
Dynamic Sculpting and Deformation of Point Set Surfaces

Xiaohu Guo Hong Qin

State University of New York at Stony Brook
Department of Computer Science

Stony Brook, NY 11794-4400, USA
{xguo|qin}@cs.sunysb.edu

Abstract

This paper presents a novel paradigm for point set sur-
face editing, which takes advantages of the potential of im-
plicit surfaces, the strength of physics based modeling tech-
niques, and the simplicity of point sampled surfaces. Our
point set surface is evaluated as the zero set of the weighted
sum of the collection of the scalar trivariate B-spline func-
tions defined over the local domain of each point sample.
The implicit representation of the point set surfaces allows
users to easily modify the topology of the sculpted objects.
The deformation of the surfaces is conducted by dynami-
cally modifying the local reference domains, as well as their
scalar control coefficients. We have developed a variety of
sculpting toolkits that can dynamically manipulate the im-
plicit point set surface and easily perform CSG boolean op-
eration on arbitrarily shaped objects. Our research work
complements existing point rendering and modeling pipe-
lines for efficient interactive sculpting and deformation.

1. Introductions

Point sampled geometry has attracted more and more at-
tentions in computer graphics. Compared with traditional
primitives like triangle mesh, points have shown their ad-
vantage such as rendering efficiency and free of connectiv-
ity concern, especially when people are dealing with large
scanned models coming from laser range and image-based
scanning techniques.

Recently many efforts have been focused on both di-
rect rendering techniques [8, 14, 18] and effective model-
ling mechanisms [1, 12, 17, 11] for point sampled geome-
try without connectivity. One important challenge to point
modeling techniques is to be able to perform fast, interac-
tive modeling tasks which allowing the users to manipulate
and sculpt the point clouds intuitively.

In this paper we propose a novel point based geometry
representation that is designed for the purpose of dynamic

physics-based sculpting and deformation. We use unstruc-
tured point samples as the basic modeling and rendering
primitive, and add dynamic volumetric implicit functions
on top of it, which not only provides the capability to rep-
resent surfaces of complex topology, but can also perform
fast geometric and physics-based deformations and topol-
ogy changes. To exploit this unified scheme, we integrate
dynamic sculpting and boolean operations into our surface
modeling framework.

Instead of using the time consuming moving least square
projection operator [1, 11] to determine the shape of the
model, our modeling scheme can automatically update its
local reference domain and its associated coefficients while
doing sculpting, and efficiently reconstruct the new local
implicit function undergoing deformation. Our research
work is intended for incorporating dynamics and physics
into the realm of point based modeling and advance the art
of knowledge in this area.

2. Previous Work

Since the pioneering report of Levoy and Whitted
[8], the use of point primitive has been investigated
by researchers in both shape modeling and rendering.
Rusinkiewicz and Levoy [14] introduced a technique
named QSplat which uses a hierarchy of spheres of differ-
ent radii to render a high-resolution model. M. Zwicker et
al. [18] introduced the surface splatting technique which
directly renders opaque and transparent surfaces from point
clouds without connectivity. Later, they present a system
called Pointshop 3D [17] for interactive shape and appear-
ance editing of 3D point sampled geometry. The key in-
gredients of their editing system comprise a point cloud pa-
rameterization and a dynamic resampling scheme based on
a continuous reconstruction of the surface. But their geom-
etry editing is only limited to normal displacement. Szeliski
and Tonnessen [15] introduced a physics-based framework
for surface design based on particles. Witking and Heckbert
[16] presented a particle-based approach to sampling and

editing implicit surfaces. M. Alexa et al. [1] use the frame-
work of moving least square (MLS) projection [6, 7] to ap-
proximate a smooth surface defined by a set of points, and
introduced some associated techniques to resample the sur-
face to generate an adequate representation of the surface.
M. Pauly et al. [12] extend the multiresolution editing con-
cepts, including geometry smoothing, simplification, and
offset computation, to point clouds. Most recently, M. Pauly
et al. [11] present a free-form shape modeling framework
for point sampled geometry using the implicit surface defi-
nition of the moving least squares approximation.

Implicit functions are well suited for both scientific vi-
sualization and the modeling tasks in computer graphics.
To design implicit surfaces interactively, Bloomenthal [2]
used skeleton methods to construct implicit surfaces. Each
skeletal element is associated with a locally defined im-
plicit function. Individual functions are blended to form
an implicit surface using a polynomial weighting function
that can be controlled by users. Our method is very sim-
ilar to this idea that each point sample has a locally de-
fined distance function, and each individual functions are
blended to form an implicit surface. Opalach et al. [9]
proposed a simple method for calculating local deforma-
tions of implicit surface during collisions. Recently, Ra-
viv and Elber [13] presented a 3D interactive sculpting
paradigm that employed a set of scalar uniform trivariate B-
spline functions as object representations. Hua and Qin [5]
presents a novel haptics-based volumetric modeling frame-
work, which is founded upon volumetric implicit functions
and powerful physics-based modeling.

3. Local Surface Distance Field

Our idea of Local Surface Scalar Field is stimulated by
the moving least square (MLS) surface model [6, 7, 1].
The input data consists of an unstructured point cloudP =
{pi|1 ≤ i ≤ N} that describes some underlying manifold
surfaceS. Each point sample stores a geometric position
as well as a set of other attributes, such as normal or color.
While the continuous MLS surface is defined as a set of
projection operator that projects a point near surface onto
the MLS surface, our model representation is to define a
set of local surface scalar field associated with each point
sample. We will briefly review the MLS projection operator
and discuss our local scalar field construction.

Given a point setP , the MLS surfaceSMLS(P) is de-
fined by a projection operatorΨ as the points that project
onto themselves, i.e.SMLS(P) = {x ∈ R3|Ψ(P, x) = x}.
The projectionΨ(P, r) of any pointr near the surface is
defined by a two-step procedure:

First a local reference planeH = {x| < n, x > −D =
0, x ∈ R3}, n ∈ R3, ‖n‖ = 1 is computed by locally

minimizing

N∑
i=1

(< n, pi > −D)2θ(‖pi − q‖), (1)

where q is the projection ofr onto H. θ is a smooth,
monotone-decreasing function, e.g. a Gaussian function

θ(d) = e−
d2

h2 , with anticipated spacingh between neigh-
boring points.

Then a bivariate polynomialg(u, v) is fitted to the
points projected onto the reference planeH using a similar
weighted least squares optimization. This process is carried
out by minimizing

N∑
i=1

(g(ui, vi)− hi)2θ(‖pi − q‖),

where(ui, vi, hi) are the coordinates ofpi in the local co-
ordinate system induced byH. For more details on MLS
point set surfaces, please refer to [1]. Note that the normals
at the points can be obtained from the reference plane, or
by evaluating the gradient of the polynomialg, and then use
the minimal spanning tree method similar to [3] to achieve
a consistent normal orientation.

Instead of locally fitting a bivariate polynomialg(u, v) to
the height function in the reference planeH, we choose to
fit a volumetric implicit function to the local distance field
in the neighborhood of the point samplepi. Throughout this
paper, we utilize scalar trivariate B-spline functions as the
underlying shape primitives [13, 4]. The use of implicit B-
spline functions is strongly inspired by their attractive prop-
erties including simplicity, generality, etc. These trivariate
functions are of the form:

s(u, v, w) =
l−1∑
i=0

m−1∑
j=0

n−1∑
k=0

PijkBi,r(u)Cj,s(v)Dk,l(w),

(2)
whereBi,r(u), Cj,s(v), Dk,l(w) are the uniform B-spline
basis functions of degreesr − 1, s − 1, andl − 1, respec-
tively. Pijk are the scalar coefficients in a volumetric mesh
of sizel×m×n , ands(u, v, w) is a scalar function at posi-
tion (u, v, w) in parametric domain. In this case, the scalar
function defines the distance of position(u, v, w) to the sur-
face. The size of the local reference parameter domain can
be chosen to enclose all thek-nearest neighbors ofpi. Here
the method usingk-nearest neighbors as in [12] is to speed
up the weighted least square fitting process and simplify the
local reference domain.

For the purpose of fast reconstruction of the local dis-
tance field, we can sample the trivariate function (2) at a
fixed local gridsG = {(ui, vi, wi)|i ∈ [0, g]} , while g is
the number of the sampling grid positions(ui, vi, wi). Then

(2) can be simplified as the matrix form [4]:

s = (B⊗ C⊗ D)p, (3)

where⊗ denotes Kronecker Product,s is the vector of the
distance values at the grid positions, andp is the vector of
control coefficients. When the distance field is modified, we
can easily reconstruct the trivariate function (3) by:

p = [(B⊗ C⊗D)T (B⊗C⊗D)]−1(B⊗C⊗D)T d, (4)

whered is the vector of the new distance values at the grids
of G. Note that the grid positions(ui, vi, wi) are fixed in
the local domain during our simulation, so the matrix(B⊗
C ⊗ D) can be pre-computed in order to improve real time
performance.

In our distance field fitting process, we generate two
off-surface points associated with each point samplepi,
one outside and another one inside. Then we employ the
weighted least square fitting to obtain the volumetric im-
plicit function, whose zero level set fits the given point sam-
ples. We compute the scalar coefficientsPijk so that the
weighted least squares error:

k∑
j=1

(s(uj , vj , wj)− dj)2θ(‖pj − pi‖)

is minimized. Herepi is the current point of our considera-
tion, andpj is one of itsk-nearest neighbors.(uj , vj , wj) is
the local parameter coordinate ofpj , anddj is its distance
value to the surface.

The global continuous distance field can be achieved by
blending each local implicit primitive associated with each
point sample using established implicit blending techniques
[2]. Actually we can use a weighting function with finite
support that blends individual implicit primitives:

s(x, y, z) =
∑N

i=1 si(x, y, z)φi(x, y, z)∑N
i=1 φi(x, y, z)

. (5)

If (x, y, z) is inside the local region of point samplepi,
si(x, y, z) is the distance value evaluated using the trivari-
ate implicit function associated withpi, otherwise it is sim-
ply set to zero. Andφi(x, y, z) is a smooth, positive and
monotonously decreasing weighting function associate with
pi. Note that in our representation the support ofφi(x, y, z)
shouldn’t exceed the local reference region ofpi. Inter-
polation of the distance value can be achieved by letting
φi(x, y, z) →∞, when(x, y, z) → pi.

4. Dynamic Models

In order to introduce physics into our point-based local
distance field, we utilize the idea ofDynamic Volumetric

Modelsthat was first introduced by Hua and Qin in [5]. Our
approach is to re-sample the distance field defined by (5) in
a region of our interest, which we denote as a global region
compared with the point-based local region. Then we dis-
cretize the global distance field into a voxel raster. Every
voxel contains a scalar value, in our case a distance value,
sampled at each grid position using function (5). Note that
(5) is defined only around the thin shell of the surface re-
gion. To evaluate a location(x, y, z) that is outside the
local definition domain of any of the point samples, we
can simply approximate the implicit value as its distance
to the nearest point in the point set. When we are perform-
ing sculpting or deformation, we simulate the dynamics in
this global region. In each step of the simulation, if the
global distance field is changed on these global grids, we
need to reconstruct the local trivariate functions associated
with each point by first evaluating the new value ofd, and
then using (4) to update the control coefficientsp.

Note that after deformation the scalar value associated
with each voxel may not be strictly distance value to the
iso-surface. So the scalar value should be called density
value as in [5]. But in order to maintain consistency with
our implicit construction method in Section 3, we still call
it distance value below.

4.1. Dynamic Global Volumetric Model

The discretized global distance field is assigned mate-
rial quantities such as mass, damping, and stiffness distri-
bution. And the discretized distance field is modeled as a
collection of mass points connected by a network of springs
across nearest neighbor voxels. Actually, the special springs
for our implicit function do not change the geometric posi-
tions of the voxel mass points, but their distance values. We
use the mass spring model to simulate the dynamics of the
model as in [5] because of its attractive characteristics of
simplicity.

The motion equation of the discretized distance field is
formulated as a discrete simulation of Lagrangian dynam-
ics:

Mgd̈g + Dgḋg + Kgdg = fd, (6)

whereMg is the mass matrix,Dg is the damping matrix,
Kg is the stiffness matrix, andfd is the external force vec-
tor. We use the notiondg to denote the global grids’ value
compared with the local grid value. The internal forces are
generated by the connecting springs, where each spring has
force f = k(I − I0) according to Hook’s law. The force
mapping mechanism in [5] is also an interesting method to
compute the applied sculpting force according to the defor-
mation of the global distance field:

f = −
∫

C

s(u, v, w)dC, (7)

whereC is any force vector ands(u, v, w) is the distance
distribution function in 3D space. For more details onDy-
namic Volumetric Models, please refer to [5]. Figure 1
shows the mass-spring grids of the global distance field in
black color, and the local sampling gridG of one point sam-
ple in blue color.

We use a forward Euler method to compute the modified
distance values and their velocity:

ḋg
i+1

= ḋg
i
+ d̈g

i
4t,

dg
i+1

= dg
i
+ ḋg

i
4t.

In our implementation, the users can select any sculpt-
ing region of the object, and perform the deformation just
inside this specified global region. This region is indepen-
dent of the surface definition, and it can help to achieve real
time performance by limiting the deformation only inside
the region of interest.

4.2. Dynamic Updating of Local Domain

Since we are approximating the surface at each local do-
main of the point samples, in order to allow the dynamic de-
formation of the model we need to be able to change their
local domain dynamically. The local grids scalar valued
and their velocityḋ can be simply updated by reconstruct-
ing from the eight corner values fromdg andḋg stored in
each global cell using Gaussian blending. After evaluating
the new value ford, we can use (4) to update the control
coefficientsp.

After we alter the global distance field by user interac-
tion, we must change the points’ locations since the point
samples are assumed to be on the zero level set of the
implicit function. When the distance-field space is de-
formed, the trajectory of the point sample can be repre-
sented as{x(t)|s(x(t), p(t)) = 0}, herex(t) is the param-
eter position of the point in its local reference domain, and
p(t) is the vector of control coefficients. The derivative of
s(x(t), p(t)) with respect to time yields:

ds(x(t), p(t))
dt

=
∂s(x(t), p(t))

∂x
dx
dt

+
∂s(x(t), p(t))

∂p
dp
dt

= 0.

To simplify the notation, we represent the gradient
∂s(x(t),p(t))

∂x by ∇xs, and replace∂s(x(t),p(t))
∂p with ∇ps.

Then the above equation can be re-written as follows:

∇xs · ẋ +∇ps · ṗ = 0. (8)

Note that∇xs and ẋ are both vectors. Therefore, there is
no unique solution for the point velocity. Dividinġx into
(vn, vt , vw), wheren = − ∇xs

‖∇xs‖ represents the unit prin-
ciple normal vector of the iso-surface of distance field,t

represents the unit tangent vector, andw represents unit bi-
normal vector. Then the dot product in (9) only retains the
item containingvn. Therefore, if we assume that the points
are only moving in their normal direction, then we can get
its normal velocity:

vn =
∇ps · ṗ
‖∇xs‖

n (9)

4.3. Dynamic Sampling

The point sampling density will be changed while users
are performing sculpting or deformation on the surface. To
maintain a nice surface quality, we need to insert new sam-
ple points while the surface density becomes too low, or
we can simplify the surface by eliminating points while the
surface is squeezed. We use the up-sampling scheme of
[1] for the point insertion. In each modeling step, each
point should check its neighboring density by projecting
its neighbor points onto its tangent plane. Then we com-
pute the Voronoi diagram of these points. We choose the
Voronoi vertex that has the largest circle radius on the tan-
gent plane. If the radius is larger than a specified threshold,
we can project the vertex onto the iso-surface of the local
distance field. Using this approach, we can achieve a sur-
face density of locally near-uniform. We can also reduce
the sampling density using the iterative method proposed
in [10]. Actually we didn’t implement the surface simpli-
fication scheme in our real time simulation in order to save
computation overhead.

5. Sculpting Toolkits

Our sculpting system has two classes of tools: geomet-
ric/topological tools, which employ embossing/engraving
and boolean operations to change the shape of the under-
lying object; and force-based tools, which afford dynamic
property and allow users to perform direct sculpting and de-
formation with ease.

5.1. Geometric and Topological Tools

Embossing and Engraving:Users can also easily per-
form embossing or engraving operations on an object using
our implicit scheme. They can use an existing image to
define the distance value at the point samples. Figure 3(a)
shows an image of global map. Then we construct the im-
plicit surface by fitting the distance value associated with
each point samples. Finally we displace the points onto the
iso-surface of its local distance field, and we can get an em-
bossing or engraving effects on the point set surface. As
shown in Figure 3(b), the global map is embossed onto a
sphere shape to get a ”virtual earth”. We can easily perform

the engraving operations on the surfaces by reversing the
distance field along the opposite direction.

Boolean Operations: The major advantage of implicit
surface modeling system is that we can easily perform CSG
(constructive solid geometry) boolean operations such as
union, inter-section and difference between half space prim-
itives, since computing surface-surface intersection requires
only the evaluation of the implicit function. For point sam-
pled geometry, M. Pauly proposed to use the MLS projec-
tion operator to conduct inside/outside classification, but the
projection operation can be rather time consuming. In our
implicit scheme, the inside/outside classification can be per-
formed by just evaluating the implicit function (5).

One fundamental drawback of our implicit scheme is that
we can not represent objects of sharp features yet. So while
we are performing boolean operation, we can treat the re-
sulting surface as two different patches of implicit surface
if we want to retain the sharp intersection of the original
two surfaces. Otherwise we can treat the resulting surface
as one single patch to get a relatively smooth intersection.

In our implementation, we use the rendering scheme pro-
posed in [1], i.e. to sample additional points in the neigh-
borhood of an existing point sample at a resolution suffi-
cient to conform to the screen space resolution. Using this
rendering method, it is very simple to render the sharp in-
tersection of the two surfaces. Figure 2 illustrates the idea.
We need to sample additional points (in black color) near
the red point, and we can just perform the evaluation of the
implicit function and discard the points that’s outside the
surface of the intersected patch.

Using CSG boolean operations, users can create objects
of complicated geometry and arbitrary topology by using
union, intersection, and difference operations. More specif-
ically, considering two closed surfacesS1 andS2 that are
represented by two point setP1 andP2, our goal is to obtain
a new point setP that defines the resulting surfaceS, while
P consists of two subsetsQ1 ⊆ P1 andQ2 ⊆ P2. Then
the operations can be performed by computingQ1 andQ2

as shown in Table (1). In Table (1), s1 and s2 are the cor-
responding implicit surface functions of S1 and S2 respec-
tively, and we assume that they have negative values outside
the surface and positive inside.

Figure 4 shows the results of the boolean operations be-
tween a torus and a sphere. They are rendered using the
technique mentioned above to preserve sharp corners.

5.2. Force based tools

Through our force tool the users can select any of the
point location inside the sculpting region, and to simulate
the dynamics on the mass points inside this region, the
force is distributed among nearby mass points using a user-
defined function, which can be Gaussian, constant, spheri-

cal, or any other distributions. Beside point selection mode,
our system affords users the curve-based tool to bind the
force along the user defined curve. Figure 5(a) shows the
example of using a point tool to deform the surface of a
cube. Figure 5(b) shows applying a curve-based force to
sculpt the surface of a plate.

6. Experiments

Our system is implemented on a Microsoft Windows NT
PC with a Pentium IV 1.4GHz CPU and 512MB RAM. The
entire system is written using Microsoft Visual C++ and the
graphics rendering component is built upon OpenGL.

We set the number of free control coefficients and local
grids to be only3× 3× 3, and it showed that this is already
sufficient for each point sample in our experiments. In or-
der to achieve real time simulation, our dynamic sculpting
can only handle small data sets since the discretization of
the global distance field is space consuming, and the sim-
ulation of the dynamics on large data set is time consum-
ing. Currently in our implementation the rendering speed
is also a bottleneck limiting the overall performance. The
main reason is that we are using the rendering scheme of
[1] and sampling the neighboring area around each point at
every time step of simulation. If we use the splatting ren-
derer of PointShop3D instead, or even more efficient soft-
ware or hardware renderers, the simulation performance can
be greatly enhanced. In some cases of our experiments,
we simply use delayed rendering approach, i.e. simulating
the sculpting and deformation process without rendering the
whole shape at each simulation step, but just draw the ex-
isting point samples. And the user can switch between the
two modes depending on their preference.

We have performed many experiments and recorded the
running time for both the construction of implicit surface,
and the updating time of the sculpting operations. The re-
sults are detailed in the Tables (2) and (3). We do not in-
clude the rendering time into the simulation time in Ta-
ble (3) since the rendering time is heavily dependent on
the viewing resolution in our implementation. From Table
(3) we can see that the number of point samples inside the
sculpting region is the fundamental factor influencing the
system performance, since the local domain associated with
each point sample has to be updated. So it is very important
to limit the sculpting region just on the surface of interest.

Using our implicit point set surface modeling frame-
work, we have created several interesting objects. Figure 6
shows the ”PG 2003” logo created by force based curve-tool
and boolean operations. We began with six cubic blocks,
and then apply the curve-tool by drawing the character as
curves on the surface. After the deformation of the blocks,
we use small torus shape to link them together using the∪
operations.

7. Conclusions

We have presented a dynamic sculpting and deforma-
tion scheme of the point set surface that is based on locally
defined trivariate B-spline implicit function. The key fea-
ture of our system is the integration of point set surfaces
with dynamic sculpting and deformation using dynamic up-
dating of the local reference domain. We have also per-
formed boolean operations on the point surfaces based on
this scheme and proposed the corresponding techniques to
render sharp corners.

Several further improvements to extend our current work
are possible in the near future. We can integrate the sculpt-
ing and deformation operation with haptics interface to fully
realize the potential of the implicit point set surface, and
users can have realistic force feedback when directly manip-
ulating the point set surfaces. And we will further explore
the dynamic re-sampling scheme so that we can perform
dynamic topology changing of the point set surface such as
sketch based editing.

8. Acknowledgements

This research was supported in part by the NSF grants
IIS-0082035 and IIS-0097646, and Alfred P. Sloan Fellow-
ship.

References

[1] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin,
and C. T. Silva. Computing and rendering point set surfaces.
IEEE TVCG, 9(1):3–15, January-March 2003.

[2] J. Bloomenthal and B. Wyvill. Interactive techniques for im-
plicit modeling.Computer Graphics, 2(24):109–116, March
1990.

[3] H. Hoppe, T. DeRose, T. Duchamp, J. A. McDonald,
and W. Stuetzle. Surface reconstruction from unorganized
points.SIGGRAPH, pages 71–78, 1992.

[4] J. Hua and H. Qin. Haptic sculpting of volumetric implicit
functions. Proceedings of 9th Pacific Conference on Com-
puter Graphics and Applications, pages 254–264, 2001.

[5] J. Hua and H. Qin. Haptics-based volumetric modeling us-
ing dynamic spline-based implicit functions.Proceedings
of IEEE Symposium on Volume Visualization and Graphics,
pages 55–64, 2002.

[6] D. Levin. The approximation power of moving least-
squares.Mathematics of Computation, 67(224):1517–1531,
1998.

[7] D. Levin. Mesh-independent surface interpolation.Geomet-
ric Modeling for Scientific Visualization, Springer-Verlag,
2003, to appear.

[8] M. Levoy and T. Whitted. The use of points as a display
primitive. Technical Report85-022, University of North Car-
olina at Chapel Hill, 1985.

[9] A. Opalach and M. Cani-Gascuel. Local deformations for
animation of implicit surfaces. In W. Straßer, editor,13th
Spring Conference on Computer Graphics, pages 85–92,
1997.

[10] M. Pauly, M. Gross, and L. Kobbelt. Efficient simplification
of point-sampled surfaces.IEEE Visualization, 2002.

[11] M. Pauly, R. Keiser, L. Kobbelt, and M. Gross. Shape mod-
eling with point-sampled geometry.SIGGRAPH, 2003.

[12] M. Pauly, L. Kobbelt, and M. Gross. Multiresolution model-
ing of point-sampled geometry.TH Zurich Technical Report,
2002.

[13] A. Raviv and G. Elber. Three dimensional freeform sculpt-
ing via zero sets of scalar trivariate functions.Proceedings
of 5th ACM Symposium on Solid Modeling and Applications,
pages 246–257, 1999.

[14] S. Rusinkiewicz and M. Levoy. Qsplat: A multiresolution
point rendering system for large meshes.SIGGRAPH, pages
343–352, 2000.

[15] R. Szeliski and D. Tonnesen. Surface modeling with ori-
ented particle systems.SIGGRAPH, 1992.

[16] A. Witkin and P. S. Heckbert. Using particles to sample and
control implicit surfaces.SIGGRAPH, 1994.

[17] M. Zwicker, M. Pauly, O. Knoll, and M. Gross.
Pointshop3d: An interactive system for point-based surface
editing. SIGGRAPH, 2002.

[18] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Surface
splatting.SIGGRAPH, pages 371–378, 2001.

Table 1. The Classification of our implicit
boolean operations.

Q1 Q2

S1 ∪ S2 {p ∈ P1|s2(p) < 0} {p ∈ P2|s1(p) < 0}
S1 ∩ S2 {p ∈ P1|s2(p) ≥ 0} {p ∈ P2|s1(p) ≥ 0}
S1 − S2 {p ∈ P1|s2(p) < 0} {p ∈ P2|s1(p) ≥ 0}

Table 2. The running time for the implicit sur-
face construction.

] Point Samples Construction Time (s)
674 2.8528
4348 19.277
6542 26.85
8171 37.79
35947 169.803

Table 3. The running time for the dynamic sim-
ulation.

] Mass Points] Points Inside Updating Time (s)
40× 40× 40 225 0.066838
40× 40× 40 450 0.169078
40× 40× 40 910 0.381281
50× 50× 50 361 0.116774
60× 60× 60 514 0.219434

Figure 1. The mass-spring grids (in black
color) in the global sculpting domain and the
sampling grids (in blue color) in a point’s local
domain.

Figure 2. The rendering of the point samples
(in red color) near the intersection curve (in
blue color).

(a) (b)

Figure 3. (a) A grey scale image of the global
map, which is used to define the local dis-
tance field; (b) The embossed sphere.

(a) (b)

(c) (d)

Figure 4. (a) TORUS ∪ SPHERE; (b) TORUS ∩
SPHERE; (c) TORUS − SPHERE; (d) SPHERE
− TORUS.

(a) (b)

Figure 5. (a) The result of applying a point-
force to deform the surface of a cube; (b) Us-
ing a curve tool to sculpt a plate.

Figure 6. The PG 2003 Logo created using
force based curve-tool and boolean opera-
tions.

