
A Novel FEM-Based Dynamic Framework For Subdivision Surfaces

Chhandomay Mandal� Hong Qin� Baba C. Vemuri�
�Department of Computer and Information Science and Engineering

University of Florida
�Department of Computer Science

State University of New York at Stony Brook

Abstract

Subdivision surfaces have been extensively used to model smooth
shapes of arbitrary topology. Recursive subdivision on an user-
defined initial control mesh generates a visually pleasing smooth
surface in the limit. However, users have to carefully specify
the initial mesh and/or painstakingly manipulate the control ver-
tices at different levels of subdivision hierarchy to satisfy various
functional and aesthetic requirements in the limit surface. This
modeling drawback results from the lack of direct manipulation
tools for the limit surface. In this paper, we integrate physics-
based modeling techniques with geometric subdivision method-
ology and present an unified approach for arbitrary subdivision
schemes. Our dynamic framework permits users to directly manip-
ulate the limit subdivision surface via physics-based ”force” tools.
The key contribution of this unified approach is to formulate the
smooth limit surface of any subdivision scheme as a single type
of novel finite elements. The geometric and dynamic features of
our subdivision-based finite elements depend on the subdivision
scheme involved. We present our finite element method (FEM) and
formulation for the modified butterfly and Catmull-Clark subdivi-
sion schemes, and further generalize our dynamic framework for
any subdivision scheme. Our FEM-based approach significantly
advances the state-of-the-art of physics-based geometric modeling
because (1) our dynamic framework provides a universal physics-
based solution to any subdivision scheme beyond frequently-used
and popular spline-like subdivision techniques; (2) we systemat-
ically devise a natural mechanism that allows users to intuitively
deform any subdivision surface; (3) we represent the smooth limit
surface of any subdivision scheme using a single type of novel
subdivision-based finite elements. Our experiments demonstrate
that the new unified FEM-based framework promises a greater po-
tential of subdivision techniques for solid modeling, finite element
analysis, and engineering design.

1 INTRODUCTION

Efficiently modeling and manipulating smooth surfaces of arbitrary
topology is a grand challenge to scientists and engineers in solid
modeling, computer-aided design, and interactive graphics. The
recursive subdivision scheme, which produces a visually pleasing
smooth surface in the limit by repeated application of a fixed set of
refinement rules on an user-specified initial control mesh, is well
suited for this task. Despite the prevalence of diverse subdivision
schemes in the computer graphics and geometric modeling litera-
ture, it is almost impossible to manipulate the limit surface (ob-
tained through procedure-based subdivision) in a direct and natural
way. The current state-of-the-art only permits modelers to interac-
tively obtain the desired effects on the smooth surface by kinemati-
cally manipulating the control vertices at various levels of subdivi-
sion hierarchy. In this paper, we address the challenging problem of
directly manipulating the limit subdivision surface at arbitrary loca-

tions/areas, and offer a novel solution to this problem by embedding
purely geometric subdivision schemes in a physics-based modeling
framework. Unlike the existing geometric solutions that only al-
low operations on control vertices, our methodology and algorithms
permit users to physically modify the shape of subdivision surfaces
at desired locations via application of forces. Consequently, this
gives the user an intuitive and natural feeling that is uniquely pro-
duced while modeling with real clay/play-dough. Additionally, we
will demonstrate that the proposed model can efficiently recover
shapes from a cloud of 3D points. However, prior to the technical
details of our novel scheme, we shall briefly review the previous
work on subdivision surfaces.

1.1 Background

In [4], Chaikin first introduced the concept of subdivision to the
modeling community for generating a smooth curve from an arbi-
trary control polygon. During the last two decades, a wide vari-
ety of subdivision schemes for modeling smooth surfaces of arbi-
trary topology have been derived following Chaikin’s pioneering
work on curve generation. The existing subdivision schemes can
be broadly categorized into two distinct classes namely, (1) approx-
imating subdivision techniques, and (2) interpolating subdivision
techniques.

Among the approximating schemes, the techniques of Doo and
Sabin [6] and Catmull and Clark [3] generalize the idea of obtain-
ing uniform biquadratic and bicubic B-spline patches, respectively,
from a rectangular control mesh. In [3], Catmull and Clark devel-
oped an algorithm for recursively generating a smooth surface from
a polyhedral mesh of arbitrary topology. The Catmull-Clark subdi-
vision surface, defined by an arbitrary initial mesh, can be reduced
to a set of standard B-spline patches except at a finite number of
degenerate points. In [12], Loop presented a similar subdivision
scheme based on the generalization of quartic triangular B-splines
for triangular meshes. Hoppe et al. [11] further extended Loop’s
work to produce piecewise smooth surfaces with selected disconti-
nuities. Halstead et al. [10] proposed an algorithm to construct a
Catmull-Clark subdivision surface that interpolates the vertices of
a mesh of arbitrary topology. Peters and Reif [16] proposed a sim-
ple subdivision scheme for smoothing polyhedra. Most recently,
non-uniform Doo-Sabin and Catmull-Clark surfaces that generalize
non-uniform tensor-product B-spline surfaces to arbitrary topolo-
gies were introduced by Sederberg et al. [22]. All the aforemen-
tioned schemes generalize recursive subdivision schemes for gener-
ating limit surfaces with a known parameterization. Various issues
involved with the use of these approximating subdivision schemes
for character animation were discussed at length by DeRose et al.
[5].

The most well-known interpolation-based subdivision scheme is
the “butterfly” algorithm proposed by Dyn et al. [8]. Butterfly
method, like other subdivision schemes, makes use of a small num-
ber of neighboring vertices for subdivision. It requires simple data
structures and is rather straightforward to implement. Neverthe-



less, it needs a topologically regular setting of the initial (control)
mesh in order to obtain a smooth �� limit surface. Zorin et al.
[25] has developed an improved interpolatory subdivision scheme
(which we call the modified butterfly scheme) that retains the sim-
plicity of the butterfly scheme and results in much smoother sur-
faces even from irregular initial meshes. These interpolatory sub-
division schemes have extensive applications in wavelets on man-
ifolds, multiresolution decomposition of polyhedral surfaces, and
multiresolution editing.

The derivation of various mathematical properties of the smooth
limit surface generated by the subdivision algorithms is rather com-
plex. Doo and Sabin [7] first analyzed the smoothness behavior of
the limit surface using the Fourier transform and an eigen-analysis
of the subdivision matrix. Ball and Storry [1, 2] and Reif [20] fur-
ther extended Doo and Sabin’s prior work on continuity properties
of subdivision surfaces by deriving various necessary and sufficient
conditions on smoothness for different subdivision schemes. Spe-
cific subdivision schemes were analyzed by Schweitzer [21], Habib
and Warren [9], Peters and Reif [17] and Zorin [26]. Most recently,
Stam [23] presented a method for exact evaluation of Catmull-Clark
subdivision surfaces at arbitrary parameter values.

1.2 Motivation

Although recursive subdivision surfaces are extremely powerful for
representing smooth geometric shapes of arbitrary topology, they
constitute a purely geometric representation, and furthermore, con-
ventional geometric modeling with subdivision surfaces may be dif-
ficult for effectively representing and deforming highly complicated
objects. For example, modelers are faced with the tedium of in-
direct shape modification and refinement through time-consuming
operations on a large number of (oftentimes irregular) control ver-
tices when utilizing typical subdivision-based modeling techniques.
Despite the advent of many modern 3D graphics interaction tools,
these indirect geometric operations remain non-intuitive and labo-
rious in general. In addition, oftentimes it may not be enough to
obtain the most “fair” surface that interpolates a set of (ordered or
unorganized) data points. A certain number of local features such
as bulges or inflections may be strongly desired while requiring ge-
ometric objects to satisfy global smoothness criteria in solid mod-
eling and/or interactive graphics applications. In contrast, physics-
based modeling provides a superior approach to shape modeling
that can overcome most of the limitations associated with tradi-
tional geometric modeling approaches. Free-form deformable mod-
els governed by the laws of continuum mechanics are of particular
relevance in this context. Dynamic models respond to externally
applied forces in a very intuitive manner. The dynamic formula-
tion marries the model geometry with time, mass, damping, and
constraints via a force balance equation. Dynamic models produce
smooth, natural motions which are easy to control. In addition,
they facilitate interaction — especially direct manipulation of com-
plex geometries. Furthermore, the equilibrium state of the model
is characterized by a minimum of the deformation energy of the
model subject to the imposed constraints. The deformation energy
functionals can be formulated to satisfy local and global model-
ing criteria, and geometric constraints relevant to shape design can
also be properly imposed. The dynamic approach subsumes all of
the aforementioned modeling capabilities in a formulation which
grounds everything in real-world physical behavior.

Free-form deformable models were first introduced to the mod-
eling community by Terzopoulos et al. [24], and were improved by
a number of researchers over the years. Qin and Terzopoulos [18]
developed D-NURBS which are very sophisticated physics-based
models suitable for representing a wide variety of free-form as well
as standard analytic shapes. The D-NURBS have the advantage of
interactive and direct manipulation of NURBS curves and surfaces,

resulting in physically meaningful thus intuitively predictable mo-
tion and shape variation. However, a severe limitation of the exist-
ing deformable models, including D-NURBS, is that they are de-
fined on a rectangular parametric domain. Therefore, it can be very
difficult to model surfaces of arbitrary genus using these models.
Subdivision schemes, in contrast, can model complex surfaces of
arbitrary topology, and hence are a good candidate for developing a
novel physics-based model where the modeler can directly manip-
ulate the (complicated) limit surface in an intuitive way.

Previously we had introduced dynamic Catmull-Clark subdivi-
sion surfaces [14, 19] where the smooth limit surface generated by
the Catmull-Clark subdivision scheme was embedded in a physics-
based modeling framework. The current research differs signifi-
cantly from our prior work because the approach taken in this pa-
per is much more general. It aims to develop a systematic and
universal mechanism with which any subdivision scheme can be
formulated within the physics-based framework. The critical math-
ematical technique we resort to is finite element analysis. We shall
first formulate a dynamic representation and equation for an inter-
polatory subdivision scheme — the modified butterfly subdivision
method — where the limit surface, unlike other generalized spline-
based subdivision schemes, does not have any closed-form analytic
formulation. Moreover, we shall reformulate the dynamic Catmull-
Clark subdivision surface model using this novel methodology, and
describe how to develop an unified dynamic framework for any sub-
division scheme. The key contribution of this unified approach is to
represent the smooth limit surface of any subdivision scheme using
a single type of novel finite elements. The geometric and physi-
cal features of our subdivision-based finite elements depend only
on the subdivision scheme involved. Our FEM-based approach sig-
nificantly advances the state-of-the-art of physics-based geometric
modeling because (1) it provides a universally physics-based solu-
tion to any subdivision schemes beyond prevalent spline-like sub-
division techniques; (2) a natural mechanism that allows users to
intuitively deform any subdivision surface has been systematically
devised; (3) the limit surface of any subdivision schemes has been
represented using a single type of novel subdivision-based finite
elements; and (4) our subdivision-based finite elements are poten-
tially of great interest to FEM communities.

1.3 Overview

The rest of the paper is organized as follows. A dynamic frame-
work for the interpolatory (modified) butterfly subdivision scheme
is presented in Section 2. We reformulate the dynamic framework
for the approximating Catmull-Clark subdivision scheme using the
proposed approach in Section 3. Section 4 presents a solution on
how to develop a dynamic framework for any subdivision scheme.
Experimental applications are presented in Section 5. Finally, we
conclude the paper in Section 6.

2 Dynamic Butterfly Subdivision Sur-
faces

This section discusses a dynamic framework for an interpolatory
subdivision scheme namely, the (modified) butterfly subdivision
technique. First, a brief overview of the (modified) butterfly sub-
division scheme is presented. Next, a local geometric parameter-
ization technique for the limit surface of the (modified) butterfly
subdivision is detailed. Our parameterization method is then used
to derive the new triangular finite element model for butterfly-based
subdivision. Finally, the implementation details are described. Note
that, we will further generalize our physics-based formulation for
other interpolatory subdivision schemes in Section 4.



2.1 Geometry of The (Modified) Butterfly Subdivi-
sion

(a) (b)

Figure 1: (a) The control polygon with triangular faces. (b) The re-
fined mesh obtained after one subdivision step using butterfly sub-
division rules.
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Figure 2: (a) The weighing factors of contributing vertex positions
for an edge connecting two vertices of degree 6; (b) the correspond-
ing case when one vertex is of degree � and the other is of degree
6.

The butterfly subdivision scheme [8], like other subdivision tech-
niques used in geometric modeling and graphics, starts with an ini-
tial triangular mesh (a.k.a. the control mesh) defined by a set of
control vertices. In each step of subdivision, the initial (control)
mesh is refined through the transformation of each triangular face
into a patch with four smaller triangular faces. After one step of
refinement, the new mesh in the finer level retains the vertices of
each triangular face in the previous level and hence, interpolates
the coarser mesh in the previous level. In addition, every edge in
each triangular face is split by adding a new vertex whose position
is obtained by an affine combination of the neighboring vertex po-
sitions in the coarser level. For instance, the mesh in Fig.1(b) is
obtained by subdividing the initial mesh shown in Fig.1(a) once. It
may be noted that all the newly introduced vertices corresponding
to the edges in the original mesh have degree 6, whereas the posi-
tion and degree of all original vertices do not change in the refined
mesh.

In the original butterfly scheme, the new vertices corresponding
to the edges in the previous level are obtained using an eight-point

stencil. It produces a smooth �� surface in the limit except at the
extraordinary points corresponding to the extraordinary vertices
(vertices with degree not equal to 6) in the initial mesh [25]. Since
all the vertices introduced through subdivision have degree 6, the
number of extraordinary points in the smooth limit surface equals to
the number of extraordinary vertices in the initial mesh. Recently,
the original butterfly scheme has been modified by Zorin et al. [25]
to obtain better smoothness properties at the extraordinary points.
In this modified butterfly subdivision technique, all the edges had
been categorized into three classes: (i) edges connecting two ver-
tices of degree 6 (a 10 point stencil, as shown in Fig.2(a), is used to
obtain the new vertex positions corresponding to these edges), (ii)
edges connecting a vertex of degree 6 and a vertex of degree � �� �
(the corresponding stencil to obtain new vertex position is shown in
Fig.2(b), where � � ��� is the weight associated with the vertex of
degree � �� �, and �� � �������������	����������	��	���	�,
� � �
 

 � � � 
 �� 
, are the weights associated with the vertices of
degree 6), and (iii) edges connecting two vertices of degree � �� �.
The last case can not occur except in the initial mesh as the newly
introduced vertices are of degree 6, and the new vertex position
in this last case is obtained by averaging the positions obtained
through the use of stencil shown in Fig.2(b) at each of those two
extraordinary vertices.

2.2 Formulation

In this section, we systematically formulate the dynamic framework
for the modified butterfly subdivision scheme. Unlike the approx-
imating schemes, the geometry of the limit surface obtained via
modified butterfly subdivision does not have any closed-form ana-
lytic expression even for a regular mesh. Therefore, the key issue
is to define an appropriate parametric domain and derive a local pa-
rameterization for butterfly-based subdivision. These relevant geo-
metric components are critical to the development of our physics-
based finite element model for the limit surface of butterfly scheme.

The smooth limit surface defined by the modified butterfly sub-
division technique is of arbitrary topology where a global parame-
terization is impossible. Nevertheless, the limit surface can be lo-
cally parameterized over the geometric domain defined by the ini-
tial mesh. The idea is to track an arbitrary point on the initial mesh
across the mesh hierarchy obtained via the subdivision process (see
Fig.3 and Fig.4), so that a correspondence can be established be-
tween the point being tracked in the initial mesh and its image on
the limit surface.

xxx . . .

Figure 3: The smoothing effect of the subdivision process on the
triangles of the initial mesh.

The modified butterfly subdivision scheme starts with an initial
mesh consisting of a set of triangular faces. The recursive appli-
cation of the subdivision rules smoothes out each triangular face,
and in the limit, we obtain a smooth surface consists of a collec-
tion of smooth triangular patches. The subdivision process and the
triangular decomposition of the limit surface is depicted in Fig.3.
Note that, the limit surface can be represented by the same number
of smooth triangular patches as that of the triangular faces in the
initial mesh. Therefore, the limit surface � can be expressed as
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Figure 4: Tracking a point x through various levels of subdivision:
(a) initial mesh, (b) the selected section (enclosed by dotted lines)
of the mesh in (a), after one subdivision step, (c) the selected section
of the mesh in (b), after another subdivision step.

where � is the number of triangular faces in the initial mesh and ��
is the smooth triangular patch in the limit surface corresponding to
the �-th triangular face in the initial mesh.

After the above geometric decomposition, we now describe the
parameterization of the limit surface over the initial mesh. The pro-
cedure can be best explained through the following example. A
simple planar mesh shown in Fig.4(a) is chosen as the initial mesh.
An arbitrary point � inside the triangular face �� is tracked over
the meshes obtained through subdivision. The vertices in the initial
mesh are darkly shaded in Fig.4. After one step of subdivision, the
initial mesh is refined by addition of new vertices which are lightly
shaded. Another subdivision step on this refined mesh leads to a
finer mesh with introduction of new vertices which are unshaded. It
may be noted that any point inside the smooth triangular patch in
the limit surface corresponding to the face �� in the initial mesh
depends only on the vertices in the initial mesh which are within
the 2-neighborhood of the vertices �
� and � due to the local na-
ture of the subdivision process (the �-neighborhood of a vertex in-
cludes all the vertices that can be reached following at most � edges
from the given vertex). For example, the vertex �, introduced af-
ter first subdivision step, can be obtained using the 10 point stencil
shown in Fig.2(a) on the edge �. All the contributing vertices in

the initial mesh are within the 1-neighborhood of the vertices � and
�. A 10 point stencil can be used again in the next subdivision
step on the edge � to obtain the vertex �. Some of the contribut-
ing vertices at this level of subdivision, for example, the (lightly
shaded) 1-neighbors of the vertex � (except � and �) in Fig.4(b),
depend on some vertices in the initial mesh which are within the
2-neighborhood of the vertices �
� and � in the initial mesh.

In the rest of the formulation, superscripts are used to indicate
the subdivision level. For example, ����� denotes the collection
of vertices at level � which control the smooth patch in the limit
surface corresponding to the triangular face ��� at the �-th level
of subdivision. Let ����	 be the collection of vertices in the initial
mesh that are within the 2-neighborhood of the vertices �
� and �
(marked black in Fig.4(a)). Let the number of such vertices be �.
Then, the vector ����	, which is the concatenation of the ��
 �
 ��
positions for all the � vertices, is of dimension ��. Based on the
above observation of the 2-neighborhood property, the geometry of
the smooth triangular patch in the limit surface corresponding to
the triangular face �� in the initial mesh is uniquely determined
by these � vertices. Because of the recursive characteristic, there
now exists four subdivision matrices �	��	�
, �	��	��, �	��	��
and �	��	� of dimension ���
 ��� such that
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where the subscripts �, �, � and � denote top, left, right and mid-
dle triangle positions, respectively (indicating the relative posi-
tion of the new triangle with respect to the original triangle), and
����� 
�

�
���
�

�
	�� and ����� are the concatenation of the ��
 �
 �� po-

sitions for the vertices in the 2-neighborhood of the corresponding
triangle within the newly obtained refined mesh after one subdi-
vision. Note that, the new vertices in this level of subdivision are
lightly shaded in Fig.4(b). The 2-neighborhood configuration of the
vertices in the newly obtained triangles is exactly the same as that
of the original triangle, hence local subdivision matrices are square
and the vector dimensions on both sides of Eqn.2 are the same.

Carrying out one more level of subdivision, a new set of vertices
which are unshaded in Fig.4(c) are obtained along with the old ver-
tices. Adopting a similar approach as in the derivation of Eqn.2, it
can be shown that
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The relative position and geometric structure of the triangu-
lar face ��� in Fig.4(c) with respect to the triangular face �� is
topologically the same as of the triangular face ��� in Fig.4(b)
with respect to the triangular face ��. Therefore, we can obtain
�	����
 � �	��	�
. Based on the similar reasoning, Eqn.3 can be
rewritten as
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Combining Eqn.2 and Eqn.4, it can be shown that
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Let � be a point with barycentric coordinates �����	
 �
�
��	
 �

�
��	�

inside the triangular face ��. When the initial mesh is refined, �
becomes a point inside the triangular face �� with barycentric co-
ordinates ������
 �

�
���
 �

�
����. Another level of subdivision causes �

to be included in the triangular face ��� with barycentric coordi-
nates ������
 �

�
���
 �

�
����. Let ����	 denote the j-th level approxima-

tion of the smooth triangular patch ���	 in the limit surface corre-
sponding to the triangular face �� in the initial mesh. Now ����	
can be written as
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where the subscripts �, � and � indicate the x, y and z coordinates
of the corresponding vertex position,respectively. The expressions
for ����� and ����� can also be written in a similar manner. Next, the
matrix 
�

��	 can be constructed as follows:
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The matrices 
�
��� and 
�

��� can also be constructed in a similar
fashion. Now ����	���, �

�
��	���, and ����	��� can be written as
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Proceeding in a similar way, the expression for ����	���, �-th
level approximation of ���	���, is given by
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where � is inside the triangular face ��� at level � (with an assump-
tion that ��� is the triangular face in the middle with respect to its
coarser-level original triangular face in the previous level), �	�

��	�

� �	��	� � � � �	��	�
�	��	�� and 
�
��	��� � 
�

�������	
�
��	�.

It may be noted that the sequence of applying �	��	�
, �	��	��,
�	��	�� and �	��	� depends on the triangle inside which the
tracked point � falls after each subdivision step. Finally, the local
geometric parameterization procedure can be completed by writing

���	��� � � ���
���
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Note that, 
��	 is the collection of basis functions at the ver-
tices of ����	. It may also be noted that the modified butter-
fly subdivision scheme is a stationary subdivision process, and
hence new vertex positions are obtained by affine combinations
of nearby vertices. This guarantees that each row of the matrices

�	��	�

 �	��	��
 �	��	�� and �	��	� sums to one. The largest
eigenvalue of such matrices is 
 and therefore the mathematical
limit in Eqn.8 exists. Now, assuming the triangular face �� is the
�-th face in the initial mesh, Eqn.8 can be rewritten as

����� � 
�����
�
� � 
����	��
 (9)

where � is the concatenation of the (x,y,z) positions of all the ver-
tices in the initial mesh and the matrix	�, when post-multiplied by
�, only selects the vertices ��� defining the k-th smooth triangular
patch in the limit surface. If there are � vertices in the initial mesh
and � of them control the �-th patch, then � is a vector of dimension
��, 	� is a matrix of dimension ���
 ���, and 
���� is a matrix of
dimension ��
 ���.

Combining Eqn.1 and Eqn.9, it can be shown that

���� � �

��
���


����	��� � �����
 (10)

where �, a matrix of dimension ��
 ���, is the collection of basis
functions for the corresponding vertices in the initial mesh. The
vector � is also known as the degrees of freedom vector of the
smooth limit surface �.

We now treat the vertex positions in the initial mesh defining the
smooth limit surface � as time variables in order to develop the new
dynamic butterfly subdivision model. The velocity of the surface
model can be expressed as ����
�� � ���� ��, where an overstruck
dot denotes a time derivative and � �  �,  � being the domain
defined by the initial mesh. Note that,  � is the parametric domain
of the limit surface, each triangle of the initial control mesh serves
as a local parametric domain for its corresponding triangular patch.

2.3 Finite Element Procedure
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Figure 5: (a) An initial mesh, and (b) the corresponding limit sur-
face. The domains of the shaded elements in the limit surface are
the corresponding triangular faces in the initial mesh. The encircled
vertices in (a) are the degrees of freedom for the corresponding el-
ement.

In Section 2.2 we have demonstrated that the smooth limit sur-
face of butterfly subdivision can be represented by a collection of



smooth triangular patches. In our dynamic framework, we now con-
sider each patch of the limit surface as a finite element. The number
of such patches is equal to the number of triangular faces in the ini-
tial mesh as mentioned earlier. The concept of decomposing the
smooth limit surface into a collection of elements is illustrated in
Fig.5. We also show the parametric domain and control vertices for
shaded elements in Fig.5. The governing motion equation of this
subdivision-based FEM model is given by

���� ����� � ��
 (11)

where �� is the generalized force vector, and , �, and � are the
mass, damping and stiffness matrices of the physical model. We
provide an outline on how to derive the mass, damping and stiffness
matrices for these finite elements so that a numerical solution to
the governing second-order differential equation can be obtained
using popular finite element analysis techniques. We use the same
example as in Section 2.2 (refer to Fig.4) to introduce the relevant
concepts and derive our FEM model.

The mass matrix for the element ���	, corresponding to the tri-
angular face ��, can be expressed as

��	 �

�
������

!���
�
��	���
��	������ (12)

However, the basis functions (stored as entries in
��	) do not have
any analytic form, hence computing this integral is a difficult propo-
sition. We solve this problem by approximating the smooth trian-
gular patch in the limit surface corresponding to the face �� in
the initial mesh by a triangular mesh with 	� faces obtained after �
levels of subdivision of the original triangular face �� (each sub-
division step splits one triangular face into 	 triangular faces). In
addition, we choose a discretized form of mass distribution function
which has non-zero values only at the vertex positions of the �-th
subdivision level mesh. Then the mass matrix can be approximated
as
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�
� ��
 (13)

where � is the number of vertices in the triangular mesh with 	�

faces. This approximation has been found to be very effective and
efficient for the implementation of FEM procedure. The computa-
tion of elemental damping matrix follows suit.

Physics-based models have both kinetic and potential energies.
We now define the internal (e.g., elastic) energy of the subdivision-
based dynamic model by assigning deformation energy to each ele-
ment. We take a similar approach as shown above and consider the
�-th level approximation of the element. Note that, a wide range of
functional formulations can be employed to describe various ma-
terial and physical behaviors such as linear elastic deformation and
non-linear plastic deformation. Throughout this paper, in particular,
we assign spring-like energy to the approximated model because of
its simplicity and efficient computation. The energy at the �-th level
of approximation can be defined as
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where �� is the spring-controlling variable, ��� and ��, the �-th
and �-th vertex in the �-th level mesh, are in the 1-neighborhood
of each other, � is the domain defined by all such vertex pairs, #�
is the natural length of the spring connected between ��� and ��,
and ����	 is the concatenation of the (x,y,z) positions of all the ver-
tices in the �-th subdivision level of the triangular face �� in the

(a) (b) (c)

Figure 6: Catmull-Clark subdivision: (a) initial mesh, (b) mesh
obtained after one step of Catmull-Clark subdivision, and (c) mesh
obtained after another subdivision step.

initial mesh. The vertex positions in ����	 are obtained by a lin-
ear combination of the vertex positions in ����	, and hence we can
write ����	 � �	�

��	��
�
��	 where �	�

��	� is the transformation (sub-
division) matrix. Therefore, the expression for the elemental stiff-

ness matrix is given by ���	 � �	�
��	�

�
���

��	��	
�
��	�. It may

be noted that this approach is applicable for modeling isotropic as
well as anisotropic phenomena because ��, the spring-controlling
variable, can be a time-dependent function in general.

3 Dynamic Catmull-Clark Subdivision
Surfaces

In this section, we consider a new FEM model based on an ap-
proximating subdivision scheme, namely, Catmull-Clark subdivi-
sion technique. Please note, the dynamic formulation of Catmull-
Clark subdivision previously proposed in [14, 19] could not be gen-
eralized for other approximating subdivision schemes. The frame-
work developed in this section can be generalized to other approx-
imating subdivision schemes as shown in Section 4. In fact, a dy-
namic framework for Loop’s technique (another popular approxi-
mating subdivision scheme) has been presented in [13] using the
algorithm proposed here. We limit our discussion to Catmull-Clark
subdivision surfaces only in this paper due to space restrictions.
We first outline the Catmull-Clark subdivision scheme. Next, we
present the dynamic formulation. In particular, we address the dif-
ference between the current work and prior results [14, 19]. Finally,
we discuss the finite element implementation of the physics-based
model.

3.1 Catmull-Clark Subdivision Scheme

Catmull-Clark subdivision scheme, like any other subdivision
scheme, starts with an user-defined mesh of arbitrary topology. It
refines the initial mesh by adding new vertices, edges and faces with
each step of subdivision following a fixed set of subdivision rules.
In the limit, a sequence of recursively refined polyhedral meshes
will converge to a smooth surface. The subdivision rules are as fol-
lows:
(1) For each face, a new face point is introduced which is the aver-
age of all the old vertices defining the face.
(2) For each (non-boundary) edge, a new edge point is introduced
which is the average of the following four points: two old vertices
defining the edge and two new face points of the faces adjacent to
the edge.
(3) For each (non-boundary) vertex $ , new vertex is introduced
whose position is �

�
� ��

�
� ������

�
, where % is the average of the



new face vertices of all faces adjacent to the old vertex $ , " is the
average of the midpoints of all edges incident on the old vertex $
and � is the number of the edges incident on the vertex.
(4) New edges are formed by connecting each new face point to the
new edge points of the edges defining the old face and by connect-
ing each new vertex point to the new edge points of all old edges
incident on the old vertex point.
(5) New faces are defined as faces enclosed by new edges.

An example of Catmull-Clark subdivision on an initial mesh is
shown in Fig.6. The most important property of the Catmull-Clark
subdivision surfaces is that a smooth surface can be generated from
any control mesh of arbitrary topology. Catmull-Clark subdivision
surfaces include standard bicubic B-spline surfaces as their special
case (i.e., the limit surface is a bicubic B-spline surface for a rect-
angular mesh with all non-boundary vertices of degree 4). In addi-
tion, the aforementioned subdivision rules generalize the recursive
bicubic B-spline patch subdivision algorithm. For non-rectangular
meshes, the limit surface converges to a bicubic B-spline surface
except at a finite number of extraordinary points. These extraor-
dinary points correspond to extraordinary vertices (vertices whose
degree is not equal to 4) in the mesh. Note that, after the first sub-
division, all faces are quadrilaterals, hence all new vertices created
subsequently will have four incident edges. The number of extraor-
dinary points on the limit surface is a constant, and is equal to the
number of extraordinary vertices in the refined mesh obtained after
applying one step of the Catmull-Clark subdivision on the initial
mesh. The limit surface is curvature-continuous everywhere ex-
cept at extraordinary vertices, where only tangent plane continuity
is achieved.

3.2 Formulation

A systematic formulation of the newly proposed dynamic frame-
work for Catmull-Clark subdivision surfaces is presented in this
section. The key difference between the dynamic model devel-
oped in [14, 19] and the one presented here is the representation
of the limit surface. The previously proposed approach leads to di-
verse types of finite elements, whereas the present approach leads
to single type of finite elements. This is illustrated with a schematic
diagram in Fig.7.

Following the concepts developed in [14, 19], the limit surface
of the control mesh shown in Fig.7, consists of quadrilateral bicubic
B-spline patches corresponding to the faces marked ’n’ (faces with
no extraordinary points), and a pentagonal patch corresponding to
the faces marked ’s’ (faces having one extraordinary vertex of de-
gree 5) (Fig.7(a)). However, in this section, it has been shown that
the entire limit surface can be expressed as a collection of quadri-
lateral patches as shown in Fig.7(b) using the algorithm proposed in
[23]. We next discuss a local parameterization of the limit surface
which is critical to embed the limit surface in a dynamic framework.

As mentioned earlier, the control mesh (after at most one subdi-
vision step) for the Catmull-Clark subdivision scheme consists of
quadrilateral faces which lead to quadrilateral patches in the limit
surface. For the sake of formulation simplicity, it has been assumed
that each face has at most one extraordinary vertex. If this assump-
tion is not valid, then one more subdivision step needs to be per-
formed on the current control mesh in order to obtain a new control
mesh on which the following analysis can be carried out. The num-
ber of quadrilateral patches in the limit surface is equal to the num-
ber of non-boundary quadrilateral faces in the control mesh (Fig.8).
Therefore, the smooth limit surface � can be expressed as

� �

��
���

��
 (14)

where � is the number of non-boundary faces in the control mesh
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Figure 7: A control mesh with an extraordinary vertex of degree 5
and the corresponding limit surface: (a) using the concepts devel-
oped in [14, 19], where the limit surface consists of quadrilateral
normal elements and a pentagonal special element; (b) using the
unified approach developed in this paper, where the limit surface
consists of one single type of quadrilateral finite element.

and �� is the smooth quadrilateral patch corresponding to the �-th
non-boundary quadrilateral face in the control mesh. Each of these
quadrilateral patches can be parameterized over the correspond-
ing non-boundary quadrilateral face in the control mesh. How-
ever, since a quadrilateral face can easily be reparameterized over
a ��
 
� domain, each quadrilateral patch is locally parameterized
over ��
 
�.

The non-boundary quadrilateral faces are of two types : (a)
faces having no extraordinary vertices (dubbed as “regular” faces
in [14, 19], marked as & in Fig.8(a)) and (b) faces with one extraor-
dinary vertex (dubbed as “irregular” faces in [14, 19], marked as '
in Fig.8(a)). If there are � regular and ��� irregular faces, then
Eqn.14 can be rewritten as

� �

�
���

�� �

���
���

�� 
 (15)

where �� is the quadrilateral patch corresponding to the �-th regu-
lar face and �� is the quadrilateral patch corresponding to the �-th
irregular face.

The quadrilateral patch in the limit surface corresponding to
each regular face is a bicubic B-spline patch, which is defined over
��
 
�. The set of control vertices defining this bicubic B-spline
patch can be obtained using the adjacent face information. There-
fore, the quadrilateral patches in the smooth limit surface corre-
sponding to the regular faces in the control mesh can be easily ex-
pressed analytically, which are essentially bicubic B-spline patches
defined by 16 control vertices over a ��
 
� domain. The analytic
expression for the quadrilateral patch corresponding to the regular
face � is given by

�� � ����
 ����

� �����
 ��	���

� ����
 ���
 (16)
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Figure 8: In Catmull-Clark subdivision, each non-boundary quadri-
lateral face in the control mesh has a corresponding quadrilateral
patch in the limit surface : (a) control mesh, (b) limit surface.

where � � �
 � � 
, ����
 �� is the collection of the bicubic B-
spline basis functions, �� is the concatenation of the 16 control
vertex positions defining the bicubic B-spline patch, 	� is a se-
lection matrix which when multiplied with �, the concatenation of
all the control vertex positions defining the smooth limit surface,
selects the corresponding set of control vertices, and ����
 �� �
����
 ��	�.

By contrast, the analytic expression of the quadrilateral patches
corresponding to the irregular faces in the control mesh was difficult
to derive, and hence an alternative approach was taken in [14, 19].
However, very recently an efficient scheme for evaluating Catmull-
Clark subdivision surfaces at arbitrary parameter values has been
proposed by Stam [23]. The proposed approach, involving eigen-
analysis of the subdivision matrix, leads to an analytic expression of
the quadrilateral patches which are parameterized over an irregular
face in the control mesh, and hence over ��
 
� after reparameteri-
zation. Following the scheme developed by Stam [23], the quadri-
lateral patch corresponding to the irregular face � is given by

�� � �����
 ����

� ������
 ��	���

� ����
 ���
 (17)

where � � �
 � � 
 as before. �����
 �� is the collection of basis
functions for the corresponding quadrilateral patch in the smooth
limit surface. The subscript �� is used to denote the fact that the
irregular face has an extraordinary vertex of degree �. The de-

tailed derivation and the analytic expressions of these basis func-
tions involving the eigenvalues and eigenvectors of the subdivision
matrix can be found in [23]. The other symbols used in Eqn.17
have the usual meaning: �� is the concatenation of the ���� con-
trol vertices defining the quadrilateral patch in the limit surface, �
is the concatenation of all the control vertex positions defining the
smooth limit surface, 	� is a selection matrix which when multi-
plied with � selects the corresponding set of control vertices, and
����
 �� � �����
 ��	� .

(a) (b)

Figure 9: (a) The marked 16 control vertices define the shaded
quadrilateral patch associated with the shaded regular face in the
control mesh. (b) The marked 14 control vertices define the shaded
quadrilateral patch associated with the shaded irregular face in the
control mesh.

It may be noted that the number of control vertices in the ini-
tial mesh defining a quadrilateral patch in the smooth limit surface
is �� � �, where � � 	 in case the associated quadrilateral face
in the control mesh is regular, or � � degree of the extraordinary
vertex if the associated quadrilateral face is irregular. For example,
the shaded quadrilateral patch is associated with the shaded regu-
lar face in Fig.2(a), and the 16 control vertices defining this patch
(which is actually a bicubic B-spline patch) are marked. Similarly,
the shaded quadrilateral patch is associated with the shaded irregu-
lar face in Fig.2(b), and the 14 control vertices defining this patch
are highlighted. Now an expression of the smooth limit surface can
be formulated. Using Eqn.15, 16 and 17, it can be shown that
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where � � �
�

���
�� �

���

���
���. Note that even though the

initial mesh serves as the parametric domain of the smooth limit
surface, each quadrilateral face in the initial mesh and consequently
the smooth limit surface can be defined over a ��
 
� domain.



Once an analytic expression of the smooth limit surface of
Catmull-Clark subdivision is derived, we then develop the dynamic
model by considering the control vertex positions as time-varying
variables. The velocity of the surface model can be expressed as
����
 �
 �� � ���
 �
 �� ��, where an overstruck dot denotes a time
derivative and � �  �,  � being the domain defined by the initial
mesh.

3.3 Finite Element Implementation

The smooth limit surface of Catmull-Clark subdivision comprises
a collection of quadrilateral patches. Each quadrilateral patch is
considered as a finite element. Therefore, within the unified frame-
work the limit surface can be decomposed into one single type of
finite elements rather than two different types as in [14, 19]. Our
new FEM technique significantly simplifies the data structure and
system architecture. Consequently, more efficient algorithms for
finite-element assembly, dynamic simulation, etc. can be devised
using this unified approach. The motion equation of the dynamic
model is same as that of the dynamic model of butterfly-based sub-
division:

���� ����� � ��
 (19)

where �� is the generalized force vector and , �, and � are the
mass, damping and stiffness matrices of the model. The expressions
of the mass, damping and stiffness matrices for a quadrilateral ele-
ment (which is a bicubic B-spline) can be written as
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and
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respectively, where �� is the bicubic B-spline basis matrix, !��
 ��
is the mass density, ���
 �� is the damping density, �����
 �� and
�����
 �� are the tension and rigidity functions respectively. The
subscript � and � denote partial derivatives with respect to � and
� respectively. The subscript � is used to indicate elemental matri-
ces which are of size �
�
 
��. Note that, the mass, damping and
stiffness matrices for these elements can be evaluated analytically,
provided the material properties (e.g., mass, damping, rigidity and
bending distributions) have analytic expressions. In some cases,
these distribution functions can be assumed to be constant to sim-
plify the matter.

The mass, damping and stiffness matrices for the quadrilateral
elements which are not bicubic B-splines (corresponding to the ir-
regular faces) can also be expressed analytically by simply replac-
ing the matrix �� in Eqn.20, 21 and 22 with the matrix ��� (refer
to Eqn.17), where � denotes the degree of the extraordinary vertex
associated with the corresponding irregular face. These elemental
matrices are of size ���� �
 ��� ��. The generalized force vector
for these elements can also be determined in a similar fashion. It
may be noted that the limits of integration need to be chosen care-
fully for elemental stiffness matrices as the second derivative di-
verges near the extraordinary points for Catmull-Clark subdivision
surfaces.

Even though an analytical expression for a non-B-spline quadri-
lateral element in the limit surface exists, it is cumbersome to ac-
tually evaluate the elemental matrix expressions. Numerical inte-
gration using Gaussian quadrature may be used to obtain approx-
imations of these elemental matrices. However, in this paper, an
approach similar to the FEM procedure presented in Section 2 is
utilized because of its simplicity and effectiveness. An approxima-
tion of the smooth limit surface is obtained by refining the initial
control mesh � times, and a spring-mass system is developed on
this �-th approximation level in a similar fashion as in Section 2.3.
The physical matrices of this system is then used as an approxima-
tion to the actual physical matrices. This approximation has been
found to be very efficient for implementation purposes.

4 Unified Approach For Any Subdivision
Scheme

The dynamic framework for modified butterfly and Catmull-Clark
subdivision scheme can be generalized to any subdivision scheme.
The key observation is that the smooth limit surface can be viewed
as a collection of a single type finite element. Because of the
nature of recursive refinement, any subdivision-based scheme es-
sentially defines a “natural” correspondence which leads to a lo-
cal parameterization of the smooth limit surface. The unique type
of the associated finite element results from the local parameteri-
zation scheme. This is evident from the triangular finite element
patches developed for the modified butterfly subdivision scheme
and from the quadrilateral finite element patches developed for
Catmull-Clark subdivision scheme. We shall present a general out-
line on how to provide a dynamic framework for interpolatory and
approximating subdivision schemes.

4.1 Interpolatory subdivision schemes

Most of the interpolatory subdivision schemes are obtained by mod-
ifying the butterfly subdivision scheme [8]. Therefore, the frame-
work for the modified butterfly subdivision scheme in Section 2
and its principles can be applied to other interpolatory subdivision
schemes. The only difference is that the basis functions as well
as the set of control vertices of arbitrary patch in the limit surface
depend on the chosen interpolatory subdivision rules. It may also
be noted that unlike the approximating schemes, the physical ma-
trices can not be obtained analytically as the basis functions cor-
responding to interpolatory subdivision schemes do not have any
analytic expressions in general. Even though these matrices can
be obtained via numerical integration, the point-mass system con-
nected by springs as developed in Section 2 is more preferable for
implementation purposes because of efficiency reasons.

4.2 Approximating subdivision schemes

The unified approach for a dynamic model of Catmull-Clark sub-
division can be generalized for other approximating subdivision
schemes as well. This generalized approach involves three steps:
(a) The limit surface obtained via an approximating subdivision
scheme can be expressed as a collection of smooth patches which
can be locally parameterized over a corresponding face in the con-
trol mesh. Each patch is �-sided if it is locally parameterized over a
�-sided face. Analytic expressions for each of these patches can be
derived even in the presence of extraordinary vertices in the control
mesh, and hence an expression of the limit surface can be obtained.
(b) Once an expression of the limit surface is obtained, the dynamic
framework can be developed by considering control vertex posi-
tions as a function of time. The corresponding motion equation can
be derived.



(c) Each patch in the limit surface is treated as a finite element in im-
plementation. The elemental mass, damping and stiffness matrices
along with the generalized force vector can be obtained by either
analytic or numerical integration. Alternatively, the control mesh
can be subdivided � times to obtain an approximation of the smooth
limit surface, and a spring-mass system can be developed on this
approximation mesh. The physical matrices of this system provide
an approximation to the original physical matrices and works well
in practice.

5 Solid Modeling Applications

The proposed FEM-based dynamic subdivision models can be used
to represent a wide variety of smooth shapes with arbitrary genus.
The smooth limit object can be sculpted by applying synthesized
forces in a direct and intuitive way in shape design applications
for solid modeling. The underlying shape from a cloud of 3D
points can also be recovered hierarchically using our FEM mod-
els. For data fitting applications, springs are attached to the initial-
ized model from the data points in 3D, and the initialized model
evolves dynamically according to the equation of motion subject to
the applied spring forces and various geometric constraints. When
an optimal fit to the given data set is achieved, the number of con-
trol vertices can be increased by replacing the original initial mesh
by a new initial mesh obtained by applying a single subdivision
step. This increases the number of degrees of freedom to repre-
sent the same limit surface and a new equilibrium position for the
model with a much better fit to the given data set can be achieved.
The fitting-error criteria for the discrete data can be computed ac-
cording to distance between the data points and the points on the
limit surface where the corresponding springs are attached. We now
demonstrate modeling and data fitting examples using our dynamic
FEM model.

In a shape modeling application, the user can specify any mesh
as the initial (control) mesh, and the corresponding limit surface
can be sculpted directly and interactively by applying synthesized
forces in real-time. We show several initial surfaces obtained from
different control meshes and the corresponding deformed surfaces
after interactive sculpting on the limit surface in Fig.10 (see last
page). To change the shape of an initial surface, the user can attach
springs from different points in 3D to the nearest point on the limit
surface such that the limit surface deforms towards these locations
to generate the desired shape. The limit surface here consists of
a single type of smooth triangular finite element patches, irrespec-
tive of the number of extraordinary vertices in the control mesh.
The initial mesh of the smooth surface shown in Fig.10(a) has 125
faces and 76 vertices (degrees of freedom), which is deformed to
the smooth shape shown in Fig.10(b) by interactive spring force ap-
plication. The initial mesh of the closed solid shape in Fig.10(c) has
24 faces and 14 vertices. This solid shape is deformed to the shape
shown in Fig.10(d). The one hole torus in Fig.10(e) and the corre-
sponding modified shape in Fig.10(f) have initial meshes with 64
faces and 32 vertices. A two hole torus with a control mesh of 272
faces and 134 vertices, shown in Fig.10(g), is dynamically sculpted
to the shape shown in Fig.10(h).

We have also performed several experiments testing the applica-
bility of our model to recover the underlying shapes from a cloud of
points in 3D. In all the experiments, the initialized dynamic model
has a control mesh comprising of 24 triangular faces and 14 ver-
tices whereas the control mesh of the fitted model has 384 triangu-
lar faces and 194 vertices. It may be noted that once an optimal
shape defined by a fixed number of control vertices (determined by
subdivision levels) is recovered, the limit smooth model is capable
of refining itself in accordance with the data-fitting criteria, thereby
increasing the degrees of freedom of the recovered shape only when
necessary. For the fitting-error (defined as the maximum distance

between a data point and the nearest point on the limit surface ex-
pressed as a percentage of the diameter of the smallest sphere en-
closing the object) of approximately 3%, the initialized model is
refined twice. The data-fitting examples are shown in Fig.11 (see
last page). In the first data fitting experiment, range data acquired
from multiple views of a light bulb is used and the model was ini-
tialized inside the 1000 data points (Fig.11(a)). The fitted dynamic
model is shown in Fig.11(b). In the next experiment, the shape of a
mechanical part is recovered from a range data-set containing 2031
data points (Fig.11(c) and (d)). We also recover the shape of a hu-
man head from the data set as shown in Fig.11(e). The head data set
has 1779 3D points. It may be noted that the final shape with a very
low error tolerance is recovered using very few number of control
points in comparison to the large number of data points present in
the original range data set.

6 Conclusions

In this paper, we have presented a new FEM-based dynamic frame-
work where a single type of subdivision-based finite elements are
used to represent the smooth limit surface generated by any sub-
division scheme. The primary objective is to integrate physics-
based modeling techniques with geometric subdivision methodol-
ogy for the interactive sculpting and direct manipulation of the
limit surface of prevalent subdivision schemes. We have proposed
an unified approach and demonstrated how to transform any sub-
division scheme into our dynamic modeling framework. Model-
ers can physically sculpt virtual objects defined through arbitrary
procedure-based subdivision techniques in a natural and intuitive
manner within the proposed framework. Users can also directly
enforce various functional and aesthetic requirements in the limit
surface without the need to explicitly handle control vertices. Fur-
thermore, this dynamic framework permits physics-based models
to be refined adaptively in a hierarchical fashion which is an intrin-
sic feature of subdivision geometry. Our experiments have demon-
strated the applicability of the new unified FEM-based framework
in solid modeling and data fitting applications. This unified method
will offer a greater potential for popular subdivision techniques in
solid and geometric modeling, interactive graphics, finite element
analysis, and engineering design applications.
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(b) (d) (f) (h)

Figure 10: (a), (c), (e) and (g) : Initial shapes; (b), (d), (f) and (h) : the corresponding modified shapes after interactive sculpting via force
application.

(a) (c) (e)

(b) (d) (f)

Figure 11: (a), (c) and (e) : Collection of points in 3D along with the initialized model; (b), (d) and (f) : the corresponding fitted dynamic
subdivision surface model.
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