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Abstract

In this paper, we articulate a novel meshless computational para-
digm for the effective modeling, accurate physical simulation, and
rapid visualization of solid objects. The uniqueness of our approach
is that both the interior and the boundary of our new volumetric rep-
resentation are point-based, generalizing the powerful and popular
method of point-sampled surfaces. We also build the point-based
physical model founded upon continuum mechanics, which allow
us to effectively model the dynamic behavior of point-based vol-
umetric objects ranging, from elastic deformation to crack propa-
gation. Our prototype system takes any point-sampled surfaces as
input and generates both interior volumetric points and a volumet-
ric distance field with an octree structure, which can be utilized to
facilitate the crack surface evolution. The physics of these volumet-
ric points in a solid interior are simulated using the Element-Free
Galerkin (EFG) method. In sharp contrast to the traditional finite
element method, the meshless property of our new technique ex-
pedites the accurate representation and precise simulation of the
underlying discrete model, without the need of domain remeshing.
Furthermore, we develop the new modeling and animation tech-
niques for point-sampled surfaces to dynamically generate cracked
surfaces based on the underlying distance field. The accuracy and
continuity advantages of the meshless method also enable the di-
rect visualization of the physical quantities of volumetric objects
for mechanical and material analysis.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Curve, surface, solid, and object
representations; Physically based modeling; I.6.8 [Simulation and
Modeling]: Types of Simulation—Animation

Keywords: point-based geometry, mesh-free method, elastic de-
formation, crack propagation, physically-based modeling, com-
puter animation

1 Introduction

Point sampled geometry has been gaining much popularity in shape
modeling, interactive graphics, and visual computing. One key rea-
son for this new interest in points is that the polygonal complexity
of graphical models has dramatically increased in the last decade.
In computer animation and physical simulation, complex physical
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effects, such as large deformations and cracks, pose grand techni-
cal challenges in terms of maintaining the topological consistency
of the underlying meshes. The overhead of managing, processing,
and manipulating very large polygonal-mesh connectivity informa-
tion has given rise to the technical issue of the future utility of poly-
gons as the fundamental graphics primitive.

For the simulation of complex physical phenomena, efficient and
consistent surface and volume representations are necessary to fa-
cilitate geometric and topological operations. For instance, in sim-
ulations of failure processes, we need to model the propagation of
cracks along arbitrary and complex paths. This problem, in par-
ticular, can not be easily tackled using conventional mesh-based
computational methods such as finite element, finite volume, or fi-
nite difference techniques. In essence, the underlying structure of
these methods, which stem from their reliance on meshes, impedes
the flexible modeling and natural handling of discontinuities that do
not coincide with the original mesh lines. Therefore, the most vi-
able strategy for dealing with moving discontinuities in these meth-
ods is to remesh in each time step of the evolution so that mesh lines
remain coincident with the discontinuities throughout the evolution.
However, this can introduce numerous difficulties for data manage-
ment, such as the strong need to map between meshes in consecu-
tive stages of the simulation, which inevitably results in degradation
of both accuracy and complexity for system implementation. In ad-
dition, model remeshing becomes an unavoidable burden.

To overcome the above difficulties associated with mesh structure
in computer animation and simulation, in this paper we present
a mesh-free modeling, simulation, and visualization paradigm for
point-based volumetric objects. Our system takes any point sam-
pled surfaces as input, generating a volumetric distance field sam-
pled at the center of octree cells for point-sampled surface geom-
etry. The octree decomposition also implicitly defines the geome-
try of the solid object enclosed by surface points on its boundary.
Embedding the volumetric point samples into the surface distance
field can greatly facilitate the manipulation of the point set surface,
e.g., guiding the surface point insertion where large deformations
occur. Besides point geometry (on the boundary and at the inte-
rior), our physical model is based on continuum mechanics, which
enables our system to simulate the dynamic behavior of the point-
based objects ranging from elastic deformations to crack propaga-
tions. Using continuum mechanics, the simulation parameters can
be obtained from the technical specification of real materials docu-
mented in the typical scientific references, avoiding the tedious pa-
rameter fine-tuning and ad-hoc parameter selection as in the case of
mass-spring systems (commonly-used in computer animation). The
physics in our system are simulated on the volumetric points using
the Element-Free Galerkin (EFG) method, one of the most popu-
lar mesh-free methods that have been developed extensively in me-
chanical engineering and material science. The fast convergence,
ease of adaptive refinement, flexible adjustment of the consistency
order and the continuity of derivatives up to any desirable order are
some key features of the mesh-free methods. Note that the volumet-
ric points employed in our dynamic simulation can be easily gener-
ated based on the octree structure outlined above, which necessarily
permits the powerful adaptive modeling capability through the lo-



cal subdivision of any regions of interest in a hierarchical fashion.
The meshless character of our approach expedites the description
of the evolving discrete model in crack simulations and large defor-
mations, while no remeshing of the domain is required. The crack
surfaces are modeled using the level set method. In this paper we
demonstrate that modeling and animating point-sampled surfaces
(that dynamically adapt to large deformations and crack surfaces)
can be made much easier by using an underlying surface distance
field. Compared with the popular finite element methods, the ac-
curacy and continuity advantages of the mesh-free method make it
less difficult to generate smooth interpolation fields (such as stress
and strain fields) without any the need of any post-processing. This
feature can facilitate direct and fast visualization of the physical
properties defined over any volumetric object for either mechanical
analysis or educational purposes.

Contributions: This paper’s main contributions to the field of solid
and physical modeling are:

1. We generalize the concept of point-sampled surfaces to the
point-based solid representation for the volumetric interior by
utilizing the octree-based space subdivision, which is much
simpler and more natural for solid objects.

2. We simulate the physical behavior of solid objects based on
continuum mechanics using the mesh-free method, which of-
fers effective modeling of the dynamic behavior of point-
based volumetric objects ranging from elastic deformations
to crack propagations.

3. We articulate a set of computational techniques that can speed
up our dynamic simulations in real applications, including
the octree-based volumetric dicretization and integration, the
level set method for crack surface representation and propa-
gation, etc.

4. We develop and deploy both surface and volumetric visual-
ization techniques to allow users to intuitively visualize the
physical properties of solid objects during the dynamic simu-
lation process.

The remainder of this paper is organized as follows. Section 2 re-
views the relevant background. Section 3 discusses the mesh-free
methods. Section 4 details the physics of our dynamic system and
presents all the computational elements for dynamic simulation.
Section 5 addresses the geometry and visualization issues. Sec-
tion 6 documents our experimental results. Finally, we conclude
the paper in Section 7.

2 Related Work

2.1 Point-based Geometry

Research on point-based geometry has received much attention in
the modeling and visualization community in recent years, fol-
lowing Levoy and Whitted’s pioneering report [Levoy and Whit-
ted 1985]. Rusinkiewicz and Levoy [Rusinkiewicz and Levoy
2000] introduced a technique called QSplat, which uses a hier-
archy of spheres of different radii to approximate and display a
high-resolution model with level-of-detail (LOD) control. Zwicker
et al. [Zwicker et al. 2001] proposed the surface splatting tech-
nique, which directly renders opaque and transparent surfaces from
point clouds without connectivity. Later, they presented a system
called Pointshop 3D [Zwicker et al. 2002] for interactive shape
and appearance editing of 3D point-sampled geometry. Alexa et
al. [Alexa et al. 2003] used the framework of moving least squares

(MLS) projection to approximate a smooth surface defined by a set
of points, and they developed several associated resampling tech-
niques to generate an adequate representation of the surface. Pauly
et al. [Pauly et al. 2003] presented a free-form shape modeling
framework for point-sampled geometry using the implicit surface
definition of the moving least squares approximation. Amenta and
Kil [Amenta and Kil 2004] presented a new explicit definition of the
point set surfaces in terms of the critical points of an energy func-
tion on lines determined by a vector field. Most recently, Mueller
et al. [Mueller et al. 2004] presented a method for modeling and
animating elastic, plastic, and melting volumetric objects based on
the MLS approximation of the gradient of the displacement vec-
tor field. In their implementation, however, they did not seek to
use the standard mesh-free methods, so more complicated behav-
iors such as crack propagation were not addressed. In addition,
they avoided numerical integrals in the interest of fast simulation.
It may be noted that shape modeling and direct continuous field vi-
sualization are also difficult to accomplish without the support of
shape functions.

2.2 Implicit Surfaces and Level Sets

Implicit functions are well suited for both scientific visualization
and modeling tasks in computer graphics [Blinn 1982]. [Bloomen-
thal and Wyvill 1990] and [Bloomenthal 1997] used skeleton meth-
ods to construct implicit surfaces interactively. Each skeletal ele-
ment is associated with a locally-defined implicit function. Individ-
ual functions are then blended to form an implicit surface using a
polynomial weighting function that can be interactively controlled
by users. Cani and Desbrun [Desbrun and Cani 1998] employed
deformable implicit models for animating soft objects. Frisken et
al. [Frisken et al. 2000] proposed the adaptively sampled distance
fields (ADFs) as an effective representation of geometry and vol-
ume data. Turk et al. [Turk and O’brien 2002] introduced the in-
terpolating implicit surfaces for surface reconstruction and shape
transformation based on the concept of the variational principle
of scattered data interpolation. Ohtake et al. [Ohtake et al. 2003]
presented the multi-level partition of unity implicit surface, which
allows users to construct surface models from very large sets of
points. Shen et al. [Shen et al. 2004] proposed a method for build-
ing interpolating or approximating implicit surfaces from polygonal
data using a moving least-squares formulation with constraints in-
tegrated over the polygons.

Level-set methods were introduced by Osher and Sethian [Os-
her and Sethian 1988] by representing the contour as the level-
set of a scalar-valued function. Desbrun et al. [Desbrun and Cani
1998] and Breen et al. [Breen and Whitaker 2001] used the vari-
ant of this method for shape morphing. Malladi et al. [Mal-
ladi et al. 1995] and Whitaker et al. [Whitaker et al. 2001] ap-
plied this technique to the problem of medical image segmentation.
Whitaker [Whitaker 1998] and Zhao et al. [Zhao et al. 2001] em-
ployed the level-set method for 3D reconstruction. More recently,
Museth et al. [Museth et al. 2002] and Baerentzen et al. [Baerentzen
and Christensen 2002] presented the level-set framework for inter-
actively editing implicit surfaces, where they defined a collection
of speed functions that can reproduce a set of surface editing oper-
ators.

2.3 Physically-based Animation

Pioneering work in the field of physically-based animation and
crack simulation was carried out by Terzopoulos and his co-workers
in [Terzopoulos et al. 1987] and [Terzopoulos and Witkin 1988].



Later, a large number of mesh based methods for both off-line and
interactive simulation of deformable objects have been proposed in
the field of computer graphics based on either the boundary element
method [James and Pai 1999] or the finite element method [De-
bunne et al. 2001] [Grinspun et al. 2002]. To the best of our knowl-
edge, most graphics researchers rely on mesh-based methods for
crack simulation. The work of [Hirota et al. 1998] [Smith et al.
2001] simply break connections or springs between adjacent ele-
ments when the force goes beyond a user-specified threshold value.
[Mueller et al. 2001] treated objects as rigid bodies in between two
consecutive collisions, and used static finite element analysis tech-
niques when collisions occur. The state of the art in fracture mod-
eling for computer graphics is the work of [O’Brien and Hodgins
1999] [O’Brien et al. 2002], which used a pseudo-principal stress
and continuous remeshing. Most recently, [Molino et al. 2004] pro-
posed a virtual node algorithm that allows material to be separated
along arbitrary piecewise-linear paths through a mesh.

3 Meshfree Methods

During the last two decades, mesh-free (meshless) meth-
ods [Belystchko et al. 1996][Li and Liu 2002] have been devel-
oped that enable solving PDEs numerically, based on a set of scat-
tered nodes without having recourse to an additional mesh structure
(which must be put in place for the finite element methods). The
unique advantages of mesh-free methods are multifold: (1) there is
no need to generate a mesh of nodes – they only need to be scattered
within the solid object, which is much easier to handle in principle;
(2) moving discontinuities such as cracks can be naturally facili-
tated, since no new mesh needs to be constructed as in finite element
methods, and the computational cost of remeshing at each time step
can be avoided entirely; (3) properties such as spatial adaptivity
(node addition or elimination) and shape function polynomial order
adaptivity (approximation/interpolation types) can streamline the
adaptive model refinement and simulation in both time and space;
and (4) data management overhead can be minimized during sim-
ulation. In 1994, Belytschko et al. proposed the Element Free
Galerkin (EFG) method [Belytschko et al. 1994a] to solve linear
elastic problems, specifically the fracture and crack growth prob-
lems [Belytschko et al. 1994b], in which the Moving Least Squares
(MLS) interpolant was employed in a Galerkin procedure. In this
paper we focus on the Element Free Galerkin method, mainly be-
cause it has been well-developed with mature techniques, and it
has shown a superior rate of convergence and high efficiency in
modeling moving interfaces. Other variants of available mesh-free
methods can also be adopted into our prototype system in a straight-
forward way without theoretical obstacles.

In a nutshell, the mesh-free methods require only a set of nodes dis-
tributed across the entire analysis domain. The shape function asso-
ciated with each node is then constructed to approximate (or inter-
polate) the field functions using their values at the sampling nodes
in the analysis domain. For finite element methods, however, the
shape functions are constructed utilizing the mesh of the elements.
In sharp contrast, the shape functions in mesh-free methods are con-
structed using only the sampling nodes without any connectivity,
while satisfying certain basic requirements, such as compact sup-
port for computational accuracy and efficiency, stability and con-
sistency to ensure numerical convergence, etc.

3.1 EFG Shape Functions

The shape functions in the EFG method are constructed by using
the MLS technique, or alternatively on the basis of reproducibility

conditions (note that both approaches can arrive at the same ex-
pressions for the shape functions), and it can provide continuous
and smooth field approximation throughout the analysis domain
with any desirable order of consistency. To make our paper self-
contained, we present a brief introduction of the MLS approxima-
tion for the definition of shape functions in the following subsec-
tions.

3.1.1 Moving Least Squares Approximation

The moving least squares method can be traced back to its original
application in scattered data fitting, where it has been studied under
different names (e.g., local regression, “LOESS”, weighted least
squares, etc.) [Lancaster and Salkauskas 1986].

We associate each node I with a positive weight function wI of com-
pact support. The support of the weight function wI defines the do-
main of influence of the node: ΩI = {x ∈ R3 : wI(x) = w(x,xI) >
0}, where w(x,xI) is the weight function associated with node I
evaluated at position x. The approximation of the field function f
at a position x̂ is only affected by those nodes whose weights are
non-zero at x̂. We denote the set of such nodes the active set A (x̂).
Figure 1 illustrates the mesh-free computational model with rectan-
gular and circular local influence domains, respectively.

Analysis Domain

Influence Domain Node

Object Boundary Analysis Domain

Influence Domain Node

Object Boundary

(a) (b)

Figure 1: The mesh-free computational model with rectangular (a)
and circular (b) support, respectively.

Let f (x) be the field function defined in the analysis domain Ω,
and f h(x) the approximation of f (x) at position x. In the MLS
approximation, we let

f h(x) =
m

∑
i=1

pi(x)ai(x) = pT (x)a(x), (1)

where pi(x) are polynomial basis functions, m is the number of
basis functions in the column vector p(x), and ai(x) are their co-
efficients, which are functions of the spatial coordinates x. In our
implementation, we utilize 3-D linear basis functions: pT

(m=4) =
{1,x,y,z} in the interest of time performance. We can derive a(x)
by minimizing a weighted L2 norm:

J = ∑
I∈A (x)

w(x−xI)[pT (xI)a(x)− fI ]2, (2)

where fI is the nodal field value associated with the node I. We can
rewrite Equation (2) in the form:

J = (Pa− f)T W(x)(Pa− f), (3)



where

fT = ( f1, f2, . . . fn),

P =




p1(x1) p2(x1) · · · pm(x1)
p1(x2) p2(x2) · · · pm(x2)

...
...

. . .
...

p1(xn) p2(xn) · · · pm(xn)


 ,

and

W(x) =




w(x−x1) 0 · · · 0
0 w(x−x2) · · · 0
...

...
. . .

...
0 0 · · · w(x−xn)


 .

To find the coefficients a(x), we obtain the extremum of J by setting

∂J
∂a

= A(x)a(x)−B(x)f = 0, (4)

where the m×m matrix A is called moment matrix:

A(x) = PT W(x)P,

B(x) = PT W(x).

So we can obtain

a(x) = A−1(x)B(x)f. (5)

And the shape functions are given by:

φ(x) = [φ1(x),φ2(x), . . .φn(x)] = pT (x)A−1(x)B(x). (6)

If we consider the field function as a function of both space and time
f (x, t), the approximation in the analysis domain Ω can be written
as:

f (x, t)≈ f h(x, t) = ∑
I∈A (x̂)

φI(x) fI(t), (7)

The moment matrix A may be ill-conditioned when (i) the basis
functions p(x) are (almost) linearly dependent, or (ii) there are not
enough nodal supports overlapping at the given point, or (iii) the
nodes whose supports overlap at the point are arranged in a special
pattern, such as a conic section for a complete quadratic polynomial
basis p(x). Note that the necessary condition for the matrix A to be
invertible is

∀x ∈Ω card{I : x ∈ΩI}> m, (8)

which can be automatically guaranteed using the octree-based node
placement method (which will be explained in the next section).
Furthermore, the spatial derivatives of the shape functions can be
obtained by noting that the differentiation of Equation (4) yields:

A,ia+Aa,i = B,if,

where a,i denotes ∂a
∂xi

. Then we can obtain the derivative of a,i by:

a,i = A−1(B,if−A,ia). (9)

So the factorization of A in Equation (6) can be re-used for the
computation of the derivatives with little extra cost.

3.1.2 Basis and Weight Functions

To obtain a certain consistency of any desirable order of approxi-
mation, it is necessary to have a complete basis. The basis functions
p(x) may include some special terms such as singularity functions,
in order to ensure the consistency of the approximation and to im-
prove the accuracy of the results. The following gives two examples
of complete bases in 3 dimensions for first and second order con-
sistency:

Linear : pT
(m=4) = {1,x,y,z}, (10)

Quadratic : pT
(m=10) = {1,x,y,z,x2,xy,xz,y2,yz,z2}. (11)

The weight functions w(x,xI) play important roles in constructing
the shape functions. They should be positive to guarantee a unique
solution for a(x); they should decrease in magnitude as the dis-
tance to the node increases to enforce local neighbor influence; they
should have compact supports, which ensure sparsity of the global
matrices. They can differ in both the shape of the domain of in-
fluence (e.g., parallelepiped centered at the node for tensor-product
weights, or sphere), and in functional form (e.g., polynomials of
varying degrees, or non-polynomials such as the truncated Gaussian
weight). In our implementation, we choose the parallelepiped do-
main of influence for the ease of performing numerical integrations,
and utilize the composite quadratic tensor-product weight function:

w(x,xI) = c(
x− xI

dmxI
)c(

y− yI

dmyI
)c(

z− zI

dmzI
), (12)

where dmxI , dmyI , and dmzI denote half of the length of the sup-
porting parallelepiped sides (for the tensor-product weights) along
three directions, respectively. The component function c(s) is ana-
lytically defined as:

c(s) =





(1−2s2) f or 0.5 > s≥ 0
2(1− s)2 f or 1 > s≥ 0.5
0 f or s≥ 1

(13)

One key attractive property of MLS approximations is that their
continuity is directly related to the continuity of the weighting func-
tions. Thus, a lower-order polynomial basis p(x) such as the linear
one can still be used to generate highly continuous approximations
by choosing appropriate weight functions with certain smoothness
requirements. Therefore, compared to the finite element method,
there is no need for post-processing to generate smooth stress and
strain fields. This can facilitate the direct and fast visualization of
the physical properties of volumetric objects for mechanical analy-
sis. Note that the FEM equivalents can also be reached if the weight
functions are defined as piecewise-constant entities over each influ-
ence domain.



4 Computational Techniques

Point set surface input
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Figure 2: The architecture framework and data pipeline of our
meshless modeling, simulation, and visualization system.

The architecture framework and data flow of our meshless mod-
eling, simulation, and visualization system is illustrated in Figure
2. The system takes any point set surface as input and utilizes
the octree-based hierarchical discretization method (Section 4.2)
for constructing the implicit surface, generating volumetric nodes,
and assigning the integration points in order to assemble the system
matrices. Then, we can solve the dynamic systems of equations
and compute the nodal coefficients associated with each volumet-
ric nodes (Section 4.1). If the stress intensity is greater than the
cracking threshold, we model the crack surface propagation using
the level set method (Section 4.3). Otherwise, we should update
the surface point representation and perform the dynamic sampling
when it becomes necessary (Section 5.1). The user can choose
different modes of visualization approaches, such as surface point
splatting, 2-D contour slicing, and volume rendering, to visualize
the dynamic simulation process (Section 5.2).

4.1 Equations of Motion

We shall consider a 3-dimensional body B which is an open set
in the Euclidean space R3. The body consists of material points
X . The material points can be identified with coordinates in a fixed
Cartesian system, with basis vectors ek,k = 1,2,3, in a reference
domain Ω, i.e., the material point X is identified with the position
vector X = ∑k Xkek. The Cartesian coordinate system ek will be
used exclusively, both for the reference and for the current config-
urations. The motion of the body is described by the mapping M,
x = M(X, t), where x is the coordinate of the material point X in
the current configuration, x = ∑k xkek.

In our mesh-free approximation, the motion parameters of the ma-
terial point X , i.e., the displacements u = x−X, velocity v, and ac-
celeration a, can be approximated by using the moving least squares
shape functions φI(X) as:

u(X, t) = ∑
I

φI(X)uI(t), (14)

u̇(X, t) = ∑
I

φI(X)u̇I(t), (15)

ü(X, t) = ∑
I

φI(X)üI(t). (16)

Note that uI , u̇I , and üI are not the nodal values of displacements,
(velocities, etc.), but rather nodal parameters without a direct phys-
ical interpretation, because the shape functions φI(X) produce ap-
proximation, not interpolation of the field values. The partial deriv-
atives with respect to the referencing coordinates Xk can be obtained
simply as:

x,k(X, t) = ∑
I

φI,k(X)xI(t). (17)

We use the Euler-Lagrange equations for our elastic deformation:

d
dt

(
∂T (u̇)

∂ u̇
)+ µ u̇+

∂V (u)
∂u

= Fext , (18)

where the kinetic energy T and elastic potential energy V are func-
tions of u̇ and u, respectively. The term µ u̇ is the generalized dis-
sipative force, and Fext is a generalized force arising from external
body forces, such as gravity.

The kinetic energy of the moving body can be expressed as:

T =
1
2

∫

Ω
ρ(x)u̇ · u̇dΩ =

1
2 ∑

I,J
MIJ u̇I · u̇J , (19)

where ρ(x) is the mass density of the body, and MIJ =∫
Ω ρ(x)φI(x)φJ(x)dΩ. Then we can have:

d
dt

(
∂T (u̇)

∂ u̇
) = Ma, (20)

where the matrix M composed of the elements MIJ is called the
mass matrix.

The elastic potential energy of a body can be expressed in terms of
the strain tensor and stress tensor. The strain is the degree of metric
distortion of the body. A standard measure of strain is Green’s strain
tensor:

εi j =
∂ ui

∂X j
+

∂u j

∂Xi
+δkl

∂uk

∂Xi

∂ul

∂X j
. (21)

Forces acting on the interior of a continuum appear in the form of
the stress tensor, which is defined in terms of strain:

τi j = 2G{ ν
1−2ν

tr(ε)δi j + εi j}, (22)

where tr(ε) = ∑i j δi jεi j . The constant G is called the shear mod-
ulus, which determines how strongly the body resists deformation.
The coefficient ν , called Poisson’s ratio, determines the extent to
which strains in one direction are related to those perpendicular to
it. This gives a measure of the degree to which the body preserves
volume. The elastic potential energy V (u) is given by the formula:

V = G
∫

Ω
{ ν

1−2ν
tr2(ε)+ ∑

i jkl
δi jδklεikε jl}dΩ, (23)



By combining the above Equations (14), (21), and (23), we can
formulate the derivatives of V (with respect to u) as polynomial
functions of u, the coefficients of which are integrals that can be
pre-computed.

4.1.1 Solving the System

The quadratic strain (Equation (21)) makes the system Equations
(18) a nonlinear system, in which the internal elastic force is not a
linear combination of the nodal displacements. To make the equa-
tions easier to solve, we make simplifications by linearizing the
equations of motion at the beginning of each time step as in [Baraff
and Witkin 1998]. By applying their implicit solver to our formu-
lation, the resulting equations become:

∆u = ∆t(u̇+∆v), (24)

(M+∆tµI+(∆t)2S)∆v = ∆t(Fext − ∂V
∂u

−µ u̇−∆tSu̇), (25)

where ∆t is the time step, ∆u is the change in u during the time
step, ∆v is the change in the velocity u̇ during the time step, M
is the mass matrix, I is the identity matrix, and S is the stiffness
matrix. We can solve Equation (25) using a Conjugate Gradient
(CG) solver, and then substitute ∆v into Equation (24) to obtain ∆u.

4.1.2 Position Constraints

In order for our objects to interact with other objects, position con-
straints are important and must be enforced. In general, the MLS
shape functions lack the Kronecker delta function property and re-
sult in u(XI) 6= uI . Therefore, we would face difficulties when
imposing essential boundary conditions on the boundaries of the
analysis domain. The approach of Capell et al. [Capell et al. 2002]
provides us a solution to deal with position constraints. We can
formulate the position constraints in the form:

dc(t) = ∑
I

φI(Xc)uI , (26)

where Xc is the constrained position of the object, and dc(t) is the
displacement at Xc, which is known a priori. According to Equation
(24), we have:

∑
I

φI(Xc)∆vI =
dc(t +∆t)−dc(t)

∆t
−∑

I
φI(xc)u̇I . (27)

Note that the r.h.s. of this equation is a constant. By solving this
equation using singular value decomposition (SVD) at the begin-
ning of each time step, we can get the constrained components
of ∆v. The modified CG solver of Baraff and Witkin in [Baraff
and Witkin 1998] can be directly employed by projecting and filter-
ing out certain components of ∆v corresponding to the constrained
nodes (please refer to [Baraff and Witkin 1998] for details). Figure
3 shows an example of the elastic deformation of a straight bar with
left part fixed. The stress intensity distribution is visualized using
the volume rendering technique discussed in section 5.2.

Figure 3: (a) The elastic deformation of a straight bar; (b) the stress
intensity distribution inside the object visualized by volume render-
ing.

4.2 Hierarchical Discretization for Mesh-free Dy-
namics

The fundamental idea of general mesh-free methods is to create
overlapping patches ΩI comprising a cover {ΩI} of the domain
Ω with shape function φI subordinate to the cover ΩI . One way
to create the mesh-free discretization is to start from an arbitrarily
distributed set of nodes. No fixed connections between the nodes
are required. The nodes are the centers of the overlapping patches
Ωi, which can be either parallelepiped or spherical domains. How-
ever, due to the rather unstructured distribution of nodes over the
domain some algorithmic issues may arise. First, a discretization
without structure does not allow determination of the patches that
contribute to a certain integration point without performing an ex-
pensive global search. Second, the moment matrix A in moving
least squares shape function may become invertible if the patch
covering conditions (e.g., Equation (8)) are not satisfied. Last, the
effective handling of the interaction between scattered nodes with
the geometric boundary (the surface of point clouds in our proto-
type system) becomes very difficult. From a pure implementation
point of view, it is very important that the patches are clearly de-
fined. The interaction between the patches themselves, and between
the patches and the boundary, has to be well understood and eas-
ily accessible during the runtime of the system execution. These
problems can be solved perfectly with the assistance of octree dis-
cretization.

4.2.1 Octree-based Distance Field for Surface Geometry

In our prototype system, the input data is an unstructured point
cloud comprising a closed manifold surface. If we conduct our dy-
namic simulation solely on surface points, many difficulties arise.
First, performing inside/outside tests based entirely on surface point
information is a forbidding task with many ambiguities. Second,
point insertion is unavoidable if a deformation is large and in fact
spreads out across the model rather significantly, in which case gaps
will occur at the current resolution. But most of all, conducting the
dynamic simulation only on the solid boundary is far less physically
meaningful, leading to incorrect simulation results. To ameliorate,
we compute a volumetric distance field for the input surface points.
Such a distance field, which expands to the entire volumetric do-
main, will also aid in the selection of volumetric points at the in-
terior of solid objects for the dynamic simulation governed by the
EFG method. Let us first briefly review some relevant work which
leads to the construction of octree-based distance fields for point
surfaces. Pauly et al. [Pauly et al. 2003] rely on the moving least
squares surface projection operator for both inside/outside tests and
point insertion. However, ambiguities would still occur in many de-
generate cases if we only use the moving least squares surface pro-



jection operator [Xie et al. 2003]. Guo et al. [Guo et al. 2004b] pro-
posed to embed the point set surfaces into volumetric scalar fields
to facilitate surface representation, surface editing, dynamic point
re-sampling, collision detection, etc. Implicit surfaces can be con-
sidered a natural and powerful tool for modeling unstructured point
set surfaces for the following reasons: (i) the inside/outside test
can be performed by directly utilizing the implicit function; (ii) the
topology of the implicit surface can be easily updated without any
ambiguity. Figure 4 shows the visualization of distance fields using
color contours on 2D slices and volume rendering techniques (see
section 5.2 for details on our visualization techniques).

(a) (b)

Figure 4: Distance field visualization for point set surfaces: (a)
contours on 2D slices; (b) volume rendering.

In our implementation, we utilize multi-level partition of
unity(MPU) implicit surface construction method proposed by
Ohtake et al. [Ohtake et al. 2003]. The multi-level approach al-
lows us to construct implicit surface models from large point sets
based on an octree subdivision method that adapts to variations in
the complexity of the local shape. We also observed that the oc-
tree discretization of the volume can provide a structure to con-
struct the patches which would provide a priori information with
respect to the size and interactions of the patches [Klaas and Shep-
hard 2000]. The octree subdivides the volume of an object rep-
resented as point set surface into cubes, giving a non-overlapping
discrete representation of the domain, on which efficient numerical
integration schemes can be employed. The octants serve as the ba-
sic unit from which to construct the patches and allow the efficient
determination of patch interactions. In the following subsection,
we will describe the use of the octree structure as the basic building
block to help us define our mesh-free patches and integration cells.

4.2.2 Octree-based Volumetric Node Placement

An octree structure can be defined by enclosing the object domain
of interest Ω in a cube which represents the root of the octree, and
then subdividing the cube into eight octants of the root by bisection
along all three directions. The octants are recursively subdivided
to whichever levels are desired. Note that the terminal level used
for our node placement does not need to coincide with the termi-
nal level of the MPU implicit surface construction. Actually, in our
implementation, the size of the terminal octant used for our volu-
metric node placement (for mesh-free simulation) is much larger
than the terminal octant used for MPU implicit surface reconstruc-
tion because the surface point density is much larger compared to
the volumetric node density. Figure 5 shows the octree-based dis-
cretization for the MPU implicit surface construction and volumet-
ric node placement. We restrict the octree to be a one level ad-
justed octree, where the level difference of all terminal octants and

their face and edge neighbors is no more than one. This restriction
can facilitate the automatic satisfaction of patch covering condition
(Equation (8)) as we will discuss later.

(a) (b)

Figure 5: Octree-based discretization for surface distance field con-
struction (a) and volumetric node placement (b). The size of the
terminal octants in (b) is much larger than that of (a).
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Figure 6: The definition of interior, exterior, interior boundary, and
exterior boundary octants for mesh-free simulation.

Since we already have the implicit surface representation of the ob-
ject, we can easily classify each terminal octants as interior (I) oc-
tants OI , exterior (E) octants OE , and boundary (B) octants OB (see
Figure 6). Interior octants are those that are fully embedded in the
interior of the geometric domain Ω. Exterior octants are those that
are located totally outside of Ω, and boundary octants are those that
are intersected by the boundary of Ω. The boundary octants are fur-
ther classified into interior boundary (IB) OIB and exterior bound-
ary (EB) OEB octants. The simple rule is that the centroid of an IB
octant is located within the domain, whereas the centroid of an EB
octant is located outside the domain. After the geometric classifi-
cation, we can place a volumetric node (for mesh-free dynamics)
at the center of each interior (I) and boundary (IB, EB) octant. For
an EB octant, the node should be displaced by projecting from its
center onto the implicit surface to ensure that each node resides in
Ω. Let octant Oi ∈ OI ∪OB and node i reside in Oi, the open cover
associated with node i is a cube of size α · size(Oi) centered around
node i (see Figure 7). Both the volumetric nodes and their open
cover regions are necessary constituents for mesh-free dynamics.

The open cover construction based on terminal octants can provide
the structure needed to perform efficient neighboring search and
patch intersection test. It has been proved in [Klaas and Shephard
2000] that by choosing a suitable size for α , the validity of the open



  

octant

open  cover

a  size(OI)

size(OI)

node   I

Figure 7: The definition of open cover {ΩI} regions based on the
octree structure for mesh-free patches.

cover can be guaranteed a priori. For example, for a linear basis
p(x)T

(m=4) = {1,x,y,z}, any point in the domain will be covered by
at least 4 patches if we choose α to be 3. The generation of an
octree is much more efficient than a finite element mesh in practice.
Furthermore, the octree allows refinement of the discretization in
areas of singularities if necessary (e.g., near the crack surface).

4.2.3 Octree-based Gaussian Integration for Matrix As-
sembly

In order to assemble the entries of the system matrices, such as the
mass matrix or stiffness matrix, we need to integrate over the prob-
lem domain. This can be performed through numerical techniques
such as Gaussian quadrature, using the underlying integration cells.
The integration cells can be totally independent of the arrangement
of nodes. The integration cells are used merely for the integra-
tion of the system matrices but not for field value interpolation. In
our octree-based discretization scheme, since the terminal octants
do not overlap (except on their shared boundaries), we can further
subdivide the terminal octants OI and OB into smaller cells and use
them as the integration cells (see Figure 8). There may exist some
integration cells that do not entirely belong to the analysis domain.
We can easily separate the portion of the cell which lies outside
of the domain by evaluating the implicit function (used for repre-
senting the surface distance field). The creation of the open cover
and the integration cells, as described here, eliminates any global
searching for members of the open cover during matrix assembly
and time integration. With the prior knowledge of the value α and
utilizing the direct face neighbor links, all patches covering a inte-
gration point x ∈Ω can be found in O(1) time.

  

integration point

integration cell

Figure 8: The interaction between open covers and integration cells.
Integration points for Gaussian quadrature are also shown.

4.3 Crack Propagation

The main computational techniques currently used in fracture me-
chanics are the finite element method, finite difference method, and
the boundary integral method. One of the most difficult aspects of
modeling the evolution of cracks is the need to tightly couple an
evolving solid model representation of the body with the discretiza-
tion for each stage of the propagation. The ability of mesh-free
methods to minimize or simplify changes to the discrete model is
why they are promising alternatives to the traditional mesh-based
approaches. Typically, there are two aspects of crack propagations
that are of interest: the physical model undergoing the crack evo-
lution and the representation of the evolving geometry. We use the
simplified Rankine condition [Rankine 1872] of maximal princi-
ple stress to decide both whether and how the material cracks. If
the maximum eigenvalue of τ exceeds a threshold, a crack (with
cracking speed vc proportional to the maximum eigenvalue of τ)
should be generated. Secondary fractures on the cracking surface
can be given higher thresholds to help reduce spurious branching in
practice.

4.3.1 Discontinuity of the Shape Functions

Mesh-free methods produce arbitrarily smooth shape functions,
which is undesirable in cases of discontinuities, such as cracks.
When a crack is generated in a body, the dependent variables (e.g.,
the displacements), must be discontinuous across the crack. Fur-
thermore, the support of the nodes affected by the discontinuities
need to be modified accordingly to incorporate the proper behavior
of the shape functions and its derivatives. The simplest way to in-
troduce discontinuities into mesh-free approximations is to use the
visibility criterion in their construction [Belytschko et al. 1994b]
[Krysl and Belytschko 1999]. In this method, the boundaries of
the body and any interior surfaces of discontinuity are considered
opaque when constructing the weight functions, i.e., the line from
a point to a node is imagined to be a ray of light. If the ray encoun-
ters an opaque surface, such as the boundary of a body or an interior
discontinuity, it is terminated, and the point is not included in the
domain of influence. In the following subsection, we will show that
the visibility criterion can be easily implemented when the cracking
surface is modeled as a scalar field.

4.3.2 Crack Surface Modeling based on Level Sets

A key feature of crack growth simulation is the evolving geome-
try (crack surface). The growth of the crack changes the geometric
model, and implementing these changes is one of the most diffi-
cult tasks of crack propagation simulations, particularly in 3D. The
growth of a crack in 3D can perhaps be better viewed as the evolu-
tion of a surface by the motion of a curve (crack front). However,
the path of the curve must be explicitly remembered (i.e., stored),
as it constitutes the crack surface. Thus, an ideal method for our
prototype system would provide the evolution of the curve and can
be coupled with our point-based surface representation simultanu-
ously.

Burchard et al. [Burchard et al. 2001] presented numerical simu-
lations of a level set based method for moving curves in 3D. The
level set method is a general tool for the description of evolv-
ing surfaces, and has been applied extensively in image process-
ing, computer vision, scientific visualization, and shape modeling,
where it has been extremely successful, especially when topologi-
cal changes in the interface, i.e., merging and breaking, occur. In
[Stolarska et al. 2001] the level set methods were first applied to



crack problems, where two orthogonal level sets were used, one for
the crack surface, the second to locate the crack tip. Recently, Guo
et al. [Guo et al. 2004a] [Guo et al. 2004b] proposed coupling the
point set surfaces with level sets to facilitate surface modeling and
editing. We have observed that coupling implicit surfaces with ex-
plicit point-based representation can provide us with a much more
powerful scheme that takes advantage of both representations, such
as topology change handling, efficient rendering, etc. And it can
also greatly facilitate the visibility test (section 4.3.1) between the
integration points and the mesh-free nodes. In this paper, we con-
tinue to make use of the dual representations for the purpose of
modeling the crack surface.

crack surface

crack front

y1  >  0
y2  <  0

y1  <  0
y2  <  0

y2  >  0

y1  =  0  , y2  <  0

y1  =  0  , y2  =  0

Figure 9: Construction of the two level set functions for the crack
surface (ψ1) and crack front (ψ2).

The level set method is a numerical technique for tracking the mo-
tion of interfaces. The interface of interest is represented as the zero
level set of an implicit function ψ(x(t), t). This function is one di-
mension higher than the dimension of the interface. We model the
crack by two orthogonal level sets (see Figure 9):

1. The ψ1 level set, called crack surface level set; its zero iso-
surface corresponds to the crack surface.

2. The ψ2 level set, called front level set; the intersection of the
crack surface zero level set (ψ1 = 0) with the front zero level
set (ψ2 = 0) gives the crack front.

ψ1(x, t) and ψ2(x, t) are assumed to be signed distance functions.
The crack surface and crack front are given as:

Crack Sur f ace : ψ1(x, t) = 0, ψ2(x, t) < 0 (28)

Crack Front : ψ1(x, t) = 0, ψ2(x, t) = 0 (29)

The level sets are only updated in a small sub-domain around the
crack surface, which we call the level set sub-domain. For multiple
crack surfaces and crack fronts, we can use multiple different level
sets to model them. The point sampled crack surface can be gen-
erated by projecting the grid points near the crack surface onto the
zero level set of the iso-surface [Co et al. 2003]. The crack front is
also represented explicitly as a linked list of point samples.

In order to find the position of a point in the level set sub-domain
relative to the crack front an additional level set function must be
introduced. This function is defined as the perpendicular distance
to the crack front, and is denoted as ϕ(x, t). The ϕ level set can
be computed for each grid point in the level set sub-domain using
the Fast Marching Method (FMM) [Sethian 1999a], which is based
on solving the Eikonal equation |∇ϕ |= 1 using level sets. Another

key ingredient in applying level set methods to crack growth is the
extension of the velocity field vc (crack speed) from the crack front
to the entire level set sub-domain. This can also be performed by
an extension of the FMM. For details of the Fast Marching Method,
please refer to [Sethian 1999b].
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y2   <   0
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y2   <   0

y2    =  0
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level  set  grid  point

n
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Figure 10: Construction of the crack surface (ψ1) and crack front
(ψ2) level set functions.

Assume that the values of ϕ , ψ1, and ψ2 at time n are ϕn, ψn
1 , and

ψn
2 , respectively. The update procedure of level sets in 3D can be

described as follows (see Figure 10):

1. Compute the level set function of ϕn+1 from the crack front
using the FMM. Then the position of each grid point relative
to the crack front is given by r = |ϕ |∇ϕ .

2. Extend the velocity vector vc given on the crack front into the
entire level set sub-domain by an extension of FMM.

3. Rotate the crack front level set ψn
2 so that it is orthogonal to

the velocity field vc obtained from step (2). This is performed
geometrically by ψ̂2 = r · vc

‖vc‖ , where ψ̂2 is the rotated tem-
porary crack front level set.

4. Extend the crack geometrically by computing the crack sur-
face level set ψn+1

1 =±‖r× vc
‖vc‖‖ in the region where ψ̂2 > 0.

The sign of ψn+1
1 is chosen so that it is consistent with the cur-

rent sign on a given side of the crack.

5. Update the crack front level set ψn+1
2 = ψ̂2 −∆t‖vc‖ in the

region where ψ̂2 > 0.

Figure 11 shows the crack surface propagation inside a straight bar
due to the gravity force with its right part fixed.

5 Model Representation and Visualization

5.1 Point-based Surface Geometry

The only input of our prototype system is a point sampled surface.
It is maintained during deformations through dynamic sampling.
We construct the volumetric distance field from the point cloud us-
ing the multi-level partition of unity implicit surface construction
method [Ohtake et al. 2003]. For crack surfaces, point samples can
be generated by projecting the grid points near the crack surface
onto the zero level set of the iso-surface. The implicit surfaces are



(a) (b)
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Figure 11: Crack surface propagation inside a bar: (a)the point set
representation of the crack surface; (b)level set grids inside the bar;
(c)the broken bar; (d)volume rendering of the distance field inside
the bar.

maintained in the reference domain of the deformed object during
deformations. Large deformations may cause strong distortions in
the distribution of sample points on the surface that can lead to an
insufficient local sampling density. We have to include new samples
where the sampling density becomes too low. To achieve this, we
utilize the first fundamental form as in [Pauly et al. 2003] to mea-
sure the surface stretch to detect regions of insufficient sampling
density. Then, we have to insert new sample points where the local
distortion becomes too large. The inserted points can be projected
onto the zero level set of the surface distance field to get their lo-
cation in the reference domain. It might be desirable to eliminate
point samples in regions where the surface is squeezed to keep the
overall sampling distribution uniform. We implemented an iterative
simplification method introduced in [Pauly et al. 2002]. However,
the deleted points are just temporarily placed in a “recycle bin”.
They may be reused when they are re-inserted.

5.2 Visualization Techniques

The physical attribute distribution in a volumetric solid object can
be visualized in a number of ways, for example, by color contours
on a 2D slice, iso-contour splatting, or by direct volume rendering.

Volume rendering refers to techniques which produce a X-ray-like
image directly projected from the volume data via ray integration.
It enhances 3D visualization of imaged solid objects by providing
translucent rendering. In addition to the standard 3D image analy-
sis tools, volume rendering allows the user to interactively define
thresholds for opacity, color application, and brightness. Translu-
cent rendering of volumetric data provides more information about
a spatial relationship of different structures than standard 3D sur-
face rendering and 2D slice contouring. Direct volume rendering
affords to quickly isolate regions of interest, and quickly provides
3D spatial information for enhanced mechanical analysis, and aids
in education.

There are two principle approaches to volume rendering [West-
over 1989] [Westover 1990]: backward mapping (ray casting) al-
gorithms that map the image plane onto the data by shooting rays
from pixels into the data space, and forward mapping (splatting)

algorithms that map the data onto the image plane. If we treat our
volumetric nodes as the scattered data used for volume rendering,
the shape function can be considered as the reconstruction kernel
in volume rendering. For forward mapping, sampling the footprint
function for each pixel involves an integration. For our MLS shape
functions, it is difficult to integrate analytically, and the renderer
must use discrete methods. Unlike the Radial Basis Functions, the
MLS shape functions are not rotationally symmetric, which makes
it impossible to be pre-computed for all view directions. To per-
form volume rendering of the physical attributes on our volumetric
object, we simply use the integration points constructed in Section
4.2.3 since the attribute values are already available at these points.
We then utilize the standard splatting algorithm to render these in-
tegration points using spherical gaussian kernels. Figure 12 shows
an example of both point-based splatting of the surface and volume
rendering of the stress intensity field.

(a) (b)

Figure 12: (a) Point-based splatting of the surface of the max plank
model undergoing elastic deformations. (b) Volume rendering of
the stress intensity field.

6 Implementation and Discussion

The simulation and rendering parts of our system are implemented
on a Microsoft Windows XP PC with dual Intel Xeon 2.0GHz
CPUs, 1.5GB RAM, and an nVidia GeForce Fx 5200 Ultra GPU.
The entire system is written using Microsoft Visual C++, and the
graphics rendering component is built upon OpenGL.

Table 1: Simulation speed (sec/frame) for both elastic deformation
and crack propagation. T 1 is the timing for elastic deformation;
T 2 is the timing for crack propagation; T 3 stands for the level set
update timing for crack surface.

model surfels nodes T 1 T 2 T 3
straint bar 6144 64 0.01579 0.27145 0.12425
max plank 15,002 251 0.06787 0.84713 0.25372

Table 1 shows the statistics of the performance of our physical sim-
ulation system on several point data sets. The third column shows
the timing for elastic simulation, while the fourth column is for
physical simulation of cracks. And the fifth column give us the tim-
ing for level set update of the crack surfaces. In our experiments,
we use the implicit integration scheme with a time step of 0.01 sec-
onds without stability problems. For simulations of elastic defor-
mations, the system matrices can be precomputed. For crack prop-
agations, the system matrices need to be updated to accommodate
the changes of the local reference domain of each node. The level
set crack surface propagation can be performed efficiently since the
level set updates are only computed in the subdomain around the
crack surface without any remeshing issues associated with finite



element methods. One limitation of our current framework is that
we can only handle volumetric objects, since the nodes’ distribution
has to satisfy the non-degeneracy condition in order for the moment
matrix to be invertible. Extending our volumetric framework to thin
shell structure is one of our future work.

7 Conclusion

We have presented a new mesh-free modeling, simulation, and vi-
sualization paradigm for volumetric objects, whose interior and sur-
face representations are both point clouds. In particular, our system
takes any point sampled surface as input, generates octree-based
volumetric points for use in dynamic simulation, and simulates the
elastic deformations and cracks using the Element-Free Galerkin
method based on continuum mechanics. Besides dynamics, our sur-
face point samples are also used to produce a volumetric distance
field that can speedup the geometric queries and manipulations at
the same time. The mesh-free dynamics have many unique features,
such as fast convergence, ease of adaptive refinement, flexible ad-
justment of the consistency order and the continuity requirement,
etc. The meshless character of our approach expedites the effec-
tive modeling of the time-evolving discrete model in crack propa-
gations, while no remeshing of the domain is required. We use the
level set method to accurately track the crack surface, which can
facilitate modeling and animating point-sampled surfaces that dy-
namically adapts to crack surfaces. Compared with traditional finite
element methods, the high accuracy and continuity characteristics
of our approach make it possible to perform rapid visualization of
the physical properties of the volumetric solid object without any
post-processing operation. Based on our extensive experiments on
the mesh-free simulations, we believe that our new paradigm can
significantly advance the current state of the knowledge in point
based solid modeling and visualization of physical objects. In the
near future, the mesh-free methods and their engineering principles
are expected to open up new research directions in computer graph-
ics, modeling, simulation, and visualization.
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