
is thick. A non-leaf node x is called straight provided its right child is thin, otherwise we call it
twisted. A twist operation on x swaps the two children of x. As a result, if x was originally twisted
it becomes straight, and if it was originally straight it can either remain straight (when both its
children have the same size) or become twisted. Figure 1 shows an example.

The path of T that starts from the root and follows only the right pointers is called the backbone
of T . See Figure 2 for examples.
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We assume that T is min-heap ordered. Clearly, Make-Heap( T ) that creates an empty min-heap
ordered binary tree T , and Find-Min( T ) that returns the minimum key in T (or null if T is
empty) can be implemented to run in O (1) worst-case time.

Figures 2 and 3 show how to compute the union of two min-heap ordered binary trees by first
merging their backbones and then twisting each node (except the one at the bottom) on the
merged backbone in an attempt to shorten the length of the new backbone.

(a) [ 10 Points ] If T has n nodes, argue that any root to leaf path of T can include at most
blog2 nc thin nodes.

(b) [ 10 Points ] Use your result from part (a) to argue that the backbone of T cannot contain
more than blog2 nc straight nodes.

(c) [ 20 Points ] Design Insert( T, k ) that inserts a new key k into T , and Delete-Min( T )
that deletes the smallest key from T using the Union function as a subroutine.

(d) [ 30 Points ] Use the accounting method and your result from part (b) to prove an O (log n)
amortized time bound for each of Insert, Delete-Min and Union operations, where n is
the total number of nodes in the tree(s) involved.

(e) [ 30 Points ] Repeat part (d) using the potential method.

Union( T1, T2 )

(Inputs are two heap-ordered binary trees T1 and T2.
Output is a new heap-ordered binary tree T obtained
by merging the backbones of T1 and T2, and then
twisting each node (except the last) on the new back-
bone.)

1. new tree T

2. T.root← Merge( T1.root, T2.root )

3. if T.root 6= null then Twist( T.root )

4. return T

Twist( x )

(Input is a tree node x. This function twists each
node (i.e., swaps the two subtrees rooted at the node)
except the last node on the backbone of the subtree
rooted at x.)

1. z ← x.right

2. if z = null then return

3. x.right← x.left

4. x.left← z

5. Twist( z )

Merge( x, y )

(Inputs are two tree nodes x and y. The subtrees rooted at
these two nodes are heap-ordered. This function merges
the backbones of those two subtrees maintaining heap-
order, and returns the root of the merged backbone.)

1. if x = null then return y

2. else if y = null then return x

3. if x.key < y.key then

4. x.right← Merge( x.right, y )

5. return x

6. else

7. y.right← Merge( x, y.right )

8. return y

Figure 3: Given two heap-ordered binary trees
T1 and T2, Union( T1, T2 ) returns a new
heap-ordered binary tree T by merging the back-
bones of T1 and T2 maintaining heap-order, and
then twisting each node (except the last) on the
merged backbone.
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