
2.5D Active Contour for Surface Reconstruction

Ye Duan and Hong Qin

Department of Computer Science
State University of New York at Stony Brook

Stony Brook, New York, USA.
Email: yduan|qin@cs.sunysb.edu

Abstract

In this paper, we present a new deformable model
— 2.5D Active Contour— that is capable of directly
extracting shape geometry from 3D unorganized
point cloud datasets. The reconstructed surfaces are
either open or closed. Furthermore, the new model
can reconstruct and discover non-manifold geome-
try hidden in the point-cloud dataset. Our algorithm
starts from a simple seed (e.g. a triangle) that can
be automatically initialized, and always enlarges
the model boundary outwards along its tangent di-
rection suggested by the underlying dataset. This
mechanism ensures that our novel models “flow”
directly over the data boundary through the expan-
sion of its bounding contour. To maintain the reg-
ularity of the model and the stability of the numer-
ical integration process, commonly used mesh op-
timization techniques are employed throughout the
deformation process. In addition, the new model
can recover fine details of the underlying shape
through local/adaptive refinements. We demon-
strate both the accuracy and the robustness of our
algorithm through a number of experiments on both
real and synthetic datasets.

1 Introduction

Advances in 3D laser-range scanning technologies
have given rise to a massive amount of datasets,
and the obtained range dataset often contains sam-
pling artifacts such as noises and gaps. How to ef-
ficiently and accurately reconstruct surfaces from
these datasets remains challenging to researchers in
computer vision, geometric modeling and visualiza-
tion. In general, there are two kinds of approaches:
static, geometry-based approaches, and dynamic,
deformable model-based approaches. Among the
static approaches, there are either explicit meth-

ods or implicit methods. Explicit methods recon-
struct a triangulated surface using Delaunay trian-
gulations and Voronoi diagrams. These include
the Alpha-Shape algorithm [8], the Crust algorithm
[1], and the Ball-Pivoting algorithm [3]. Since the
noise in the dataset becomes embedded in the re-
construction, these explicit methods are usually dif-
ficult to handle non-uniformity and noises. Im-
plicit methods use the input points to either de-
fine a scalar function by the use of a combina-
tion of smooth basis function such as Radial Basis
Functions (RBF) [5, 7], or define a signed distance
function on rectangular grids [11]. To create the
output mesh, the Marching Cubes algorithm [17]
is then used to polygonalize the iso-contour. Im-
plicit methods are less sensitive to noises because
they produce approximating rather than interpolat-
ing meshes. However, implicit methods in general
require more computation. Fundamentally differ-
ent from static techniques are deformable model
based techniques, i.e., methods that perform recon-
struction by deforming an initial seed model to fit
the dataset. Deformable models are more robust to
sampling artifacts such as noise and gaps because
of their inherent continuity and smoothness and
are more suitable for reconstructing time-evolving
datasets. However, conventional parameterized de-
formable models [13, 25, 23, 24] are not amenable
to arbitrarily complicated topology and geometry.
Recently, researchers have proposed implicit level-
set based models for shape reconstruction such as
[18, 6, 22, 27]. Level-set models are topologically
very flexible, however, they can only handle shapes
that are closed manifolds. In contrast, our new
model can represent both closed and open surfaces
that are either manifold or non-manifold.

In this paper, we propose a new deformable
model—2.5D Active Contour—that is capable of
recovering shapes from 3D unorganized point cloud

VMV 2003 Munich, Germany, November 19–21, 2003



datasets. The recovered shape is either open or
closed, therefore, it is topologically flexible. More
importantly, our model can be applied to extract
non-manifold shape directly from point clouds.
These unique advantages are achieved by using the
following techniques: Starting from a simple seed
(e.g. a triangle) that is automatically initialized by
the system, our new model can enlarge itself and
flow directly over the object boundary through the
expansion of its boundary contour outwards along
the surface tangent (i.e., the surface grows tangen-
tially and always expand itself directly over the
dataset). The deformation behavior of the boundary
contour is governed by partial differential equation
(PDE). To ensure the regularity of the model and
the stability of the numerical integration process,
commonly used mesh optimization techniques are
employed throughout the deformation process. In
addition, the new model can recover fine details of
the underlying shape through local/adaptive refine-
ments.

2 Algorithm

The entire pipeline of the algorithm consists of the
following major steps:
• Model initialization.
• Model growing.
• Model relaxation.
• Collision detection.
• Mesh stitching.

2.1 Model Initialization

Before the deformation begins, a seed model needs
to be initialized on the boundary of the object. This
can be done either interactively by the user or auto-
matically by the system. Any polygon (e.g. a tri-
angle) can be used as a seed model. A triangle can
be automatically initialized by the system by find-
ing three data points that are closest to each other:
the first data point is randomly chosen, and its clos-
est data point serves as the second data point. The
third data point is chosen as the closest point to the
middle position of the two previous data points and
is not collinear with the two previous data points.
It is possible that the underlying object may consist
of multiple disjoint components. Hence, even af-
ter the model deformation stops, the model initial-
ization may still be needed. Therefore, the system

must check whether there are still some un-visited
data points yet to be processed. If that is the case,
then a new seed model will be initiated to handle
those data points via the following model deforma-
tion procedure. In principle, the model initializa-
tion is capable of repeating several times until all
the data points have been visited. A data point will
be marked as visited if the distance from the data
point to the reconstructed model is smaller than a
threshold. Otherwise, it is marked as unvisited.

2.2 Model Growing

After the model is initialized, the model will grow
and deform. At each deformation step, only the
boundary contour of the model is active and is al-
lowed to move. The deformation behavior of the
model boundary is governed by an evolutionary
system of differential equations with the following
form:

∂C(p, t)

∂t
= F~n(p, t), C(p, 0) = C0(p), (1)

wheret is the time parameter,C0(p) is the initial
surface,~n(p, t) is the tangential normal vector of
the current positionp on its tangent plane.F is an
application-dependent speed function. In this paper,
for the purpose of surface reconstruction, we used
the following curvature-based speed function:

F = (v + k)g(p), (2)

herek is the tangential curvature at the current posi-
tion p on its tangent plane and is acting as a smooth-
ing constraint. v is the constant velocity, which
will enable the convex initial shape to capture non-
convex, arbitrarily complicated shapes. This defi-
nition of speed function is similar to the one used
by Malladi et al. [18] for the purpose of medical
image segmentation. Figure 1 illustrates the defini-
tion of the tangential curvaturek and speed function
F = k ·~n in Eq. 2.g(p) is the scalar value stopping
function. By default,g(p) is set as 1. The value of
g(p) will become 0 when the model is moving over
the surface border of an open object. In this case the
deformation will stop because the speedF is zero.
We will explain how to detect the surface border in
more detail in Section 3.1.

The surface evolution process is approximated
using an explicit iterative equation:

C(p, t + ∆t) = C(p, t) + F (p, t)~n(p, t)∆t. (3)

666



Figure 1: Front propagation on the object bound-
ary (shown in solid curve).~ns is the surface normal
vector at the current vertex positionp, k is the tan-
gential curvature,~n is the tangential normal vector,
andF = k · ~n is the speed function.

We will explain how to approximate the tangential
normal and tangential curvature in Section 5. Be-
cause the model is only moving along the direction
of the surface tangential normal, in order to ensure
the model always stays on the object boundary, at
each deformation we need to project all the active
boundary vertices back onto its closest point over
the object boundary. Figure 2 shows a 2D illustra-
tion. The vertex position at the current time stept is
C(p, t); the calculated position at the next time step
t + ∆t from Eq. 3 isC(p, t + ∆t) (Fig. 2(a)). We
then project the vertex from positionC(p, t + ∆t)
back onto the object boundary atC⊥(p, t + ∆t)
(Fig. 2(b)). So the final vertex position at the next
time stept + ∆t is C⊥(p, t + ∆t) (Fig. 2(c)). The
propagation will stop when all the data points are
“flowed over”. (Fig. 2(d)). Since the boundary of
the underlying object is implicitly represented by
point clouds, the project step is done by projecting
the current vertex onto its local tangent plane. We
will explain how to approximate the local tangent
plane in Section 5.

2.3 Model Relaxation

To ensure the numerical simulation of the deforma-
tion process to proceed smoothly, a relaxation step
is necessary after each deformation step to maintain
the regularity of the mesh such that the mesh has a
good node distribution, a proper node density, and a
good aspect ratio of the triangles. This is achieved
through the use of local subdivision scheme and
three mesh optimization operations [12]: edge split,
edge collapse, and edge swap. A face is subdivided

(a)

(b)

(c)

(d)

Figure 2: 2D illustration of front propagation. Data
points are shown in black dots, green dots are the
nodes of the propagating fronts, while the edges
connecting the nodes are shown in golden color.

if its area is larger than a certain user-defined thresh-
old and is still active (i.e. at least one of its three
vertices is an active boundary vertex). Local sub-
division is achieved through triangle quadrisection,
i.e. each triangle is divided into four smaller trian-
gles at the middle position of its three edges. Edge
split and edge collapse are used to keep an appro-
priate node density. An edge split is triggered if
the edge length is bigger than the maximum edge
length threshold. Similarly, an edge will be col-
lapsed if its length is smaller than the minimum
edge length threshold. Edge swapping is used to
ensure a good aspect ratio of the triangles. As sug-
gested by Kobbeltet al. [15], this can be achieved
by forcing the average valence to be as close to
6 as possible. An edge is swapped if and only
if the quantity

∑
p∈∆

(valence(p)− 6)2 is mini-
mized after the swapping. Note that mesh optimiza-
tion operations are only applied to regions that are
still active.

2.4 Collision Detection

There are three kinds of collision that may oc-
cur during the model deformation process: vertex-

666



vertex collision, vertex-edge collision, and vertex-
face collision. In this paper, a simple distance-based
collision detection scheme is used. A vertex-vertex
collision is detected if the distance of any two non-
neighboring active boundary vertices is smaller than
a threshold. These two vertices will be marked as
non-active and will not be allowed to move fur-
ther. Vertex-edge collision happens between an
active boundary vertex and a non-adjacent active
boundary edge. If the distance between an active
boundary vertex and the middle position of a non-
neighboring boundary edge is smaller than a thresh-
old, a vertex-edge collision will be detected and
the boundary vertex will be marked as non-active
and will not be allowed to move further. These
non-active vertices will be merged with their cor-
responding vertices in the next mesh-stitching step
which we will address in the next section. Vertex-
face collision happens between an active bound-
ary vertex and a non-adjacent interior face. This
can only occur when the underlying object contains
some non-manifold geometric structures. Vertex-
face collision is detected if the distance between
an active boundary vertex and a non-adjacent inte-
rior face is smaller than a threshold. The distance
from the vertex to the face is approximated by the
smallest distance between the vertex and the sam-
pling points of the face including the face center, the
three corner points of the face, and the three middle
points of the three boundary edges of the face. If
a vertex-face collision is detected, then the vertex
will be marked as a non-manifold vertex and will
not be allowed to move further. After the deforma-
tion stops, a post processing step will be invoked to
attach all the non-manifold vertices onto the model
(Section 3.2).

2.5 Mesh Stitching

Mesh stitching is used to merge all the vertices that
have been marked as non-active in the previous col-
lision detection step. There are two possible cases:
“on-the-fly stitching” and “post stitching”. On-the-
fly stitching occurs when there is an active bound-
ary vertex that is adjacent to two chains of non-
active boundary vertices. The movement of the ac-
tive boundary vertex and the aforementioned mesh
optimization operations will iteratively merge the
two chains of non-active boundary vertices together.
See Figure 3 for an illustration.

If the two chains of non-active boundary vertices

Figure 3: On-the-fly stitching. Dark-colored circles
are non-active boundary vertices. Grey-colored cir-
cle is the active boundary vertex. (a)-(b) The active
boundary vertex is moving towards its two adjacent
chains of non-active boundary vertices. (b)-(c) the
active vertex is merged with its two adjacent non-
active boundary vertices by the edge collapse oper-
ation, and is moving towards its two new adjacent
non-active boundary vertices.

Figure 4: Post stitching. (a) Two disconnected
chains of non-active boundary vertices (shown in
dark circles). (b) The closest pair of boundary
edges are merged together. The two endpoints of
the newly merged edge are activated and are mov-
ing towards their two adjacent non-active boundary
vertices.

that are merging with each other are disconnected,
then the “post-stitching” method will be used. First,
a pair of closest boundary edges from these two
chains is found and is merged together. Then, the
two endpoints of the new edge are activated. Fi-
nally, the two active endpoints will iteratively merge
the two chains of non-active boundary vertices to-
gether by the aforementioned “on-the-fly stitching”
method. Note that “post-stitching” is used only af-
ter the model deformation stops. See Figure 4 for
an illustration.

666



3 Open Manifolds and Non-manifolds

We have described the main steps of the algorithm
in the previous section. Besides closed manifolds,
our model can also recover shapes of open mani-
folds, non-manifolds, and multiple disjoint compo-
nents. We have explained how to recover multiple
disjoint components in section 2.1. In this section,
we will explain how to handle open manifolds and
non-manifolds, respectively.

3.1 Open Manifolds

Open manifolds are manifolds that have openings
(i.e. open boundaries). To detect the possible open-
ings within the underlying object, after each defor-
mation, for each active boundary vertex, we will
calculate the distance between the vertex and the
center position of itsk-nearest data points. These
are thek-nearest points used for local tangent plane
approximation, which we will discuss in section 5.
Since the model is flowing over the data points, the
distance is usually very small if the underlying ob-
ject is a closed shape. Hence, a much bigger dis-
tance would indicate that the vertex is moving over
the border of an open object. In this case, the ver-
tex will be marked as non-active and will be iden-
tified as a vertex that is on the border of an open
object. After the deformation stops, all the vertices
that have been identified as being on the object bor-
der will be moved back to the border by updating
the position of the vertex using the position of its
closest data points.

3.2 Non-Manifolds

As we mentioned in section 2.4, a non-manifold
vertex is identified if there is an occurrence of
vertex-face collision between the current active
boundary vertex and a non-adjacent interior face.
After the deformation stops, the system will check
whether there are any non-manifold vertices being
identified. If this is the case, then the non-manifold
vertices will be put into a linked list. And each non-
manifold vertex will be projected onto the part of
model it is colliding with. This is done by the ray-
triangle intersection method frequently used in the
computational geometry community. In the interest
of the space, we will omit the details here, please re-
fer to the book written by O’Rourke [20] for more
details.

After all the non-manifold vertices have been
projected onto the model, they needed to be merged
with the region of the model they are colliding
with. The basic idea is: for each non-manifold ver-
tex, find a corresponding vertex on the model and
merge them together. Figure 5 shows an illustra-
tion. Here, the non-manifold vertices are shown in
dark circles. The non-manifold edges are shown
in dark lines (both solid and dotted). The inte-
rior edges of the model are shown as gray solid
lines. Starting from the first vertex (shown in gray-
colored circle in Fig. 5(a)) in the linked list of
non-manifold vertices, find its closest vertex on the
model shown in small white circle), snap it to the
position of the first non-manifold vertex and merge
these two vertices. Now (Fig. 5(b)) the second ver-
tex (shown in gray-colored circle) in the linked list
becomes the current vertex. Check whether it is lo-
cated in the 2-neighborhood of the previous non-
manifold vertex. If yes, then snap the closest one-
neighborhood vertex (shown in small white circle)
of the previous non-manifold vertex to the current
vertex and merge them. Otherwise (Fig. 5(c)), in-
sert a new non-manifold vertex in the middle be-
tween the current non-manifold vertex and the pre-
vious non-manifold vertex (Fig. 5(d)). Repeat the
above steps (Fig. 5(e)) until all the non-manifold
vertices on the linked list are merged with the inte-
rior region of the model (Fig. 5(f)).

4 Levels Of Detail Control

Once an initial shape of the object is recovered, the
model can be further refined several times to im-
prove the fitting accuracy. In this paper, we em-
ployed two refinement approaches: global refine-
ment and local/adaptive refinement. The decision
of which method to use can be made either inter-
actively by the user (whether he/she prefer a more
uniformed mesh or an adaptively sampled mesh), or
automatically by the system. The system can make
a technically sound decision by calculating the vari-
ance of the fitting accuracy of the current model. If
the variance of the fitting accuracy is very low, then
the underlying object must be relatively smooth and
global refinement will be a good choice. Otherwise,
adaptive refinement will be used to recover the fine
details embedded in the underlying object.

Global refinement is conducted by subdivision
scheme. Since the recovered shape may contain

666



(a) (b)

(c) (d)

(e) (f)

Figure 5: Merge the chain of non-manifold vertices
with the corresponding vertices on the interior re-
gion of the model by vertex snapping. The non-
manifold vertices are shown in shaded circles, the
non-manifold edges are shown in dark colors (both
solid and dotted lines), and the interior edges of the
model are shown in gray-colored lines. In each sub-
figure, the gray-colored circle is the current non-
manifold vertex that is merging with its correspond-
ing vertex (small white circle) on the model. (a)
A chain of non-manifold vertices have been pro-
jected onto the region of the model they are collid-
ing with. (b)-(e) Merge the chain of non-manifold
vertices with the model iteratively by vertex snap-
ping. (f) The chain of non-manifold vertices has
been merged with the interior region of the model.

open boundaries and even non-manifold geometry,
in this paper, we use the piecewise smooth Loop’s
scheme proposed by Hoppeet al. [10]. In order
to refine non-manifold geometry, we treat all the
non-manifold edges as sharp edges and all the non-
manifold vertices as corner vertices.

Adaptive refinement is guided by the fitting accu-
racy. Various kinds of metrics can be used to eval-
uate the fitting accuracy over each triangle, for ex-
ample, the maximum distance to the object bound-
ary, the average distance to the boundary, the cur-
vature of the triangle, etc. We use the variance of
the distance from the triangle to the boundary of the
object as the metric of the fitting accuracy as sug-
gested by Woodet al. [26]. The distance to the
boundary of the object is estimated using the dis-
tance between the current sampling position and its
local tangent plane approximated by itsk-nearest
neighbors, which we will discuss in more details
in section 5. The variance of a discrete set of dis-

tances is computed in the standard way:VT [d] =
E[d2] − E[d]2, whereE denotes the mean of its
argument. To calculate the variance of the distance
samples for a given triangle, we temporarily quadri-
sect the triangleT into four smaller triangles and
for each smaller triangle, calculate the distance at
its barycentric center. If the variance of the distance
samples for a given triangle is bigger than a user
defined threshold, then this triangle will be refined
since the object boundary underneath this particu-
lar triangle must have high curvature. Several lev-
els of refinements (both global refinement and lo-
cal/adaptive refinement) can be applied until a user
specified fitting accuracy has been met. All the new
vertices generated at each level of refinement will
be directly projected onto its local tangent plane ap-
proximated by itsk-nearest neighbors.

5 Numerical Implementation

5.1 Local Tangent Plane Approximation

The local tangent plane of any given positionp is
estimated by using the method of principle compo-
nent analysis (PCA) of itsk-nearest data points as
suggested by Hoppeet al. [11]: For any position
p, its local tangent plane is represented by a cen-
ter pointc and a unit normal vectorn. The center
pointc is the centroid of thek-nearest data points of
positionp, which is denoted asNbhd(p). The nor-
mal vector~n is computed by doing eigen analysis
of the covariance matrixC of Nbhd(p), which is a
symmetric 3 x 3 positive semi-definite matrix:

C =
∑

pi∈Nbhd(p)

(pi − c)⊗ (pi − c). (4)

Here,⊗ denotes the outer product vector operator,
and the normal vectorn is the eigenvector associ-
ated with the smallest eigenvalue of the covariance
matrix C. In our experiments,k is set to be five.
In order to efficiently find the closest data points of
a given positionp, we preprocess the point clouds
by putting them into a uniform regular grid and con-
necting all the points inside one grid cell by a linked
list. If the point clouds are relatively uniformly
sampled, then the time complexity of the nearest
point search is almost linear.

666



Figure 6: The tangential normal vector of the
boundary vertex.

5.2 Boundary Vertex Tangential Normal

We define the tangential normal vector~n of a
boundary vertexV as the normalized sum of the
two unit vectors~nl and~nr that are perpendicular to
its two adjacent boundary edgesV Vl andV Vr:

~n =
~nl + ~nr

‖~nl + ~nr‖ (5)

Note that all the three vectors~n, ~nl and~nr are in
the same plane defined by the three verticesV , Vl

andVr and are pointing outwards from the bound-
ary contour. In fact, we can easily verify that the
tangential normal vector~n is the bisector vector of
the outer angleVlV Vr. This is consistent with the
commonly used definition of vertex normal in pla-
nar curve evolutions [2]. See Figure 6 for an illus-
tration.

5.3 Boundary Vertex Tangential Curva-
ture

Since the speed of the boundary vertex depends
on the tangential curvature, we need to be able to
accurately estimate the tangential curvature at the
boundary vertex. The boundary vertex curvature~K
is defined as:

~K = k~n. (6)

Here~n is the tangential normal vector of the vertex
V defined in the previous section andk is the scalar
value of the curvature. We use the discrete curvature
estimator proposed by [22] to calculate the absolute
value ofk:

‖k‖ =
4 ∗ S4V VlVr

‖V Vl‖ ∗ ‖VlVr‖ ∗ ‖VrV ‖ , (7)

where S4V VlVr is the face area of the triangle
4V VlVr, ‖V Vl‖, ‖VlVr‖, and‖VrV ‖ are the edge
lengths of the three corresponding edgesV Vl, VlVr,

andVrV , respectively. The sign of the curvaturek,
i.e. whether it is pointing outwards or inwards, is
decided by checking the local convexity at the cur-
rent boundary vertexV . If it is locally convex at
the vertexV , then the curvaturek is negative (i.e.
pointing opposite to the direction of the tangential
normal vector~n). Otherwise, the curvaturek is pos-
itive (i.e. pointing to the same direction as~n). See
Figure 7 for an illustration.

6 Experimental Results On Surface
Reconstruction

In this section, we will show some experimental re-
sults obtained by our new model. All the exper-
iments are conducted on a Pentium 4M 1.6GHZ
Notebook PC with 512MB memory. Note that in
all the figures, all active boundary contours of the
models are shown in red, non-active interior regions
of the models are shown in blue. The input of Fig-
ure 8 is the point cloud dataset of Stanford bunny
(shown in golden color in Fig. 8(a)). It has two
holes and several small gaps in the bottom. Fig.
8(b) to Fig. 8(d) are the three snapshots of the
growing stage. Fig. 8(e) shows the mesh stitch-
ing process where the chain of non-active boundary
vertices are stitched together by the “post stitching”
process. Fig. 8(f) is the initial recovered shape. Fig.
8(g) is the wireframe view of the same shape in Fig.
8(f). Fig. 8(h) shows the bottom of the bunny. The
two holes are correctly recovered. The small gaps
in the bottom are automatically filled in. Fig. 8(i) is
the refined shape of the bunny. Adaptive refinement
is used to recover the fine details. Fig. 8(j) is the
rendered view of the same shape in Fig. 8(i). The
input of Figure 9 is the mannequin dataset, which is
an open manifold. Fig. 9(a) shows the initial seed
triangle (shown in red) staying on the dataset. Fig.
9(b) is a snapshot of the model growing stage. Fig.
9(c) is the initial recovered shape shown in wire-
frame. Fig. 9(d) shows the adaptively refined shape
in wireframe. Again, adaptive refinement is used to
recover the fine details. Fig. 9(e) is the rendered
view of the same shape in Fig. 9(d). The input of
Figure 10 is a synthetic point cloud dataset that con-
sists of eight disjoint tori. Fig. 10(a) is the point
cloud dataset shown in golden color. Fig. 10(b) and
Fig. 10(c) are two snapshots of the model grow-
ing stages. Fig. 10(d) is the initial recovered shape
shown in wireframe. Fig. 10(e) is the refined shape

666



Figure 7: The boundary vertex tangential curvature.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 8: Surface reconstruction from the point
cloud dataset of the Stanford bunny.

after one level of global subdivision, also shown
in wireframe. Figure 11 shows a simple example
of a non-manifold shape. The input is a synthe-
sized Saturn-like point clouds. Fig. 11(a) shows the
model flowing through the dataset. After the first
seed model stops, a new seed model is initialized
around the region of the dataset that have not been
visited and start growing again (Fig. 11(b)). Fig.
11(c) and Fig. 11(d) are the top view of the two
snapshots of the growing stages before and after the
two parts of the model are merged together, respec-
tively. Fig. 11(e) is the same shape as Fig. 11(d)
shown in the original view direction.

7 Conclusion

We have described a new deformable model—
2.5D Active Contour—that is capable of discover-

(a) (b) (c) (d) (e)

Figure 9: Surface reconstruction from the point
cloud dataset of the Mannequin.

(a) (b) (c) (d) (e)

Figure 10: Surface reconstruction from a synthetic
point cloud dataset of eight-tori.

(a) (b) (c) (d) (e)

Figure 11: Surface reconstruction of a non-
manifold geometry.

ing shapes of both closed and open surfaces that
are either manifold or non-manifold. Our model
directly works on unorganized data points (as an
input) and correctly reconstructs shape geometry
without any data conversion. Starting from a simple
seed (e.g. a triangle) that is automatically initialized
by the system, our new model can enlarge itself and
flow directly over the object boundary through the
expansion of its boundary contour outwards along
the surface tangent. In addition, the new model
can recover very fine details of the underlying shape
through adaptive refinement.

References

[1] N. Amenta, M. Bern, and M. Kamvysselis. A
new Voronoi-based surface reconstruction al-
gorithm. InProceedings of ACM SIGGRAPH
98, pages 415–421, 1998.

[2] A. G. Belyaev, E. V. Anoshkina, S.Yoshizawa,
and M.Yano. Polygonal curve evolutions for
planar shape modeling and analysis.Interna-
tional Journal of Shape Modeling, 5(2):195–
217, 1999.

[3] F. Bernardini, J. Mittleman, H. Rushmeier,
C. Silva, and G. Taubin. The ball-pivoting
algorithm for surface reconstruction.IEEE
Transactions on Visualization and Computer
Graphics, 5(4):349–359, 1999.

[4] J. D. Boissonnat. Geometric structures
for three-dimensional shape rep-resentation.
ACM Transactions on Graphics, 3(4):266–
286, 1984.

666



[5] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J.
Mitchell, W. R. Fright, B. C. McCallum, and
T. R. Evans. Reconstruction and representa-
tion of 3d objects with radial basis functions.
In Computer Graphics (Proceedings of SIG-
GRAPH 2001), pages 67–76, August 2001.

[6] V. Caselles, R. Kimmel, G. Sapiro, and
C. Sbert. Minimal surfaces based object seg-
mentation. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 19:394–398, 1997.

[7] H. Q. Dinh, G. Slabaugh, and G. Turk. Re-
constructing surfaces using anisotropic basis
functions. In International Conference on
Computer Vision (ICCV) 2001, pages 606–
613, Vancouver, Canada, July 2001.

[8] H. Edelsbrunner and E. P. M̈ucke. Three-
Dimensional alpha shapes.ACM Transactions
on Graphics, 13(1):43–72, Jan. 1994. ISSN
0730-0301.

[9] A. Hilton, A. Stoddart, J. Illingworth, and
T. windeatt. Marching triangles: Range im-
age fusion for complex object modeling. In
proceedings of IEEE international conference
on image processing, pages 381–384, 1996.

[10] H. Hoppe, T. DeRose, T. Duchamp, M. Hal-
stead, H. Jin, J. McDonald, J. Schweitzer, and
W. Stuetzle. Piecewise smooth surface recon-
struction. InComputer Graphics (SIGGRAPH
94 Proceedings), pages 295–302, July 1994.

[11] H. Hoppe, T. DeRose, T. Duchamp, J. Mc-
Donald, and W. Stuetzle. Surface reconstruc-
tion from unorganized points. In E. E. Cat-
mull, editor,Computer Graphics (SIGGRAPH
92 Proceedings), volume 26, pages 71–78,
July 1992.

[12] H. Hoppe, T. DeRose, T. Duchamp, J. Mc-
Donald, and W. Stuetzle. Mesh optimiza-
tion. In J. T. Kajiya, editor,Computer Graph-
ics (SIGGRAPH 93 Proceedings), volume 27,
pages 19–26, Aug. 1993.

[13] M. Kass, A. Witkin, and D. Terzopoulos.
Snakes: Active contour models.International
Journal of Computer Vision, pages 321–331,
1988.

[14] R. Kimmel and J. A. Sethian. Computing
geodesic paths on manifolds. InProceedings
of National Academy of Sciences, pages 8431–
8435, July 1998.

[15] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-
P. Seidel. Interactive multi-resolution model-

ing on arbitrary meshes. InComputer Graph-
ics (SIGGRAPH’98 Proceedings), pages 105–
114, 1998.

[16] H. Lee, L. Kim, M. Meyer, and M. Desbrun.
Meshes on fire. InEurographics workshop on
computer animation and simulation, 2001.

[17] W. E. Lorensen and H. E. Cline. Marching
cubes: a high resolution 3D surface construc-
tion algorithm. InComputer Graphics (SIG-
GRAPH 87 Proceedings), volume 21, pages
163–169, July 1987.

[18] R. Malladi, J. Sethian, and B. Vemuri. Shape
modeling with front propogation: A level set
approach.IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 17(2):158 –
175, 1995.

[19] R. Mencl. A graph-based approach to surface
reconstruction. InEUROGRAPHICS, pages
445–456, 1995.

[20] J. O’Rourke. Computation geometry in C.
Cambridge University Press, 1998.

[21] K. Polthier and M. Schmies. Straightest
geodesics on polyhedral surfaces. In H. Hege
and K. Polthier, editors,Mathematical visual-
ization. Springer Verlag, 1998.

[22] J. A. Sethian. Level Set Methods and Fast
Marching Methods. Cambridge University
Press, second edition, 1999.

[23] D. Terzopoulos and K. Fleischer. Deformable
models.The Visual Computer, 4(6):306–331,
Dec. 1988.

[24] D. Terzopoulos and D. Metaxas. Dynamic 3D
models with local and global deformations:
deformable superquadrics.IEEE Transactions
on Pattern Analysis and Machine Intelligence,
13(7):703–714, 1991.

[25] D. Terzopoulos, A. Witkin, and M. Kass.
Symmetry-seeking models and 3d object re-
construction. International Journal of Com-
puter Vision, 1(3):211–221, 1987.

[26] Z. Wood, M. Desbrun, P. Schroder, and
D. Breen. Semi-regular mesh extraction from
volumes. InProceedings of IEEE Visualiza-
tion, pages 275–282, 2000.

[27] H. Zhao, S. Osher, and R. Fedkiw. Fast sur-
face reconstruction and deformation using the
level set method. InProceedings of the IEEE
Workshop on Variational and Level Set Meth-
ods in Computer Vision (VLSM 2001), 2001.

666


