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Point-Based Computer Graphics

Three-dimensional acquisition is an
increasingly popular means of creating

surface models. As 3D digital photographic and scan-
ning devices produce higher resolution images,
acquired geometric data sets grow more complex in
terms of the modeled objects’ size, geometry, and topol-
ogy. Point-based geometry is a form of 3D content acqui-
sition popular in graphics and related visual computing
areas. Points have unique advantages over traditional
primitives such as triangle meshes. For example, they
are free of connectivity concerns, especially in large-
scale scanned models.

Point set surfaces are enjoying a renaissance in mod-
eling and rendering, with many efforts focused on direct
rendering techniques1–3 and effective modeling mecha-
nisms.4,5 Despite these research achievements, the spec-
trum of surface editing and deformation types is still
quite limited. For example, no current research investi-
gates the physics-based dynamic simulation of virtual
materials represented by point sets (that is, allowing the
point sets to respond dynamically to users’ applied force
in an intuitive and natural fashion). Handling collision
detection and topology changes using point information
alone is another challenging problem. 

We’ve developed a scalar-field-driven editing para-
digm and system for point set surfaces that let users
manipulate and sculpt point clouds intuitively and effi-
ciently. The paradigm is primarily based on the repre-
sentation of versatile, embedded scalar fields associated
with any region of the point set surface. Scalar-field-dri-
ven implicit representation, such as volumetric implicit
models6 and level sets, is a powerful paradigm that not
only handles arbitrary topology and complicated geom-
etry, but also affords physics-based modeling techniques. 

After constructing the surface distance field from
the point clouds,7 we incorporate the dynamic implic-
it volumetric model6 into the point-based geometry
deformation. Level-set editing lets us incorporate
scalar-field guided free-form deformations (FFD)8 into
our surface deformation system to further expand
local and global surface editing functionality. Using
digital topology information, we can easily handle col-
lision detection and the point set surface’s changing

topology. We’ve also integrated a haptics interface into
our surface-modeling framework. Experiments show
that the proposed paradigm complements current
point set surface modeling techniques with a more
powerful editing scheme. 

System overview 
Figure 1 shows the data flow and architecture of our

scalar-function-driven point set surface-editing system.
The system takes any region of the original point set sur-
face as input, using physics-based dynamic volumetric
deformation and level-set-based editing techniques to
deform the point set locally or globally and change its
topology when needed. It then uses
point-based surface-rendering tech-
niques to render the modified
surface. 

We can use several existing tech-
niques to convert user-specified
regions of the original point set sur-
faces into an implicit surface repre-
sentation. (Even after this process,
we need to keep the original point-
sampled geometry for downstream
procedures such as local editing,
global free-form deformation, topo-
logical change, and rendering.)
Dual representations facilitate the entire data-process-
ing pipeline, as Figure 1 shows. 

After constructing the implicit surface, we integrate
the physics-based dynamic volumetric deformation
method and level-set surface-editing techniques into
our system to provide editing operations such as force-
based sculpting, free-form deformation, sketch-based
editing, and embossing or engraving. While incorpo-
rating the level-set operators, we integrate scalar-field
free-form deformation (SFFD) techniques8 into the
level-set framework to facilitate both local and global
surface editing. After the system deforms the underly-
ing implicit surface at each iteration step, we update the
point set surface accordingly. In addition to geometric
deformation, we consider collision detection and topol-
ogy change, as we discuss later.
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Dynamic point set surface
Our scalar-field-driven dynamic point set surface col-

lectively takes advantage of the topological strength of
implicit surfaces, the modeling power of physics-based
simulation techniques, and the simplicity of point-sam-
pled surfaces.

Surface distance field
The input data consists of an unstructured point cloud

P = {pi|1 ≤ i ≤ N} that uniquely characterizes the geom-
etry of an underlying manifold surface S. 

In previous work,9 we fit a volumetric implicit func-
tion to the local distance field in the neighborhood of
the point sample pi, as Figure 2a shows. We used scalar
trivariate B-spline functions as the underlying shape
primitives. Implicit B-spline functions have several
attractive qualities: simplicity, generality, local support,

ease of evaluation, and so on. These trivariate functions
take the following form:

where Bi,r(u), Cj,s(v), and Dk,t(w) are the uniform B-spline
basis functions of degrees r − 1, s − 1, and t − 1. Pijk is the
scalar coefficient in a volumetric mesh of size l × m × n,
and s(u, v, w) is a scalar function at position (u, v, w) in
the parametric domain. In this case, the scalar function
defines the distance of position (u, v, w) to the surface.
The local reference parameter domain can enclose the
k-nearest neighbors of pi. Blending the local implicit
primitive associated with each point sample using Shep-
ard’s7,10 blending techniques produces the global con-
tinuous distance field shown in Figure 2b:

If (x, y, z) is inside the local region of point sample pi,
we use the trivariate implicit function associated with pi

for a distance value of si(x, y, z); if it is outside this region,
we simply set the value to zero. Also, φi(x, y, z) is a smooth,
positive, and monotonically decreasing weighting func-
tion associated with pi. More detailed information on our
surface distance field construction is available elsewhere.9

Other researchers have also used locally fitted implic-
it function methods.7,10 Ohtake et al. blended piecewise
quadratic functions using an adaptive octree subdivi-
sion method, an efficient approach to constructing an
implicit surface from large point sets.7 Xie at al. applied
Shepard’s method to blend locally fitted quadric fields,
using a prioritized front growing scheme to handle high-
ly noisy point clouds.10

Physics-based dynamic local editing
Our approach uses dynamic volumetric models6 to

allow intuitive sculpting of the point-based distance
field. We resample the surface scalar field in a global
region of interest, and then discretize the global scalar
field into a voxel raster. Every voxel contains a scalar
value sampled at each grid position. While sculpting or
deforming the scalar field, we simulate the dynamics in
this global region. In each simulation step, if we change
the global scalar field on the global grids, we must
update each point sample’s positions and perform
dynamic sampling on the point set surface. We model
the discretized scalar field as a collection of mass points
connected by a network of special springs across near-
est-neighbor voxels. We use the straightforward densi-
ty spring model (a special type of spring that attracts or
repels its neighbors’ density values) to simulate the
model’s dynamics.6 Figure 3 shows how we can apply
the force tool to intuitively deform the global scalar field. 

We formulate the discretized scalar field’s motion equa-
tion as a discrete simulation of Lagrangian dynamics:

s x y z
s x y z x y z

x y z

i ii

N

ii

, ,
, , , ,

, ,
( ) =

( ) ( )
( )

=

=

∑ φ

φ

1

11

N∑

s u v w P B u C v D w
i jk i r j s k t

k

n

j

, ,
, , ,( ) = ( ) ( ) ( )

=

−

=
∑

0

1

00

1

0

1 m

i

l −

=

−

∑∑

Point-Based Computer Graphics

44 July/August 2004

Physics-based editing

Level-set-based editing

Force tool

Free-form
deformation

Original point
set surfaces

Implicit
surface

construction

Sketch-based
editing

Embossing/
engraving

Smoothing

Point-based
rendering

Modified
point

set surface

1 System editing framework and data pipeline.

(a) (b)

2 Distance
fields: (a) Local
distance field in
each point
sample’s neigh-
borhood and
(b) global dis-
tance field.

Force Force3 We use the
force tool to
intuitively
deform the
global scalar
field. The yellow
curves are the
zero-level sets
of isosurfaces.



where M is the mass matrix, D is the damping matrix, K
is the stiffness matrix, and fd is the external force vec-
tor. We use d to denote the scalar grid value. The con-
necting springs—each with force f = k (I − I0), according
to Hooke’s law, which states that a spring’s restoring
force is proportional to how far it is stretched—generate
the internal forces. Unlike other pure geometric surface-
sculpting methods (see the “Background on Point Set
Geometry” sidebar), our method synchronizes the geo-
metric and physical representations of modeled objects
and lets users deform the surface quickly and easily in a
physically plausible fashion. More details on dynamic
volumetric models, such as applied-force computation
and numerical integration, are available elsewhere.6

In our haptic implementation, users can perform the
deformation just inside any sculpting region of the
object. The region is independent of the surface defini-
tion and can be much smaller than the entire surface.
Limiting the deformation to the inside of the surface
region of interest can thus help the system achieve real-
time performance.

Level-set formulation for point geometry
Deformable isosurfaces implemented through level-

set methods have great potential in fields such as visu-
alization, scientific computing, and computer graphics.
An implicit surface consists of all points S = {x(t)|φ(x,
t) = k}, where φ(x, t) is a time-varying scalar function
embedded in 3D. Level-set methods relate the implicit
surface’s motion to a partial differential equation
defined on the associated volume by

(1)

where ∇φ denotes the implicit surface’s gradient and
dx/dt describes the level-set surface’s motion. We can
rewrite Equation 1 as

where F(x, φ, ∇φ, …) == − ∇φ/|∇φ| × dx/dt is the speed
function. 

Using the level-set method, we can implement a wide
range of deformations by defining an appropriate speed
function using a combination of data-dependent terms
and geometric measures (curvature, for example) of the
implicit level-set surface11: F = FA + FG. FA is the advec-
tion, which expands or contracts the front with speed
FA depending on its sign (the advection independent of
the moving front’s geometry). FG depends on the front’s
geometry, such as its local curvature, and can be used
to smooth high curvature regions in the front. We not
only use this representation to perform the level-set-
based editing operations on the point set surfaces, but
also integrate SFFD8 into our level-set framework.

Because we’re only interested in surface editing the
point set that relies on the isosurfaces’ zero level-set, we
need only compute the parts of the solution that are
adjacent to the moving surface. In addition, we direct-
ly apply our operations to the point set, so the level-set
embedding occurs wherever the deformation is need-
ed. Users interactively control the level-set space and
the deformation operators within the space. 

We use Whitaker’s sparse-field method12 to update
the wavefront and several layers around it via a sim-
ple city block distance metric at each iteration. We call
the set of grid points adjacent to the level set the active
set, denoting it by L0, and defining its neighborhoods
in layers, L+1, …, L+l, …, L+N and L−1, …, L−l, …, L−N,
where l indicates the city block distance from the near-
est active grid point (negative numbers represent out-
side layers). In this article, we use up to the
second-order derivatives of φ, so we need only five lay-
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Background on Point Set Geometry 
In recent years, considerable research has sought to efficiently

represent, model, process, and render point-sampled geometry. 
Rusinkiewicz and Levoy1 introduced QSplat, a technique that

uses a hierarchy of spheres of different radii to approximate and
display a high-resolution model with level-of-detail control.
Zwicker et al.2 introduced surface splatting for directly rendering
opaque and transparent surfaces from point clouds without
connectivity. In later work, they present Pointshop 3D,3 a system
for interactive shape and appearance editing of 3D point-sampled
geometry. The system’s key ingredients are a point cloud
parameterization and a dynamic resampling scheme based on
continuous reconstruction of the surface. Their geometry editing is
limited to normal displacement, however. 

Alexa et al.4 use the moving least squares (MLS) projection
framework to approximate a smooth surface defined by a set of
points, and they introduce associated resampling techniques to
generate an adequate representation of the surface. 

Pauly et al.5 present a free-form shape-modeling framework for
point-sampled geometry using the implicit surface definition of the
MLS approximation, but their approach is limited to free-form
deformation and doesn’t offer physics-based surface-modeling
techniques. Most recently, Guo and Qin6 present a physics-based
dynamic local sculpting paradigm for point-sampled surfaces using
volumetric implicit functions.
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ers: L2, L1, L0, L−1, and L−2. The sparse field method
updates the level-set geometry by computing and
manipulating the layers’ data structure at each itera-
tion. Computational time complexity grows propor-
tionally to the surface region area undergoing the
deformation. As described earlier, local level-set
embedding and point-set geometry simplicity make
deformation extremely fast. (Conventional level-set
methods often build a global grid structure for the
entire volumetric space where the surface resides.)

Scalar-field free-form deformation
Free-form deformation is used extensively in shape

modeling and animation because it doesn’t require
knowledge about the embedded object’s underlying geo-
metric representation and topological structure. We could
perform free-form deformation directly on the point set
surface fairly easily. However, we’d then have to rely on
the moving least squares surface projection for the exact
positions of the newly inserted points. Point insertion is
unavoidable in large deformations and expands the
model significantly. Consequently, gaps occur at the cur-
rent resolution. To address this problem, we perform free-
form deformation directly on the global scalar field,
which we can then use to guide both point movement and
point insertion in a single, unified fashion.

Our approach uses SFFD.8 Because SFFD is found-
ed on flow constraints based on a partial differential
equation, we can easily use the velocity field obtained
by SFFD to update our point surface’s global scalar
field. Furthermore, introducing intermediate steps
during deformation lets us perform dynamic sam-
pling on the point set surface to maintain a good sur-
face quality throughout the model-sculpting session.
Our representation consists of two classes of scalar
fields: 

� ss, or surface representation, is the global scalar field
we acquire from point clouds using the multilevel par-
tition of unity (MPU) implicit surface construction
method6; and

� st is the scalar field of the deformation tool,8 such as
a sketched point or curve skeleton. 

We use the tool scalar field st to perform deformations
on the point surface scalar field ss. In our global free-
form deformation, discretized voxel grids store both ss

and st, which we update using the sparse-field method
at each iteration step.

During deformation of the tool scalar field st, we
assume that the vertices on the discretized voxel grids
are constrained on their original level set. We therefore
represent the trajectory of these grid vertices as
{x(t)|st(x(t), t) = c}. The derivative of st(x(t), t) with
respect to time yields

where ∇xst is the gradient of st at x. To get the general
velocity along the three coordinate axes of the 3D space

(vx, vy, vz), taking into account the deformation motion’s
smoothness, we add a smoothness constraint on the
underlying level-set surface ss by minimizing the objec-
tive function:

(2)

where λ is a Lagrange multiplier. To discretize the objec-
tive function in Equation 2, we consider a voxel grid ver-
tex i, where i ∈ L−2 � L−1 � L0 � L1 � L2 (the sparse-field
layers), and its adjacent neighboring voxel grids Ni,
where 

and C6 is the set of six connected voxel grid pairs. This
lets us transform the objective function (Equation 2)
into

where c(i) is the flow constraint approximation error:

and s(i) is the discretized smoothness factor computed
as the velocity difference between the voxel grid vertex
and its adjacent neighbors:

Here, |Ni| is the number of voxel grid vertices in Ni. Sat-
isfying ∂E/∂vx(i) = 0, ∂E/∂vy(i) = 0, and ∂E/∂vz(i) = 0
lets us minimize the objective function E and obtain the
iterative solution:

(3)

where (vx,vx,vx) is the average velocity of the adjacent
voxel grids, and

Although we obtain the velocity field associated with
each voxel grid according to changes in the tool scalar
field st, we don’t change their positions. Instead, we use
the velocity field v to update the surface scalar field ss

by defining the speed function as
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(4)

Using these formulations, we design our level-set-
based global free-form deformation as an evolution
process:

� We generate a tool scalar field using skeletons or
sketches. 

� We track down the original tool scalar values sto at the
voxel grid positions. 

� After the user alters the tool scalar field, we find their
final tool scalar values stf. 

� We then have stf = sto + k∆st, where k is a user-speci-
fied number of steps taken to deform st, and ∆st is the
evolution step size of the tool scalar field.

The SFFD algorithm for point geometry is as follows: 
At each time step m (m = 0 … k),

1. Update the tool scalar field by: st = sto + m∆st, then
∂st/∂t = ∆st;

2. Calculate ∂st/∂x using finite differences;
3. Initiate the sparse-field layer voxel grid velocities to

be 0;
4. Deduce the current velocity field by iteration using

Equation 3 (converging the velocities typically
requires three to four iterations);

5. Deduce the surface scalar field updating rate using
Equation 4 and obtain the updated surface scalar
field ss;

6. Update points’ positions and perform dynamic sam-
pling.

7. If m = k, terminate the deformation process; oth-
erwise, proceed to the next time step m + 1 and
repeat steps 1 through 6.

Figure 4 shows how we deform the surface scalar field
using the tool scalar field deformation. In the figure, yel-
low curves denote the isosurface of the surface scalar
field associated with the point set surface; blue curves
denote the skeleton-based tools for defining the tool
scalar field; and red arrows denote the velocities evalu-
ated at the sparse-field layer voxel grids.

Dynamic update and sampling
After user interaction modifies the global distance

field, we must change the points’ locations because the

point samples are assumed to be on the underlying
implicit function’s zero level set. When deforming the
distance-field space, we represent the point sample tra-
jectory as {x(t)|ss(x(t), t) = 0}, where x(t) is the point’s
parameter position and ss is the point surface’s global
scalar field. The derivative of ss(x(t), t) with respect to
time yields:

(5)

where ∇xss denotes the gradient ∂ss(x(t), t)/∂x.
Because both ∇xss and v are vectors, no unique solu-
tion for the point velocity exists. If we divide v into
three components v = vn + vt + vw along three
orthogonal directions n, t, w, where n = −∇xss/|∇xss|
represents the unit principle normal vector of the dis-
tance field’s isosurface, t represents the unit tangent
vector, and w represents the unit binormal vector, the
dot product ∇xss

. v in Equation 5 retains only the com-
ponent containing vn. Therefore, if we assume a point
only moves in its normal direction, we get its normal
velocity by

(6)

We use this velocity to update the point position by
advancing to the next time step through the forward
Euler method xi+1 = xi + vn∆t. 

The point sampling density changes as users perform
surface sculpting or deformation. To maintain surface
quality, we insert new sample points when the surface
density becomes too low. Alternatively, we simplify the
surface by eliminating points when the surface is
squeezed. We use the farthest point sampling scheme5

for point insertion. In each modeling step, each point
checks its neighboring density by projecting its neigh-
bor points onto its tangent plane. Next, we compute
the points’ Voronoi diagram using the Voronoi vertex
with the largest circle radius on the tangent plane. If
the radius is larger than a specified threshold, we pro-
ject the vertex onto the global scalar field’s isosurface.
This gives us a surface density that is locally near uni-
form. Meanwhile, we can reduce the sampling densi-
ty using various methods.4 We implement an iterative
simplification method similar to one introduced in ear-
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(a) (b) (c) (d) (e) (f)

4 Scalar fields: (a) The surface scalar field ss representing the point set surface; (b) the initial tool scalar field st; (c) the deformed tool
scalar field; (d) the velocity (red arrow) field computed according to the tool scalar field’s deformation; (e) the velocity field, which we
use to deform the surface scalar field; and (f) the deformed surface scalar field. 



lier work.4 However, instead of using a quadric error
metric, we simply replace two points with their mid-
dle point and project this new point onto the global
scalar field isosurface. A relaxation stage can follow
the up- and down-sampling process, using a simple
point repulsion scheme to obtain a more uniform sam-
pling pattern. 

Topology change handling
For our level-set-based surface-editing tools to

change the shape and topology of a point set surface,
the surface must be able to change its topology prop-
erly whenever it detects a collision. The underlying
level-set surface contour automatically changes topol-
ogy (for example, by merging or splitting) without an
elaborate mechanism. However, the topology of the
point set surface requires explicit handling. For exam-
ple, unless we delete the points in the intersection
region, we will have little control over the movement
of points in the intersection region. In the topology
change region, for example, the surface scalar field gra-
dient ∇xss might change to 0 during the iterations. In
addition, because Equation 6 guides point sample
movement, we need a robust method to predict where
topology changes will occur, and then delete the point
samples in those regions.

Bischoff and Kobbelt control the level-set contour
topology by adding topological information to the vol-
ume representation with the clear goal of locally
resolving topological ambiguities.13 Their novel
method is useful for collision detection of the level-set
contour. Tasks in our current work differ from theirs,
and we focus mainly on the robust and proper topo-
logical modification of the point-sampled geometry
undergoing deformation. We therefore simply change
the topology when the level-set surface detects a col-
lision, even though integrating Bischoff and Kobbelt’s
setting into our framework to preserve the topology
of the underlying point set surface is quite straight-
forward.13

Digital topology. We use fundamental digital
topology techniques to detect collisions in a level-set
context. 

A grid point u ∈ Z3 is a 6-, 18-, 26-neighbor of anoth-
er grid v ∈ Z3 if ‖v − u‖2 ″ 1, √2, √3, respectively. We
denote the n-neighborhood (n ∈ {6, 18, 26}) of v by
Nn(v) = {u|u is an n-neighbor of v}, and set
N *

n (v) = Nn (v)\{v}.
Let v ∈ Z3 be a grid point and V ⊂ Z3 be a grid set. V is

an interior grid; its complement, V = Z 3\V is exterior.

We define the geodesic n-neighborhood of order k of a
grid v with respect to V ⊂ Z3 recursively by

By denoting the number of n-connected components
of a grid set V ⊂ Z3 by cn(V), we explicitly define the topo-
logical numbers nint and next as 

where nint(v, V) is the number of interior components
of V that touch v, and next(v, V) the number of exterior
components.

A grid point v is simple with respect to V ⊂ Z3 if V and
V � {v} have the same number of components, handles,
and cavities13; otherwise, v is complex. Furthermore, v
is simple with respect to V if and only if

nint(v, V) = next(v, V) = 114 (7)

More theoretical results on digital topology are avail-
able elsewhere.13,14

Collision detection. For clarity, we only consider
situations in which the surface advances outward; when
a surface moves inward, we simply switch the inside and
outside of the surface region. We call a grid point on the
sparse field’s active layer L0 or inside the surface region
conquered. When a grid point is about to be conquered
(that is, about to change its status from outside layer 
L−1 to active layer L0), we test it for simplicity using Equa-
tion 7. If it’s simple, the sparse-field algorithm proceeds
as usual. If it isn’t, we must explicitly resolve the point set
surface topology change—that is, delete the point sam-
ples residing in the grid’s near vicinity.

Similar to Bischoff and Kobbelt,13 we distinguish
five cases, shown in Figure 5. We handle the topolog-
ical change and resolve the topological ambiguity only
when nint ≥ 2—that is, when two parts of the front col-
lide. Figure 6 illustrates collision detection and topo-
logical modification. Grid v is added to L0 in the
current iteration step. The topology number nint for v
equals 2. We therefore delete the point samples resid-
ing in the prescribed vicinity of grids u and w (users
can identify the affected region interactively or auto-
matically depending on their specified parameters,
such as each grid’s influence factor). We also place a
tag between v and w, so the system will consider them
disconnected when checking topology numbers for
nearby grid points.

Editing toolkits
Our sculpting system provides various tools for flexi-

bly performing many modeling operations on point set
surfaces.
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(a) (b) (c) (d) (e)

5 Characterization of the center grid (in red) with respect to its neighbor-
hood: (a) nint = 1, next = 1; (b) nint = 0, next = 1; (c) nint = 1, next = 0; (d) nint =
1, next = 2; (e) nint = 2, next = 1. 



Force-based tools
Using our force-based tools, users can select any point

location inside the sculpting region and simulate the
dynamics on the mass points inside the region. A user-
defined function, which can be Gaussian, constant,
spherical, or any other distribution, distributes the force
among nearby mass points. In addition to the point-
based rope tool,15 our system offers a curve-based rope
tool for applying force along any user-defined curve with
any distribution mode. Figure 7a shows how we use the
point-based rope tool to deform the rabbit model’s sur-
face. Figure 7b shows a curve-based force tool for sculpt-
ing the rabbit’s head.

Free-form deformation tools
Our system lets users perform free-form deformations

on point set surfaces by interactively sketching skele-
tons using a mouse or 3D pointing device. The system
generates the tool scalar field as the blending of field
functions gi of a set of skeletons ti(i = 1, …, N):

where skeletons ti can be any geometric primitive, such
as blobs and curves. The field functions gi are decreas-
ing functions of the distance to the associated skeleton
gi(x, y, z) = Fi(d(x, y, z, ti)), where d(x, y, z, ti) is the
distance between (x, y, z) and ti, and we can define Fi

using polynomials or more sophisticated anisotropic
functions.

After constructing the tool scalar field st, designers
can enforce global control of st in two ways: 

� adjusting the coefficients of the implicit functions
defined for each skeletal element, or

� manipulating or moving the skeletons. 

When designers modify the tool scalar field, the
embedded surface scalar field and the point set surfaces
are deformed according to the SFFD algorithm. Figure
8 shows how adjusting the influence radius of the under-
lying blob skeletons achieves free-form deformations
on a rabbit model. Figure 9 (next page) shows how
bending the underlying curve skeleton bends the rabbit
model. Bending the underlying curve skeleton first
changes the tool scalar field, and then deforms the
embedded point geometry according to the SFFD algo-
rithm. Users can taper the model by sketching source
and target strokes, as Figure 10 illustrates.

Sketch-based editing tools
We also developed several simple sketching tools to

let users edit point set surfaces using hand strokes. The
system gathers strokes from the mouse as a set of curves
or collection of points, and assigns Gaussian blobs even-
ly along the curve or at each point. The surface grows
along this implicitly defined region, either outside or
inside of it depending on the surface motion’s direction.
These tools use the well-known speed function, which
is a combination of two terms11:

s x y z g x y z
t i

i

N

( , , ) ( , , )=
=

∑
1

IEEE Computer Graphics and Applications 49

7 Force-based
tools: (a) A
point-based
rope tool for
deforming the
rabbit model’s
surface and (b)
a curve-based
rope tool for
sculpting the
rabbit’s head.

(a)

(b)

8 Shrinking and inflating a rabbit model using blob skeleton: (a) defining
the blob skeleton on the original rabbit model (blue indicates the skeleton-
based scalar field’s isosurface); (b) shrinking the rabbit model’s head; and
(c) inflating the middle part of the rabbit model.

(a) (b) (c)
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6 Collision
between two
parts of the
front of the
surface  (green
curves). The red
dashed curve
advances in the
current itera-
tion step, while
the red grid
changes status
from layer L−1 to
L0. Green grids
denote active
grid points in L0

from the previ-
ous step. Blue
grids are inside
the active sur-
face region.



where D depends on user input strokes, forcing the sur-
face to expand or contract toward the stroke region
boundary. The term ∇ . ∇φ/∇φ is the surface’s mean cur-
vature H, which forces the surface to remain smooth. We

use the topology change handling techniques addressed
earlier for collision detection and point sample deletion. 

Figure 11 shows the sketch-based surface growing
method. The user simply draws a sketched curve on the
rabbit’s back (Figure 11a). The original point set sur-
face grows along the curve (Figure 11b), automatically
resolving topology change when it detects a collision
(Figure 11c). Finally, it forms a handle on the rabbit’s
back (Figure 11d). By inverting the growing direction
of level-set surfaces, we achieve drilling operations
based on user input strokes.

Embossing and engraving tools
Attracting and repelling the surface toward and away

from a set of curves or collection of points produces an
embossing and engraving effect. In our system, after the
user draws curves or places points near the surface, we
emboss or engrave the surface with the shape of those
curves or point sets. We use Museth et al.’s speed func-
tion16 F = Dq(d)C(γ)G(γ). Here Dq is a distance-based cut-
off function that depends on a distance measure d to a
geometric region of influence (ROI) primitive such as a
superellipsoid. C(γ) is a cut-off function that controls the
contribution of G(γ) to the speed function, whereas G(γ)
depends on geometric measures γ of the level-set surface. 

For the embossing and engraving tool, we formulate
the speed function as F(x, n, φ) = −αDq(d)C
(−sign[φ(pi)]n . ui) φ(pi), where x is the current grid’s
location, n is the surface normal direction, d is a signed
distance measure to an ROI primitive evaluated at x, pi

is the closest point in the curve (or point set) to x, and
ui = (pi − x)/|(pi − x)|. Figure 12 is an example of sur-
face embossing.

Smoothing tools
Applying motion to reduce local curvature can locally

smooth the surface. We use Museth et al.’s formulation16:

F = αDq(d)C(κ)κ (8)

where κ is either mean curvature or Gaussian curvature
of the level-set surface. The point set surface models pro-
duced by the constructive solid geometry (CSG) Boolean
operations can contain sharp and jagged creases at sur-
face intersections. Figures 13a and 13b show the effects
of applying the smoothing operator to the intersection

region of the point set surfaces con-
structed from the CSG union opera-
tions. Inverting α in Equation 8 and
applying an upper cut-off in C(κ) to
maintain numerical stability
achieves the sharpening operator.

Implementation and
results

We implemented the simulation
and rendering parts of our system
on a Microsoft Windows XP PC with
dual Intel Xeon 2.4-GHz CPUs, 2-
Gbyte RAM, and an Nvidia GeForce
Fx 5800 Ultra GPU. We wrote the
entire system in Microsoft Visual

F D= + − ∇⋅ ∇
∇

α α φ
φ

( )1

Point-Based Computer Graphics

50 July/August 2004

9 Bending a rabbit model using curve skeleton: (a) original frontal view of
the model, (b) frontal view of the model after bending the underlying
curve skeleton, (c) original profile of the rabbit model, and (d) profile after
bending the curve skeleton.

(a) (b) (c) (d)

10 Tapering the rabbit mouth using sketched strokes: (a) original profile of
the rabbit model and (b) the sketched source stroke, and (c) the sketched
target stroke and (d) profile after applying the tapering operation.

(a) (b) (c) (d)

(a) (b) (c) (d)

11 Sketch-based surface growing: (a) the user draws a curve on the rabbit model’s back, (b)
the point set surface grows along the curve, (c) the surface resolves topology change on
detecting a collision, and (d) the point set surface forms a handle. 



C++ and built the graphics-rendering component on
OpenGL. We used Sensable Technology’s Phantom
device for haptic input and force feedback during local
surface sculpting. 

We attach the haptic device to a low-end PC. A paral-
lel technique multithreads the haptics, graphics, and
sculpting processes with weak synchronization, reduc-
ing latency and maximizing throughput. This technique
significantly improves performance and enables a par-
allel implementation of haptic sculpting given high-end
multiprocessor computing resources. Having a dedi-
cated low-end PC process haptic input and output exclu-
sively saves this thread from competing with the
computationally intensive simulation thread. The hap-
tic thread gets enough CPU time to guarantee the
desired update rate of 1,000 Hz. We implement render-
ing and simulation on different threads as well. There-
fore, when we run the system on a dual-processor board,
rendering and simulation don’t interfere with each other
from the CPU load’s viewpoint.

We’ve conducted many experi-
ments and recorded update times
for force-based sculpting operations
and various level-set-based editing
operations. Tables 1 and 2 detail the
results. We didn’t include dynamic
sampling (that is, up-sampling and
down-sampling) time into the
update times in Tables 1 and 2
because it depends on the number
of points inserted or deleted at each

simulation step. The haptic loop
always completes within 1 millisec-
ond on the separate low-end PC.

Using our scalar-function-driven
point set surface modeling frame-
work, we’ve created several interest-
ing objects, shown in Figure 14. We
generated the rabbit king’s crown by

dragging the rabbit’s head with the force tool for a bumpy
effect, and the rabbit king’s bow tie using embossing oper-
ations. We created the rabbit teapots from rabbit models
and the teapot spouts using curve-based bending on the
rabbit models, tapering for the rabbits’ mouths, sketch-
based editing for the handles on the back of the rabbits,
and smoothing for the intersection of the rabbits and
spouts after the CSG union operation. We created the
CGA 2004 logo using sketch-based editing techniques by
sketching the logo-shaped curves on the rabbit point set
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Table 1. Update time for force-based dynamic simulation.

No. of mass points No. of inside points Time (seconds)

20 × 20 × 20 6,060 0.018821  
30 × 30 × 30 6,060 0.030717  
40 × 40 × 40 6,060 0.050563  
20 × 20 × 20 16,071 0.029026  
30 × 30 × 30 16,071 0.042454  
40 × 40 × 40 16,071 0.066969

Table 2. Update time for various level-set-based editing operations.

Editing tool No. of grids No. of points Time (seconds)

Shrinking/inflation 1283 67,038 4.652733
Bending 1283 67,038 3.009914
Sketch editing 643 9,348 0.183589
Embossing 643 9,191 0.214501
Smoothing 643 9,826 0.535967 

12 Surface embossing based on a
set of user-sketched curves near the
surface.

13 Curvature-based smoothing operations: (a) intersection region of the
point set surface constructed from the constructive solid geometry (CSG)
union operations and (b) smoothed intersection region.

(a) (b)

14 Rabbit king, rabbit teapots, and CGA 2004 logo
created using our scalar-function-driven editing frame-
work and rendered using QSplat.



surface models and letting the surface grow along the
user input curves.

Conclusion
Several improvements to our current work are possi-

ble in the near future. Currently the dynamic sampling
and the underlying level-set approach limit the speed of
our free-form deformation. Our ultimate goal is to
enhance the deformation operations with haptics so
users can have realistic force feedback when perform-
ing deformations on point set surfaces. �
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