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Abstract

This paper presents a novel modeling technique for re-
constructing a triangularB-spline surface from a set of
scanned 3D points. Unlike existing surface reconstruction
methods based on tensor-productB-splines which primar-
ily generate a network of patches and then enforce certain
continuity (usually,G1 or C1) between adjacent patches,
our algorithm can avoid the complicated procedures of sur-
face trimming and patching. In our framework, the user sim-
ply specifies the degreen of the triangularB-spline sur-
face and fitting error toleranceε. The surface reconstruc-
tion procedure generates a single triangularB-spline patch
that hasCn−1 continuity over smooth regions andC0 on
sharp features. More importantly, all the knots and control
points are determined by minimizing a linear combination
of interpolation and fairness functionals. Examples are pre-
sented which demonstrate the effectiveness of the technique
for real data sets.

1. Introduction

The challenging problem of reconstructing a surface
from a large set of scattered sample points arises in a vari-
ety of applications including reverse engineering, geometric
modeling and processing, graphics, vision, medical image
segmentation, etc. In terms of the underlying surface rep-
resentation, existing approaches fall into three categories:
polygonal meshes, splines and zero-set surfaces. Among
them, spline-based algorithms have been widely studied and
employed since they are well suited for further processing
in CAD/CAM systems.

Tensor-productB-splines and NURBS are currently the
industrial standard for surface representation. However, due
to their rectangular structures, they exhibit two major diffi-
culties in scattered data fitting:

• A singleB-spline patch can represent only surfaces of
simple topological type. Thus, a surface of arbitrary

topological type must be defined as a network of B-
spline patches. It is challenging to enforce a certain
degree of continuity between adjacent patches while at
the same time fit the patch network to the points.

• Although it is desirable in principle to have surfaces
that are as smooth as possible, in practice it is nec-
essary to be able to model discontinuities like sharp
edges or corners as well. However, duplicating knots
in tensor-productB-spline will produce a discontinu-
ity curve across the whole patch.

Triangular B-splines, or DMS splines, introduced by
Dahmen, Micchelli and Seidel [1], have numerous posi-
tive characteristics that make them appropriate for surface
reconstruction, such as their automatic smoothness proper-
ties, the ability to define a surface over arbitrary triangula-
tions (which can be adapted to the local density of sampled
data) and model sharp features between any desired adja-
cent knots [11].

Note that, the existing triangularB-spline-based ap-
proaches [3, 4, 7, 8, 11, 13] only deal with fixed knots. The
number and positions of knots are determined by the distri-
bution of parameters before fitting and are not allowed to be
changed during fitting. The main reason for using splines
with fixed knots is efficiency, since the basis functions can
be precomputed. However, the fitting quality can, in princi-
ple, be improved if time-varying knots are allowed instead
of fixed ones.

The main contribution of this paper is the development
of a new algorithm based on triangularB-spline for surface
reconstruction. This approach has the following features:

1. It generates a single triangularB-spline patch that has
a user-specified continuity over both smooth regions
and sharp features.

2. It can handle parametric domains with arbitrary topol-
ogy with ease. Therefore, there is no need for surface
trimming and patching.



3. The knots are first placed heuristically according to the
features, and then are refined by minimizing a linear
combination of interpolation and fairness functionals.

The rest of this paper is organized as follows: Section
2 reviews the related work on triangular B-splines and sur-
face reconstruction methods. In Section 3, we present sev-
eral theoretical results on triangular B-splines, such as the
derivatives with respect to parameters and knots. Section 4
details our algorithm. Experimental results on several real
data are demonstrated in Section 5. Finally, we conclude
the paper in Section 6.

2. Previous Work

2.1. Triangular B-splines

The theoretical foundation of triangularB-splines lies
in the simplex spline of approximation theory. Dahmen
et al. [1] propose triangularB-splines from the point of
view of blossoming. Fong and Seidel [3, 4] present the
first prototype implementation of triangularB-splines and
show several useful properties, such as affine invariance,
convex hull, locality and smoothness. Greiner and Sei-
del [7] demonstrate the practical feasibility of multivariate
B-spline algorithms in graphics and shape design. Pfeifle
and Seidel [10] present an efficient algorithm to evaluate
quadratic triangularB-splines, and they also demonstrate
the fitting of a triangular B-spline surface to scattered func-
tional data through the use of least squares and optimiza-
tion techniques [11]. Han and Medioni [8] employ triangu-
lar NURBS for modeling and visualizing sparse, noisy data
that may contain unspecified discontinuity edges and func-
tions. Qin and Terzopolous [13] present dynamic triangu-
lar NURBS, a free-form shape model that demonstrates the
convenience of interaction within a physics-based frame-
work. Franssen et al. [5] propose an efficient evaluation al-
gorithm, which works for triangularB-spline surfaces of
arbitrary degree. He et al. [9] derive the formula to eval-
uate the directional derivatives of triangularB-spline with
respect to knots.

2.2. Surface reconstruction with splines

There has been considerable work on surface reconstruc-
tion with splines. In order to handle objects with arbitrary
topology, the reconstructed surface is usually represented as
the collection of several patches. The patches are trimmed
near the boundaries, which results in gaps between neigh-
boring patches. The main effort goes into filling these gaps
with properly chosen blending surfaces. For instance, Eck
and Hoppe’s method yields aG1 tensor product B-spline
surface [2] and Wagner et al’s approach guaranteesC2-
continuous result [16].

3. Triangular B-splines with free knots

3.1. Definition

The construction of the triangularB-spline scheme in [3,
4, 5, 7, 11] is as follows: let pointsti ∈ R2, i ∈ N, be given
and define a triangulation

T = {∆(I) = [ti0 , ti1 , ti2 ] : I = (i0, i1, i2) ∈ I ⊂ N3}

of a bounded regionD ⊆ R2, where every trian-
gle is oriented counter-clockwise (or clockwise). Next,
with every vertexti of T we associate a cloud of knots
ti,0, . . . , ti,n such thatti,0 = ti and for every trian-
gle I = [ti0 , ti1 , ti2 ] ∈ T ,

1. all the triangles [ti0,β0 , ti1,β1 , ti2,β2 ] with
β = (β0, β1, β2) and |β| = β0 + β1 + β2 ≤ n
are non-degenerate.

2. the set

ΩI
n = interior(∩|β|≤nX

I
β), XI

β = [ti0,β0 , ti1,β1ti2,β2 ]

satisfies
ΩI

n 6= ∅ (1)

3. if I has a boundary edge, say,(ti, tj), the entire area
[ti,0, . . . , ti,n, tj,0, . . . , tj,n) must lie outside ofD.

Then the triangularB-spline basis functionN I
β , |β| = n, is

defined by means of simplex splinesM(u|V I
β ) as

N(u|V I
β ) = |dI

β |M(u|V I
β )

whereV I
β = {ti0,0, . . . , ti0,β0 , . . . , ti2,0, . . . , ti2,β2} and

dI
β = d(XI

β) = det

(
1 1 1

ti0,β0 ti1,β1 ti2,β2

)
is twice the area of triangleXI

β .
Assuming (1), theseB-spline basis functions can be

shown to be all non-negative and to form a partition of unity.
Hence, any triangularB-spline surface

F(u) =
∑
I∈I

∑
|β|=n

cI,βN(u|V I
β ), cI,β ∈ R3 (2)

lies in the convex hull of its control points.
This surface is globallyCn−1 if all the setsXI

β , |β| ≤ n
are affinely independent. In general, if at mostµ knots
within a domain triangle∆(I) are collinear,2 ≤ µ ≤
n+ 2, thenF(u) isCn+1−µ-continuous everywhere.

The directional derivative of a degreen simplex spline
along a given directionv ∈ R2 for a parameter valueu ∈
R2 is given as

DvM(u|V ) = n
2∑

j=0

µj(v)M(u|V \ {tj}),



wherev =
∑2

j=0 µj(v)tj and
∑2

j=0 µj(v) = 0. Thus, the
directional derivative of a surfaceF at a parameter valueu
along the directionv has the expression

DvF(u) =
∑
I∈I

∑
|β|=n

cI,β |dI
β |DvM(u|V I

β ).

3.2. Shared control points

For a general triangularB-spline surface, each triangleI
has its own set of control pointscI,β . However, in this paper
we consider a more restricted class of surfaces by sharing
respective control points along common boundaries of two
adjacent triangles in the parametric triangulation.

TriangularB-splines with shared control points have
several useful properties:

1. A degreen surface can be evaluated with the efficiency
of a degreen− 1 surface [4], i.e.,

F(u) =
∑
I∈I

∑
|β|=n−1

c(1)
I,β(u)N(u|V I

β ), (3)

where

c(1)
I,β(u) =

2∑
j=0

cI,β+ejλj(u|XI
β),

λj(u|XI
β) is thej− th barycentric coordinate with re-

spect toXI
β and ej = (δj,i)2i=0, j = 0, 1, 2 are the

coordinate vectors. This also implies that the last knot
ti,n associated to vertexti does not contribute to the
shape.

2. The directional derivative can be written in the form of
a degreen− 1 surface [12], i.e.,

DvF(u) = n
∑
I∈I

∑
|β|=n−1

c(2)
I,β(v)N(u|V I

β ), (4)

where

c(2)
I,β(v) =

2∑
j=0

cI,β+ejµj(v|XI
β).

Equations (3) and (4) can significantly improve the soft-
ware system for rendering a triangularB-spline surface,
since the valueF(u) and normalFu(u)×Fv(u) of a param-
eteru can be evaluated simultaneously. Hence, in the rest
of this paper, we only consider triangularB-splines with
shared control points.

3.3. Directional derivative with respect to a knot

Let us useDtl,v to denote the directional derivative with
respect to a knottl along the directionv, i.e.,

Dtl,vM(u|t0, . . . , tn) =

lim
ε→0

M(u|t0, . . . , tl + εv, . . . , tn)−M(u|t0, . . . , tl, . . . , tn)
ε

.

The directional derivative of a triangularB-spline surface
F with respect to knotts,l, along the directionv is [9]

Dts,l,vF(u) = DvG(u) + H(u,v), (5)

where

G(u) = − 1
n+ 1

∑
I∈I,ij=s

∑
|β|=n+1

cI,β−ejN(u|V̂ I
β ),

H(u,v) =
∑

I∈I,ij=s

∑
|β|=n,βj=l

µj(v|XI
β)cI,βN(u|V I

β ),

and

V̂ I
β = {. . . , ts,0, . . . , ts,l−1, ts,l, ts,l, ts,l+1, . . . , ts,n, . . . , }.

Note that Equation (5) holds for a general triangularB-
spline. According to Equation (4), for a triangularB-spline
with shared control points,DvG(u) can also be simplified
as follows:

DvG(u) = −
∑

I∈I,ij=s

∑
|β|=n

c(2)
I,β−ej (v)N(u|V̂ I

β ).

3.4. Evaluation

Equation (5) shows that the computation of derivatives
with respect to a knot relies only on the evaluation of two
triangular B-splines, one with the same knot configuration
but different control points, another with different knots but
the same control points. Thus, it is straightforward to de-
velop the evaluation algorithm for derivatives based on ex-
isting evaluation routines for triangularB-splines [5]. How-
ever, this is not efficient in practice. The reason is that the
evaluation ofF(u) andDts,l,vF(u) share many simplex
splines of lower degree. The evaluation process will be ac-
celerated if every simplex spline of degreei, i = 0, . . . , n,
is computed only once. In our implementation, we treat
the evaluation ofF(u), DvF(u) andDts,l,vF(u) simulta-
neously.

Note that a simplex spline is given by the following re-
cursive equation:

M(u|V ) ={
χ[t0,t1,t2)
|d(V )| |V | = 3∑2

j=0 λj(u|W )M(u|V \ {wi}) |V | > 3
,



where χ[t0,t1,t2)(u) is the characteristic function on
[t0, t1, t2). The elements inW = {w0, w1, w2} ⊂ V can
be chosen arbitrarily fromV . W is called thesplit setfor
V .

The evaluation problem of re-using partial results de-
pends on an efficient way to index and search all of the
relevant basis functions of simplex splines. In a related
work, Franssen et al. [5] present a directed graph data
structure that makes searching related basis functions (to
be evaluated) superfluous. In this paper, we further extend
Franssen’s idea to accommodate triangularB-splines with
free knots. We present our improved data structure as fol-
lows:

class SimplexSpline {
public:

// degree of this simplex spline
int degree;
// degree+3 knots
double2* knots;
// used to index a SimplexSpline
int* knot_indices;
// pointers to lower degree SimplexSplines
SimplexSpline* M[3];
// the last evaluation point
double2 lastpoint;
// value of last evaluation point
double lastvalue;
// pointer to the parametric domain
Domain* dm;

...};

typedef SortedList<SimplexSpline>
SimplexSplineList;

class Domain {
public:

int degree;
vector<double2> knots;
vector<SimplexSplineList> ssl;

...};

The classDomainmaintains an array of knots and a di-
rected graph, in which every node represents aSimplexS-
pline. EachSimplexSplineof degreei > 0 has three outgo-
ing edges that connect it with three differentSimplexSplines
of degreei− 1. These threeSimplexSplines are determined
by choosing a split setW and unfolding the above recur-
rence. This directed graph is also organized inn+ 1 layers,
in which thei-th layer is a sorted list ofSimplexSplines of
degreei. When constructing a newSimplexSpline, the pro-
cedure first (binary) searches the corresponding layer. If it
has already been created, the procedure simply returns its
pointer; otherwise, it inserts a newSimplexSplineinto the
list and unfolds it recursively until all the paths reach exist-
ing nodes or layer0. This data structure has several advan-
tages:

1. This graph is built only once during preprocessing and
then can be used to evaluate the simplex splines at ar-
bitrary locations.

2. Whenever we compute the value of a simplex spline at
a parametric location, we store this value in the node
of the simplex spline in the graph. When, during eval-
uation of the same point, we encounter the same sim-
plex spline through another incoming edge and just use
the stored value.

3. It can deal with evaluation of a point, normal, and
derivatives with respect to knots in the same fashion.
The only difference is that the evaluation of deriva-
tives of knots starts from layern and others from layer
n− 1.

4. If the position of a knotts,l is changed, we collect
the simplex splines on the top layer that containsts,l,
and then update simplex splines of lower degree recur-
sively through their outgoing edges.

4. Surface Reconstruction with TriangularB-
splines

4.1. Problem statement

The problem of reconstructing smooth surfaces from dis-
crete scattered data arises in many fields of science and en-
gineering and has now been studied thoroughly for nearly
40 years. The problem can typically be stated as follows:
given a setP = {pi}m

i=1 of pointspi ∈ R3, find a paramet-
ric surfaceF : R2 → R3 that approximatesP .

To find a proper parametric domainΩ ⊂ R2, parameter-
ization is usually the first step. Parameterizing a point cloud
P is the task of finding a set of parameter pointsψ(pi) ∈ Ω,
one for each pointpi ∈ P . Then, we consider the follow-
ing problem:

minE(F) = Edist(F) + λ · Efair(F), (6)

where

Edist(F) =
m∑

i=1

‖pi − F(ui)‖2,

ui = (ui, vi)T is the parameter of pointpi andEfair(F) is
a fairness functional with the smoothing factorλ ≥ 0.

The commonly-used fairness functionals, such as sim-
plified membrane energy and thin-plate energy, require in-
tegration, which is usually computational expensive. In this
paper, we use a simple, yet effective, fairness functional

Efair(F) =
m∑

i=1

(ni · Fu(ui))2 + (ni · Fv(ui))2 (7)

whereni is the normal of pointpi. Note that these normals
can be estimated either from initial scans during the shape



acquisition phase or by local least-squares fitting toP . This
fairness functional can be seen as an approximation of sur-
face normals.

Our triangularB-spline surface reconstruction algorithm
consists of three steps: 1) constructing an initial domain tri-
angulation, 2) fitting with triangularB-spline and 3) refin-
ing the domain triangulation adaptively.

4.2. Constructing an initial domain triangulation

Suppose the parametersui have been obtained by ex-
isting parameterization methods. A principle in construct-
ing such a triangulation is that areas with dense parameter
points should have more triangles andvice versa. Further-
more, placing primary knots along feature lines is also help-
ful in sharp feature recovery. Based on these observations,
we construct the initial domain in three steps:

1. Feature detection.The detected and reconstructed fea-
tures enable the splitting of the whole parametric do-
main into simpler sub-domains such that each sub-
domain represents a smooth surface patch.

2. Domain partition.First, uniformly sample the bound-
ary of the domain and feature lines. Next, simplify the
original mesh with the user-specified number of trian-
gles. (In our implementation,QSlim[6] is used for this
purpose.) Finally, map the simplified mesh to the para-
metric domain.

3. Constrained Delaunay triangulation.Set the boundary
and feature constraints, and perform constrained De-
launay triangulation to the vertices generated by the
above step. Refine the triangulation by removing trian-
gles with small area.

4.3. Fitting with triangular B-splines

Although it is possible to treat control points and knots
simultaneously during the optimization process, we prefer
to handle them separately. There are several reasons for do-
ing so: 1) Solving the sub-problem of control points is much
easier and faster than the knots sub-problem; 2) The control
points are more useful than the knots to construct an ini-
tial surface; and 3) This helps to reduce the complexity of
the problem.

If only the control points are treated as variables in Equa-
tion (6), it falls into a very special category of nonlinear pro-
gramming, i.e., unconstrained convex quadratic program-
ming. For example,Edist has the following form:

Edist =
1
2
xTQx + cT x + f,

wherex = (. . . , cI,β , . . . )T ,

Q =


...

. . . 2
∑m

i=1NI,β(ui, vi)NI′ ,β′ (ui, vi) . . .
...

 ,

c = (. . . ,−2
m∑

i=1

diN
I
β(ui, vi), . . . )T ,

andf =
∑m

i=1 ‖di‖2. Efair is also a quadratic function in
the unknown of control points, and can be written in a sim-
ilar fashion.

Note that,Q is a semi-positive definite, symmetric and
sparse matrix. For a typical triangularB-spline with 500 tri-
angles in the domain, more than99% elements inQ are ze-
ros. Interior-point methods can solve this problem very ef-
ficiently.

When considering the knots as free variables in Equation
(6), we need also to pay attention to the positions of knots.
We classify the knots into two categories: the primary knots
{ts,0|s ∈ N} and the sub-knots{ts,l|s ∈ N, 1 ≤ l < n}.

The knots are subject to two kinds of constraints:

1. Domain constraint: the primary knots must yield a
valid triangulation inΩ and the sub-knots must satisfy
Equation (1). The sub-knots on the boundary must lie
outside ofΩ. Traas’s scheme [15] can guarantee Equa-
tion (1): for every vertexti, place all the sub-knotsti,j ,
j = 1, . . . , n within a circleci whereci does not inter-
sect with any middle line of triangles associated with
ti (See Figure 1(a)).

2. Feature constraint: the primary knots lie on a sharp fea-
ture curve and the sub-knots lie on an edge between ad-
jacent primary knots (See Figure 1(b)).

The domain constraint is necessary for all free knots splines.
Feature constraint is useful to model discontinuities such as
boundaries, sharp edges and corners. Therefore, Equation
(6) is a typical large-scale constrained nonlinear program-
ming problem. In our first implementation, we treat all the
free knots as variables in Equation (6) and solve it using a
general nonlinear programming package. However, the per-
formance is unsatisfactory even after we improve the eval-
uation of the objective function and its gradient. Observe
that not all the knots have the same contribution to the ob-
jective function. Therefore, there is no need to optimize a
knot if it can only change the shape slightly. Hence, we de-
velop the procedureOptimizeKnot(ts), which only finds the
optimal positions of knots associated with vertexts.

Let us useT (ts, k) to denote thek-ring (k ≥ 1) neigh-
boring triangles surroundingts. LetP (ts) ⊂ P be the scat-
tered points whose parameters are in the trianglesT (ts, 2).



(a) (b)

Figure 1. Constraints on knots

The goal ofOptimizeKnot(ts) is to minimize the follow-
ing objective function (compare this to Equation (6))

min
∑

pi∈P (ts)

{‖pi − F(ui)‖2

+ λ((ni · Fu(ui))2 + (ni · Fv(ui))2)} (8)

with respect to{ts,0, . . . , ts,n−1} which are subject to
(1) ts,0 ∈ T (ts, 1).
(2) ‖ts,i − ts,0‖ ≤ r for i = 1, . . . , n − 1 wherer (the ra-
dius of circle in Figure 1(a)) is half of the minimal height of
triangles inT (ts, 1).
(3) If the user wants to enforceC0 continuity on feature
lines, then{ts,i}n−1

i=1 must lie on the edge between adjacent
primary knots that are also on the sharp feature curve.

Equation (8) is a local fitting problem that considers only
scattered data points which are ints’s 1-ring neighboring
triangles. SinceOptimizeKnot(ts) decreases the objective
functional aroundts, the algorithm can reach local mini-
mum for each vertex. Another advantage of this algorithm
is parallelism. If verticestp andtq ’s topological distance is
more than4, OptimizeKnot(tp) andOptimizeKnot(tq) can
be done in parallel since any change of{tp,i}n−1

i=0 does not
affect the local shape aroundtq.

4.4. Adaptive refinement

The surface fitting algorithm described in Section 4.3 at-
tempts to minimize the total squared distance of the scat-
tered data pointspi to the triangularB-spline surfaceF. It
is often desirable to specify an error toleranceε, such that
the surface satisfiesEdist ≤ ε. Similar to Eck and Hoppe’s
method [2], we use adaptive refinement to introduce new
degrees of freedom into the surface representation in or-
der to improve the fitting quality. The goal of this refine-
ment is to subdivide any domain triangle whose fitting error
is greater than a threshold. This step is performed as fol-
lows:

1. Repeat

2. Subdivide the domain triangles with large fitting error.

3. Flip edges to avoid poor quality triangles.

4. Solve the control points sub-problem for affected triangles.

5. CallOptimizeKnotfor the new vertices.

6. until Edist ≤ ε

Essentially, Step2 is the knot insertion for triangularB-
splines. Seidel et al. [14] prove that the new control points
in the refined triangulation can be computed directly by the
polar form. To simplify our implementation, in this paper
we simply solve the control points sub-problem to calculate
the control points.

5. Experimental Results

Figures 2(a-j) illustrate our surface reconstruction
method applied to the skidoo model. We also present other
examples in Figure 3. In order to compare the fitting er-
ror across different models, we uniformly scale the data
pointsP to fit within a unit cube.

Table 1 indicates the configurations of these data sets
and the surface complexities. In this3-step pipeline, Step
1 can be implemented by various existing methods. There-
fore, only execution times of Step2 − 3 are shown in Ta-
ble 1. The execution times are obtained on a Pentium IV
machine at2.4 GHz.

As seen in Figure 2(b), the parametric domain of the ski-
doo has a very irregular boundary and two holes. The horse
model also has an oval-like domain. Due to the distortion
of parameterization, the distribution of parameter points is
not even, e.g., the dense area of the horse parameterization
corresponds to the ears and nose. With the triangularB-
spline, we can construct the parametric domain easily ac-
cording to the point distribution and sharp features. Further-
more, since our surface reconstruction algorithm is based
on global parameterizations, there is no cutting and patch-
ing work, which is usually necessary when using tensor-
productB-splines.

6. Conclusions

In this paper we developed a new algorithm for surface
reconstruction based on triangularB-splines which has sev-
eral advantages: it can handle a parametric domain with ar-
bitrary topology; it generates a single triangularB-spline
patch that has user-specified continuity over both smooth
regions and sharp features; and the positions of knots and
control points can be determined automatically. Our experi-
mental examples demonstrate that we can achieve high con-
tinuity and good fitting results when using triangularB-
splines for surface reconstruction.



object #points degree #domain triangles #control points max. error root-mean-square error time(m:s)
horse 24,236 3 364 1,663 1.04e-2 1.09e-3 5:26
skidoo 37,974 4 464 3,863 3.24e-3 1.31e-4 13:16
venus 50,002 3 1,055 4,831 6.36e-3 9.74e-4 22:51

Table 1. Surface complexities and execution times
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(a) 37,974 points (b) parameterization (c) 464 triangles

(d) 3,863 control points (e) 0.32% max error (f) marked surface

(g) (h)

(i) (j)

Figure 2. Illustration of the triangular B-spline surface reconstruction procedure. (a) 3D points. (b)
parameterization. (c) parametric domain. (d) control net. (e) A C3 triangular B-spline surface with
maximal fitting error of 0.32%. (f) surface marked with domain triangles. (g)-(h) closed view of recon-
structed surface without feature recovery. (i)-(j) closed view of reconstructed surface with feature
recovery.



(a) 24,236 points (b) parameterization (c) 364 triangles

(d) 1,663 control points (e) 1.04% max error (f) domain triangles

(g) 50,002 points (h) parameterization (i) 1,055 triangles

(j) 4,381 control points (k) 0.64% max error (l) domain triangles
Figure 3. C2 triangular B-spline surfaces. (Parameterization data courtesy of Hugues Hoppe)


