
CSE548, AMS542: Analysis of Algorithms, Fall 2012 Date: Oct 30

Homework #3
( Due: Nov 13 )

Task 1. [ 15 Points ] You have to do the best with what God gave you ( Mrs. Gump
in “Forrest Gump” )

Given a mere binary heap you will have to augment it to support Insert operations in constant
amortized time.

(a) [ 5 Points ] Consider a binary min-heap containing exactly n = 2h+1 − 1 elements for some
integer h ≥ 0. Show that for any integer k ∈ [0, h + 1] a batch of 2k new elements can be
inserted into this heap in O

(
2k + h2

)
worst-case time.

(b) [ 10 Points ] Part (a) implies that a batch of 2k new elements can be inserted into a heap
(not necessarily full) of height h in O

(
2k
)

worst-case time provided 2k = Θ
(
h2

)
. Use this

observation to prove that a binary heap can be augmented to support Insert operations in
O (1) amortized time without changing the O (log n) worst-case time bound for Extract-
Min, Delete and Decrease-Key.

Task 2. [ 30 Points ] The Road Not Taken1 ( Robert Frost )

(a) [ 10 Points ] We have shown in the class that Fibonacci heaps support Delete and
Extract-Min operations in O (log n) amortized time each, and every other operation2 in
O (1) amortized time, where n is the number of items currently in the heap. Present an
alternate analysis based on the potential method to show that the same Fibonacci heap
implementation supports Insert operations in O (log n) amortized time and all other oper-
ations3 (except Union) in O (1) amortized time each. What bound do you get for Insert
when you make the amortized cost of Union also O (1)?

(b) [ 5 Points ] Explain how to implement Increase-Key( H, x, k ) operations4 efficiently
in a Fibonacci Heap without changing the amortized time complexities of other operations.
Argue that your bound is the best possible.

(c) [ 15 Points ] Suppose we modify the Fibonacci Heap so that a node is cut from its parent only
after losing its kth child for some given integer k ≥ 2. Analyze amortized time complexities
of all heap operations on this modified version assuming k = 3 (recall that the version we
analyzed in the class used k = 2). Explain how the performance of Decrease-Key and
Extract-Min will change if k is increased.

1Two roads diverged in a wood, and I–
I took the one less traveled by,
And that has made all the difference.

2Make-Heap, Insert, Union, Minimum and Decrease-Key
3Make-Heap, Minimum, Delete, Extract-Min and Decrease-Key
4Increase-Key( H, x, k ): change the key of element x of heap H to k assuming that k ≥ the current key of x
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Task 3. [ 35 Points ] Sums on a Tree 5

Suppose you are given a full, rooted binary tree with weights on the edges, and you are asked to
preprocess the tree in order to answer queries of the form: what is the ‘sum’ of the edge weights
from a given leaf u to one of its given ancestors v in the tree? Here ‘sum’ is an arbitrary associative
operation, e.g., regular addition, maximum/minimum, bitwise AND/OR, etc.

In this task we are interested in optimizing the time and space used by the preprocessing algorithm
as well as the time required to answer each query. The query time is given by the maximum number
probes into the data structure (i.e., number of times you read ‘sums’ or ‘partial sums’ from the
data structure) to answer a single query.

Suppose n is the number of nodes in the tree. Then n = 2h+1 − 1 for some integer h ≥ 0, and the
tree has exactly 2h = 1

2(n+ 1) leaves.

(a) [ 5 Points ] If ‘sum’ has an inverse (e.g., regular addition has an inverse operation called
subtraction), show that the tree can be preprocessed in Θ (n) time and space to answer each
query using at most 2 probes.

For parts (b) – (e) assume that ‘sum’ does not have an inverse operation (e.g., maximum/minimum
and bitwise AND/OR).

(b) [ 5 Points ] Show how to preprocess the tree in Θ (n log n) time and space so that each query
can be answerd using a single probe.

(c) [ 15 Points ] Use the result from part (b) to show how to preprocess the tree in Θ (n log∗ n+ n)
time and space so that each query can be answered using at most 2 probes.

(d) [ 5 Points ] Show that if you know how to preprprocess the tree in Θ
(
n log[[∗(k−1)]] n+ (k − 1)n

)
time and space6 to achieve a query time of k for some integer k ∈ (0, α(n)), you can improve

the preprocessing time and space to Θ
(
n log[[∗(k)]] n+ kn

)
at the expense of increasing the

query time to k + 1.

(e) [ 5 Points ] Use your result from part (d) to show that the tree can be preprocessed in
Θ (nα(n)) time and space to answer each query using at most α(n) probes.

5A tree in computer science is a tree in nature with the root at the top and the leaves at the bottom

6log[[∗(k)]] n = log

k︷ ︸︸ ︷
∗ . . . ∗ n
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