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Abstract
This paper develops a novel computational technique to define and
construct powerful manifold splines with only one singularpoint
by employing the rigorous mathematical theory of Ricci flow.The
central idea and new computational paradigm of manifold splines
are to systematically extend the algorithmic pipeline of spline sur-
face construction from any planar domain to arbitrary topology. As
a result, manifold splines can unify planar spline representations
as their special cases. Despite their earlier success, the existing
manifold spline framework is plagued by the topology-dependent,
large number of singular points (i.e.,|2g−2| for any genus-g sur-
face), where the analysis of surface behaviors such as continuity
remains extremely difficult. The unique theoretical contribution of
this paper is that we devise new mathematical tools so that manifold
splines can now be constructed with only one singular point,reach-
ing their theoretic lower bound of singularity for real-world appli-
cations. Our new algorithm is founded upon the concept of discrete
Ricci flow and associated techniques. First, Ricci flow is employed
to compute a special metric of any manifold domain (serving as a
parametric domain for manifold splines), such that the metric be-
comes flat everywhere except at one point. Then, the metric natu-
rally induces an affine atlas covering the entire manifold except this
singular point. Finally, manifold splines are defined over this affine
atlas. The Ricci flow method is theoretically sound, and practically
simple and efficient. We conduct various shape experiments and
our new theoretical and algorithmic results alleviate the modeling
difficulty of manifold splines, and hence, promising to promote the
widespread use of manifold splines in surface and solid modeling,
geometric design, and reverse engineering.

Keywords: Manifold splines, Affine structure, Discrete Ricci flow,
Extraordinary point, Metric, Differential geometry

1 Introduction and Motivation
1.1 Problem Statement

Despite many algorithmic and theoretical advances in solidmod-
eling and shape computing in most recent years, one fundamental
objective of our research community is always striving to develop
novel modeling, design, and simulation schemes that are capable of
accurately representing complicated real-world objects in a com-
pact manner, and facilitating rapid computation of their desirable
properties both globally and locally such as differential properties,
smoothness requirements, and topological validity. Furthermore,
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how to stably and robustly compute CAD-based representations and
how to rapidly simulate them with high fidelity remain to be funda-
mentally challenging and are always in great demand. Strongly in-
spired by the recent development of subdivision surfaces and man-
ifold splines, our current research goal in this paper is to further
advance the state of the knowledge in manifold splines. At the the-
oretic level, we devise manifold splines with only one singular point
through the mathematical rigor of Ricci flow and relevant computa-
tional techniques. At the application level, we design a brand new
algorithmic pipeline that enables all the computational elements to-
wards the widespread use of manifold splines (especially the new,
improved scheme with single extraordinary point) in solid model-
ing, shape design, and reverse engineering.

1.2 Manifold Splines

For the perspectives of solid modeling, engineering design, finite
element simulation, and scientific computation, elegant geometric
properties such as high-order continuity and the ease of comput-
ing all the desirable properties rapidly are always mandatary for
the development of novel shape representations. Therefore, it is
not surprising to see that spline-centric polar forms [Seidel 1993]
are becoming the most popular computational tools in geometric
modeling and shape design. Essentially, the methodology ofpolar
forms naturally gives rise to parameterization-centered,piecewise
polynomials defined on any planar parameter domain for the effec-
tive modeling and accurate computing of smooth spline surfaces.

However, examining all the real-world applications, we observe
that the most natural shapes are manifolds with complicatedtopolo-
gies and arbitrarily detailed geometric configurations, which can
not be completely covered by a single open surface defined in one
coordinate system (note that, it does not matter if the parametric
surface is a polynomial or a non-polynomial, this fundamental prin-
ciple remains the same). Instead, a manifold might be covered by
a family of coordinate charts, each coordinate chart covers only a
portion of the manifold. Different charts may overlap with each
other, acoordinate transition functiontransforms from one coordi-
nate system to the other. If we follow the algorithmic procedure of
polar forms and other relevant computational techniques ina prin-
cipled way, we can easily realize that conventional splines(defined
over any open domain) can not be transferred over the manifolds
directly.

In order to model a manifold using piecewise polynomials, cur-
rent approaches will segment the manifold to many patches, de-
fine a single coordinate system over each patch, such that each
patch can be modelled by a spline patch. Finally, any genericap-
proach will glue/abut all the spline patches together by adjusting
the control points and the knots along their common boundaries.
This whole process is mainly performed manually, and it requires
the users’ skill and mathematical sophistication, and is tedious and
error-prone.

It is highly desirable to design splines defined over manifolds di-
rectly, such that different spline patches can be automatically glued
together with high continuity, and the modelling process requires
neither segmentation nor patching. Pioneering work has been done
by Grimm and Hughes [Grimm and Hughes 1995], which can
model splines on arbitrary surfaces. Recently, Ying and Zorin [Ying
and Zorin 2004] introduced a general method by constructinga
conformal atlas. In both methods, smooth functions are defined



on each chart and blended together to form a function coherently
defined over the entire manifold. The methods are flexible forall
manifolds with arbitrary topologies. The functions are with any de-
gree of desirable continuity without any singularity. The primary
drawbacks of these methods are that surfaces constructed this way
are no-longer polynomials and their computation expenses are rel-
atively high in comparison with conventional spline surfaces.

Most recently, the manifold splines proposed by Gu, He, and Qin
[Gu et al. 2005] offer a different approach to manifold domain con-
struction. The main advantage for manifold splines is that on each
local chart, the functions are all piecewise polynomials incom-
mon use, currently available spline surfaces in commercialsoftware
packages can easily serve as building blocks towards the effective
design of complicated models of arbitrary topology, and hence, the
evaluation and all the necessary computational proceduresare both
efficient and robust. Furthermore, existing algorithms andsoft-
wares for conventional spline surfaces can all be easily adopted
for use in applications of manifold surfaces. Nevertheless, certain
drawbacks still remain: there must be singularities for general man-
ifolds except tori. In [Gu et al. 2005], they discovered thatthe ex-
istence of the manifold splines is equivalent to the existence of a
special atlas of the underlying manifold domain, whose transition
functions are all affine among themselves, denoted asaffine atlas.
Unfortunately, it is impossible to find an affine atlas to cover arbi-
trary closed surfaces except tori. There must be singularities for the
atlas which can not be covered by any chart within its collection
set. Moreover, they proved that the minimal number of singulari-
ties equals to one without developing any practical algorithm. So,
how to lower the number of singular points remains elusive, and
how to devise new algorithms with a minimum number of singu-
lar points for practical applications remains extremely technically
challenging.

Using existing popular techniques of polar forms and Euclidean
metrics, the manifold splines in the neighborhoods of singularities
appear to be extremely difficult to construct, unstable, anderror-
prone. In addition, the mapping distortion from the surfaceto the
affine atlas significantly affects the quality of the final spline sur-
face. The distortions are intrinsically determined by the singulari-
ties for the affine atlas. Therefore, it is highly desirable for users to
be able to control the position and the number of the singularities.
For open surface cases, however, it is ideal to push the singular-
ities away from the surfaces. In this paper, we demonstrate that
Discrete Ricci flow is a powerful theoretic and computational tool
for constructing affine atlas with full control of singularities, and
specifically, being capable of minimizing the number of singulari-
ties to its theoretical lower bound (which is at most one for closed
surfaces and zero for all open surfaces).

1.3 Intrinsic Shape Space

In reality, surfaces are typically acquired via modern scanning
devices, and they are initially approximated by a set of points
and/or triangular meshes. We shall consider the triangle-mesh
approximation of domain manifolds first. In order to find an affine
atlas of a triangle mesh, it is sufficient to find a configuration of
edge lengths, such that the one-ring neighbor of each vertexis flat.
So, any parameterization problem can be formulated as:

Finding a configuration of edge lengths, such that each vertex has
zero discrete Gaussian curvature1

.
One could naturally raise the following much broader questions:

given a mesh,

1Discrete Gaussian curvature is defined as the difference between 2π
and the summation of all angles adjacent to the vertex (see Section 3.2)

1. What are the all possible configurations of edge lengths?

2. What are the all possible configurations of curvatures on ver-
tices?

3. What is the relation between edge length configurations and
curvature configurations? It is obvious that edge lengths de-
termine curvatures. Can curvatures determine edge lengths?

The entire space of all possible configurations of edge lengths is
denoted as themetric space. The entire space of all possible con-
figurations of vertex curvatures is denoted as thecurvature space.
Metric space and curvature space areintrinsic shape spacesof the
mesh.

The answer to the admissible edge lengths is straightforward:
any configuration satisfying triangle inequality is admissible. For
admissible curvature configuration, the answer is much morecom-
plicated. There are mainly two constraints: topological constraint
and combinatorial constraint. The topological constraintis repre-
sented as the Gauss-Bonnet formula, the total curvature equals to
the 2πχ, whereχ is the Euler number of the mesh. The combinato-
rial constraint ensures that all angles are between 0 andπ, and rep-
resented solely by inequalities of curvature and connectivity. The
technical details will be discussed in the next Section.

The answer to the third question has fundamental importance,
it is the main focus of this work. It is easy to compute curvature
using edge lengths, but the inverse is much more complicated. In-
tuitively speaking, the Gaussian curvature is a map from themetric
space to the curvature space, the mapping in general is not injective.
However, one can select a subspace of the whole metric space,such
that any two metrics in the subspace are conformally equivalent.
Restricted on this subspace, Gauss curvature map is a homeomor-
phism, namely, any curvature configuration uniquely determines an
edge length configuration in this subspace.

In practice, one can specify the target curvature and deformthe
edge length according to the difference between the currentcur-
vature and the target curvature. It is guaranteed that the curvature
configuration of the final mesh will reach the target one. Thiskind
of deformation process driven by Gaussian curvature is the so called
Ricci flow.

1.4 Ricci Flow

Ricci flow was first introduced in differential geometry by Hamilton
in [Hamilton 1988]. It has solid theoretic foundations. By nature,
it is a constructive geometric tool and can be easily implemented,
therefore, it has a great potential for real-world applications.

The fundamental idea of Ricci flow is rather simple. We can de-
form the surface driven by its curvature to the desired shape. Sup-
poseS is a closed surface with Riemannian metricg, andu is a
function onS, then e2ug is another metric onS conformal tog.
Ricci flow is explicitly defined as

du(t)
dt

= K̄−K(t), (1)

where the area preserving constraint is explicitly formulated as,
∫

S
dA=

∫

S
e2udA, (2)

andK(t) is the Gaussian curvature induced by the metrice2u(t)g,
andK̄ is a constant

K̄ =
2πχ(S)
∫

SdA
.

It has been proven that Ricci flow converges to the uniform metric
that induces constant Gaussian curvatureK̄ on the surface,K(∞)→
K̄. Furthermore, Ricci flow converges to the final stable solution



exponentially fast, for a given surfaceS, there exist two positive
constantsc1,c2 determined by the geometry ofS, such that,

|K(t)−K(∞)| < c1e−c2t .

Ricci flow has many promising properties, which make it very
valuable for real-world applications,

• Ricci flow offers the freedom to traverse the intrinsic shape
space (all the admissible configurations of edge lengths) by
driving the surface to deform to all possible shapes as long as
the Gaussian curvature of the target shape is known.

• The deformation induced by a Ricci flow is conformal.

• Ricci flow deforms the surface to a single solution and con-
verges to the solution exponentially fast.

• Ricci flow can be formulated as a variational problem, the
energy is a convex function, therefore has single global opti-
mum. Ricci flow is the negative gradient flow of the energy, it
can be further speed up using Newton’s method.

In our current research, the fundamental motivation for us to use
Ricci flow is its computational power to compute the affine atlas
of a mesh with any desired number of singularities, especially with
only one singularity.

1.5 Contributions

In this paper, we devise a novel algorithm to construct manifold
splines with only one singular point for closed surfaces andzero
singular point for open surfaces, reaching its lower bound in theory.
The algorithm is uniquely founded up on a mathematically rigorous
tool in differential geometry, namely, Ricci flow. Key contributions
of this paper include:

1. We formulate the intrinsic space of a mesh: the metric space
(i.e., all admissible configurations of edge lengths) and the
curvature space (i.e., all admissible configurations of vertex
curvatures). We point out the topological constraints and the
combinatorial constraints for the metric spaces. We re-define
the general surface parameterization problem as equivalence
to finding flat metrics with any user-assigned singularities.

2. We articulate our new computational method to construct an
affine atlas with any pre-determined singularities using Ricci
flow. The affine atlases serve as the key and necessary ele-
ments for constructing manifold splines, especially, for mani-
fold splines with only one singular point.

3. We offer a theoretically rigorous, practically simple and com-
putationally efficient tool, Ricci flow, to solve geometric and
solid modeling problems. In its discrete case, given the Gaus-
sian curvature on each vertex, Ricci flow will be employed to
compute the configuration of edge lengths.

2 Background Review
This section briefly reviews previous work on splines, Ricciflow,
parameterization, and circle packing.
Manifold Splines. Pioneering work has been done earlier by
Grimm and Hughes [Grimm and Hughes 1995], which can model
splines on arbitrary surfaces. Recently, Ying and Zorin [Ying and
Zorin 2004] introduced a general method by constructing a confor-
mal atlas. The function basis in their constructions are smooth and
without singularities, however, they are not polynomials,requiring
the necessary data exchange between polynomial-based spline sur-
faces and their special-purpose functions for surface design.

Manifold splines defined by piecewise polynomials over mani-
fold domains of arbitrary topology were first rigorously formulated

in [Gu et al. 2005], which unifies the conventional spline surfaces
based on polar forms and the subdivision surfaces of arbitrary topol-
ogy. In their work, it is proven that a manifold admits a manifold
splines based on polar forms if and only if it has an affine atlas.
The topological obstruction for the existence of the affine atlas is
the Euler class. By removing only one point, any oriented surface
has an affine atlas.
Ricci Flow. Ricci flow on surface is introduced by Hamilton in
[Hamilton 1988], which will conformally deform the metric of a
surface to a canonical metric with constant Gaussian curvature. For
a closed genus-zero surface, Ricci flow will change the metric to
the spherical metric with constant positive Gaussian curvature; for
a genus-one closed surface, the solution to Ricci flow is the planar
metric with zero Gaussian curvature; for a high genus closedsur-
face, the solution to Ricci flow is the hyperbolic metric withcon-
stant negative Gaussian curvature. The analogue of Ricci flow in
the discrete, combinatorial setting is first studied in [Chow and Luo
2003]. It is proven that combinatorial Ricci flow will deformthe
metric of a triangle mesh to metrics with constant vertex curva-
tures. Recently, Jinet al. applied discrete Ricci flow to compute
the hyperbolic and real projective structure of surfaces [Jin et al.
2006].
Circle Packing and Circle Pattern. Circle packing and circle pat-
tern are used for approximating conformal deformations. Circle
packing is first introduced by Thurston in [Thurston 1982], where
he designed an algorithm to find the circle packing of a graph by
adjusting the radii at vertices one at a time. Stephenson et al. devel-
oped practical algorithms in [Stephenson 2005]. Circle pattern is
introduced in [Bobenko and Springborn 2004] and applied forsur-
face parameterizations in [Kharevych et al. 2005], which isclosely
related to circle packing. Instead of using circles centered at each
vertex, this method uses the circum-circles of triangles. Comparing
with circle pattern, the theoretic framework of Ricci flow ismuch
simpler and clearer. Furthermore, the implementation of the Ricci
flow is much easier in practice.
Global Surface Parametrization. Affine atlas can be computed
using surface parametrization algorithms. In the literature, there
exist many parameterization methods using a variety of distortion
metrics. For a thorough survey, we refer the readers to the excellent
work of Floater and Hormann [Floater and Hormann 2005]. We
shall focus on the most related work, especially global parameteri-
zation methods.

Gu and Yau computed the conformal structure based on Hodge
theory in [Gu and Yau 2003]. The method computes the holomor-
phic 1-form basis, and induces a flat metric with 2g− 2 singular-
ities. Ni et al. extracted the topological structure using harmonic
morse function, the vector fields are holomorphic 1-forms, and in-
duced a flat metric with more singularities [Ni et al. 2004]. Re-
cently, Ray et al. [Ray et al. 2006] computed the global conformal
parameterization also using holomorphic 1-form, but specifically
tailored the parameterization to follow the principle curvature lines.

It may be note that, all current parameterization methods will
introducemultiple singularities due to the topological obstruction.
The method to be developed in this paper is capable of reducing
the number of singularity points to its theoretic lower bound
(which is one).

3 Global Surface Parameterization Using
Discrete Ricci Flow

Conventionallocal surface parameterization refers to the process
of mapping a simply connected surface patch to a planar region.
In contrast, aglobal surface parameterization maps the whole sur-
face to the planeR2, the unit sphereS2 or the hyperbolic spaceH2

periodically. The global surface parameterization problem could be
formulated in a precise and general way as deforming the given sur-
face to satisfy the prescribed curvatures. By deforming thesurface,



we mean finding a different Riemannian metric (the first fundamen-
tal form). If conformality is required, then the new metric should be
conformal to the original metric. Mathematically, supposeg is the
original metric, then the metric conformal tog has the forme2ug,
whereu is the function defined on the surface. Then global surface
parameterization is to solve functionu by the prescribed curvature.

In the following, we assume the surface is an oriented 2-
manifold, represented by a two dimensional simplicial complex
(i.e., triangular mesh)M = (V,E,F), whereV is the set of all ver-
tices,E is the set of all non-oriented edges, andF the set of all faces.
We usevi , i = 1,2, · · · ,n to denote its vertices,ei j to denote an ori-
ented edge fromvi to v j , fi jk to denote an oriented face,vi ,v j ,vk
are sorted counterclock-wisely.

(a). front side (b). back side

Figure 2: Affine atlas induced by a global conformal surface pa-
rameterization. The affine atlas is illustrated by texture mapping
of a checkerboard pattern. There are2g−2 singularities centered
at the white octagons.

3.1 Discrete Conformal Metrics

The central task is to approximate Ricci flow (1) in the discrete
mesh setting. Continuous Ricci flow conformally deforms a sur-
face.

Figure 1 illustrates an important observation for continuous con-
formal mappings: they transform infinitesimal circles to infinitesi-
mal circles, and preserve the intersection angles among thecircles.
Based on this property, Thurston introduced the circle packing met-
ric in early eighties [Thurston 1982]: a circle with the radius γi is
associated with each vertexvi . For an each edgeei j , two circles
intersect at the angleΦi j , called edge weight. The edge length of
ei j is determined byγi ,γ j andΦi j ,

l i j =
√

γ2
i + γ2

j +2γiγ j cosΦi j . (3)

It can be shown that for any facefi jk with vertex radii{γi ,γ j ,γk}
and edge weights{Φi j ,Φ jk,Φki}, if edge weights are acute angles,
then the edge lengths{l i j , l jk, lki} satisfy the triangle inequality,

l i j + l jk > lki.

We useΓ : V → R
+ to denote the vertex radii,Φ : E → [0, π

2 ]
the edge weights, then a circle packing metric is represented as
(M,Γ,Φ).

Two circle packing metrics(M,Γ1,Φ1) and(M,Γ2,Φ2) are con-
formal to each other, ifΦ1 ≡ Φ2. Namely, a discrete conformal
mapping will change the vertex radii only and preserve the inter-
section angles. Figure 5 and Figure 4 illustrate the circle packing
metric.

3.2 Discrete Curvature

Given a discrete metric(M,Φ,Γ), supposefi jk is a face, the angle

of vertex vi in fi jk is denoted asθ jk
i , then the discrete Gaussian

(a) Closed surface (b) Flat circle packing metric

(c) Open surface (d) Flat metric

(e) Universal covering space

Figure 3: Computing the affine structures for genus one sur-
faces using discrete Ricci flow.The right column (b) and (d) shows
the embedded fundamental domain. The last row shows the univer-
sal covering space.

curvatureKi at an interior vertexvi is defined as

Ki = 2π − ∑
fi jk∈F

θ jk
i ,vi 6∈ ∂M, (4)

the discrete Gaussian curvature for an boundary vertexvi is defined
as

Ki = π − ∑
fi jk∈F

θ jk
i ,vi ∈ ∂M. (5)

Figure 6 demonstrates the circle packing metric for a tetrahedron
surface, where all the edge weights are zeros, all the vertexradii are
0.5, and all the vertex curvatures areπ.

The Gaussian curvature at each vertex could be arbitrary, but the
total curvature is confined by the topology of the surface. This is
indicated by the Gauss-Bonnet theorem.

Theorem 1 (Gauss-Bonnet). Suppose M is a mesh, the total dis-
crete Gaussian curvature equals to the product of2π and its Euler
number,

∑Ki = 2πχ. (6)



Figure 1: Circle packing for a surface. Conformal mappings transform the infinitesimal circles on the texture plane to the infinitesimal
circles on the surface.

Figure 4: Close-up view of the flat circle packing metric using
Ricci flow.

Furthermore, for any discrete metric(M,Φ,Γ), Φ : E → [0, φ
2 ]

and any proper subsetI of verticesV,

∑
i∈I

Ki(r) > − ∑
(e,v)∈Lk(I)

(π −Φ(e))+2πχ(FI ), (7)

whereFI is the set of all faces inM whose vertices are inI , Lk(I) is
the link of I being the set of pairs(e,v) of an edgee and a vertexv
so that(1) the end points ofe are not inI and(2) the vertexv is in
I and(3) e andv form a triangle.

The following theorem is fundamental that the map between the
vertex radiiΓ and the discrete curvatureK is a homeomorphism,
detailed proof can be found in [Chow and Luo 2003].

Theorem 2. If a discrete metric(M,Γ,Φ) induces discrete curva-
ture K, then K satisfies the Gauss-Bonnet Equation (6) and theset
of all linear inequalities (7). If M andΦ are given, K satisfies (6)
and the set of all linear inequalities (7), then there existsa Γ unique
up to scaling, such that K is induced by the metric(M,Γ,Φ).

Global surface parameterization problem can be re-formulated
as follows:

Global surface parameterization is to find a special metric,such
that the curvatures are zero almost everywhere except at several
singularities.

For example, conventional global conformal surface parameter-
ization is to compute a special metric on the mesh, such that at
|2g− 2| singularities, the curvatures equal to−2π. The singular-
ities are determined by the geometry of the surface, as shownin

v1

v2 v3

e12
e23

e31

γ1

γ2

γ3
φ12

φ23

φ31

Figure 5: Circle packing metric for a triangle. Triangle
[v1,v2,v3] has vertices v1, v2 and v3, edges e12, e23 and e31. Three
circles centered at v1,v2, v3, with radii γ1,γ2 and γ3 intersect one
another, the intersection angles areΦ12,Φ23 andΦ31, which are the
weights associated with the edges. The edge lengths of the triangle
are determined byγi andΦi j by the cosine law.

Figure 2. Ricci flow method allows the user to freely assign singu-
larities for global parameterizations, as long as the target curvature
satisfies the conditions in Theorem 2. Figure 7 illustrates the rela-
tion between circle packing metric space and curvature space.

3.3 Discrete Ricci Flow

One can assign discrete Gaussian curvatureK̄ for a weighted mesh
(M,Φ) as long asK̄ satisfies the conditions in Theorem 2. Discrete
Ricci flow is able to solve the vertex radiiΓ. We useeuΓ to denote
the conformal metric with vertex radiuseui γi at vertexi. Similar to
the continuous Ricci flow (1),

Definition 3 (Discrete Ricci flow). The discrete Ricci flow is de-
fined as

dui

dt
= (K̄i −Ki), (8)

whereK̄i is the desired discrete Gaussian curvature at vertex vi , un-
der the constraint∑ui = 0 (equivalent to the area-preserving con-
straint).

Similar to continuous Ricci flow, it is proven that discrete Ricci
flow also converges to this stable solution exponentially fast.

Definition 4 (convergence). The solution to (8) is calledconvergent
if



l

rK0

K1

K2

V0

V1

V2

V3

Figure 6: Circle packing metric and curvature. For a canonical
tetrahedron, the edges lengths equal to l= 1.0, the radii on all the
vertices equal to r= 0.5. The curvature on each vertex equals to
Ki = π. The weights of all edgesΦ equals to0.

γ0

γ∞
Π

K0

K∞

Circle packing metric space, Curvature Space

Figure 7: Gaussian curvature is a homeomorphism between the
circle packing metric space based on(M,Φ) and the curvature
space, the inverse map can be computed using Ricci flow.We
start from the known metricγ0 and the known curvaturek0, then
flow to the target curvatureK∞ using Ricci flow, then the metric
will flow to the corresponding metricγ∞ = Π−1(K∞).

1. limt→∞ Ki(t) = K̄i exists for all i,

2. limt→∞ γi(t) = γ̄i ∈ R
+ exists for all i.

A convergent solution is calledconvergent exponentially fastif
there are positive constants c1,c2, so that for all time t≥ 0,

|Ki(t)− K̄i | ≤ c1e−c2t ,

and
|γi(t)− γ̄i | ≤ c1e−c2t .

The following theorem states that discrete Ricci flow is guaran-
teed to converge exponentially [Chow and Luo 2003].

Theorem 5. Suppose(M,Φ) is a closed weighted mesh. Given any
initial circle-packing metric based on the weighted mesh, the solu-
tion to the discrete Ricci flow (8) in the Euclidean geometry with
the given initial value exists all the time and converges exponen-
tially fast. The solution converges to the metricΠ−1(K̄).

3.4 Variational Approach

Discrete Ricci flow can be interpreted as an energy optimization
process, and the convergence speed can be further improved by us-
ing Newton’s method.

Discrete Ricci flow is variational, namely, it is the negative gra-
dient flow of certain convex energy, therefore, we can use Newton’s
method to further improve the convergence speed.

Given initial metric (M,Φ,Γ) and the conformal metric
(M,Φ,euΓ), the energy form is defined as

f (u) =

∫ u

u0

n

∑
i=1

(Ki − K̄i)dui , (9)

whereu = (u1,u2, · · · ,un), u0 is (0,0, · · · ,0). Thus ∂ f
∂ui

= Ki − K̄i ,
that is, the Ricci flow is the negative gradient flow of the energy f .
The Hessian matric off is,

∂ 2 f
∂ui∂u j

=
∂Ki

∂u j
.

Direct computation shows,

∂Ki

∂u j
= γ j

∂Ki

∂γ j
=























γ j ∑k
Bi j

k
√

1−(Ai j
k )2

i = j

0 i 6= j ,ei j 6∈ E

γ j ∑k
Ci j

k
√

1−(Ai j
k )2

i 6= j ,ei j ∈ E

(10)

where

Ai j
k = 1−

2γ jγk

(γi + γk)(γi + γ j )

Bi j
k =

2γ j γk(γi + γk +2γi)

2(γi + γk)2(γi + γ j )2

Ci j
k = −

2γiγ2
j

(γi + γk)(γi + γ j)2

It can be verified that the Hessian matrix is positive definite, f
is strictly convex, therefore, it has a unique global minimum. Both
gradient descend method and Newton’s method converge and they
are also stable.

3.5 Conformality

In practice, it is highly desirable for the deformation to beconfor-
mal, namely, angle preserving. A conformal map transforms an
infinitesimal circle to an infinitesimal circle, as shown in Figure 1.
Therefore conformal mapping only changes the radiiγ in the circle
packing metric(M,Φ,Γ), and preserves the intersection anglesΦ
among the circles. It can be proven that continuous conformal map-
ping can be approximated with arbitrary accuracy by discrete maps
using circle packing [Rodin and Sullivan 1987].

In graphics applications, the meshes are embedded inR3, the
metrics are induced from that ofR3. We can find the optimal weight
Φ with initial circle radii Γ, such that the circle packing metric
(M,Φ,Γ) is as close as possible to the Euclidean metric in the least
square sense. Namely, we want to find(M,Φ,Γ) by minimizing the
following functional

minΓ,Φ ∑
ei j∈E

|l i j − l̄ i j |
2, (11)

wherel̄ i j is the edge length ofei j in R
3.

4 Affine Atlas Construction
In this section, we detail our algorithm for constructing the affine
atlas by employing Ricci flow. The entire pipeline of the algorithm
is illustrated in Figure 9.

Step 1: Selecting Singularities

We can select the singular vertices{v1,v2, · · · ,vk},k≥ 0 anywhere
on the mesh arbitrarily, then we assign the target curvatureof the
singular vertices such that

k

∑
i=1

K̄(vi) = 2πχ,

whereχ is the Euler number the surface; the target curvature of
other vertices are zero. Note that, there are several special cases
that must be addressed.



(a) Canonical homology basis (b) Flat circle (c) One ring neighbor (d) Central chart and the one ring
passing the singular vertex packing metric of the singularity neighbor of the singularity

(e) Open Covering (f) Open covering (g) The central chart (h)Other charts
front view back view covering the cut graph

Figure 8: Affine atlas automatically acquired by using RicciFlow. First, the user selects one singular point as shown in (a). Then a cut
graph is labelled either manually or automatically as the dark curves in (a), where the cut graph is a set of canonical homology basis curves
passing through the singular vertex. Second, the flat circlepacking metric is computed using Ricci flow, illustrated in (b). The flat metric
induces an planar embedding. The entire surface is sliced open along the cut graph to form a topological disk (i.e. fundamental domain).
The interior of the fundamental domain is bijectively mapped to the plane. The mapping of the one-ring neighbor of the singular vertex is
not 1 to 1, but 2g−1 to 1 shown in (d). Other charts covering the cut graph are constructed as shown in (e) and (f), and their overlapping
relation with the central chart is shown in (g) and (h) by encoded colors, respectively.

• If the surface is a closed genus one mesh, then no singular
vertex is selected.

• For a high genus mesh, we can select only one singular vertex
and concentrate all curvature on it.

• If the mesh is open, we can assign the target curvatures for all
the interior vertices to be zero and assign the target curvatures
for boundary vertices such that the total boundary curvature
equals to 2πχ. By this way, all the non-zero curvature will be
pushed to the boundary.

Ricci flow only changes the vertex radii, therefore, the resulting
metric is conformal to the original one, no angle distortionwill be
introduced. But the area distortion is unavoidable. The uniformity
of the parameterization varies drastically depending on the choice
of singularities. Figure 11 demonstrates that different choices of
the singular vertices affect the uniformity of the parameterizations
rather significantly.

Step 2: Modify Local Connectivity around the Singular
Vertex

In order to determine the desired flat metric, the combinatorial con-
straints for the curvature (7) have to be satisfied. If both the initial
curvature configuration and the target curvature configuration sat-
isfy the constraints, any intermediate curvature configuration during
Ricci flow will satisfy the constraints. Thus, it is enough toonly
consider the target curvature. If some singularities have high target
curvature concentration, we need to modify the local connectivity
in their neighborhoods.

In practice, we replace the combinatorial constraints 7 by a
stronger one which is independent of the edge weightΦ,

∑
i∈I

Ki(r) > − ∑
(e,v)∈Lk(I)

π +2πχ(FI ).

We modify the connectivity around the extraordinary point and
make the sampling in the neighborhood of the singularity much
denser. We increase the connectivity of the singularity no less than
four times of genus, and vertices in the neighborhood have valence
of about 6. This can be summarized as follows:

1. The topological valence of a singular vertexv is no less than

4− 2K̄(v)
π .

2. For all the vertices in the firstn ring neighbor of the singular
vertex, their valences are no less than 6,n is a small integer.
In our implementation, we choosen from 1 to 3.

Figure 10 demonstrates the step of the connectivity modification
around the extraordinary point.

Step 3: Ricci Flow

In order to compute the flat metric, we use Ricci flow to drive the
mesh to deform in this order:

1. Set the initial valueui = 0 for each vertex.

2. Assign the weight for each edge and the radii for each vertex
by minimizing the energy,

minΓ,Φ ∑
ei j∈E

|l i j − l̄ i j |
2, (12)
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Figure 9: The pipeline to compute the affine atlas using discrete Ricci flow.

wherel̄ i j is the edge length ofei j in R
3. Namely, the discrete

metric(M,Φ,Γ) is consistent with the induced Euclidean met-
ric onM.

3. Update the vertex radiusγi by eui γi . Compute current edge
lengthl i j ’s using Equation (3), corner angles and discrete cur-
vatures for each vertex using Equations (4) and (5).

4. Update vertex radii,

ui+ = ε × (K̄i −Ki), (13)

whereε is a carefully selected step length.

5. Normalizeui , such that the summation of allui ’s equals to
zero.

6. Check the deviation betweenKi andK̄i , if the error is less than
a predetermined threshold, the algorithm terminates. Other-
wise, goto Step 2.

The algorithm will converge exponentially fast. In practice, the step
length might be time-varying in order to improve the efficiency.

Step 4: Segmentation

Next, in order to construct the affine atlas, an open coveringof the
mesh need to be built. The basic idea is to find a set of curves
G such that the meshM can be sliced open along the curves and
form a topological disk, such kind of curves formed thecut graph
as introduced in the work on geometry images [Gu et al. 2005].

If there is only one singularityp0, the cut graph can be con-
structed using a set of canonical homology basis passing through
the singularity as introduced in [Carner et al. 2005]. The cut
graph has one node and 2g edges. The edges can be labelled as
a1,b1,a2,b2, · · · ,ag,bg.

Then the mesh is cut open along the cut graph to form a big chart
M̄. The boundary ofM̄ has canonical form

∂M̄ = a1b1a−1
1 b−1

1 a2b2a−1
2 b−1

2 · · ·agbga−1
g b−1

g .

Each edge starts and ends at the singularityp0. We cover each edge
sk by a chart

Uk = ∪vi∈skNi ,vi 6= p0,Ni = ∪ fi jk ,

whereNi represents the one ring neighbor of vertexvi . The algo-
rithm for computing an open covering ofM is as follows:

1. Compute a cut graphG using a canonical homology basis.

2. Slice the mesh along the cut graph to form a topological disk
M̄.

3. For edges of the cut graph, compute the union of one ring
neighbors of all its interior vertices.

4. The open covering ofM is formed byM̄ andUk,

M/{p0} ⊂ M̄∪kUk.

Step 5: Planar Embedding

Because the curvature for each vertex is zero, the faces can be flat-
tened one by one on the plane. The following algorithm describes
the details on how to flatten an open setU ⊂ M/{p0}. Let the de-
sired parameterization isτ : U → R2,

1. Label all faces inU as non-processed ones. Meanwhile, label
all vertices inU as non-processed.

2. Select randomly a facef0 = [V0,V1,V2] from U , label f0 as
processed, label all its vertices as processed. Assignτ(v0) =
(0,0) andτ(v1) = (l01,0). Computeτ(v2) such that

|τ(v2)− τ(v0)| = l01, |τ(v2)− τ(v1)| = l12, (14)

and
(τ(v1)− τ(v0))× (τ(v2)− τ(v0)) ·n > 0, (15)

3. Find all faces inU sharing an edge withf0, insert them to a
face queueQ.

4. If Q is empty, simply terminate. Otherwise, fetch the first face
f = [v0,v1,v2] from Q, label f as processed.

5. If all vertices of f have been processed, go to Step 3. Other-
wise, there must be only one vertex which has not been pro-
cessed, assume it isv2, labelv2 as processed.

6. Computeτ(v2), such that both distance condition (14) and
orientation condition (15) are satisfied.

7. Find all neighboring faces sharing an edge withf and they are
not yet to be processed, add them toQ. Go to Step 3.

In order to reduce the accumulation error, the parameterization
can be further improved by minimizing the following functional,

min
τ ∑

ei j

(|τ(vi)− τ(v j )|
2− l2i j )

2.



In practice, this step is usually unnecessary if singularities are care-
fully chosen to spread out the surface and the curvatures foreach of
them is not extremely high.

Figure 3, 8, and 12 demonstrate the affine atlas for surfaces from
genus one, two and three, respectively.

5 Manifold Spline Construction
After the affine atlas are constructed in the previous section, this
section first briefly summarizes the theory of manifold splines, and
then presents our experimental results.

SupposeM is a mesh with the one ring neighbors of the singular
vertices removed.{(Ui ,τi)} is an affine atlas, whereUi is a topo-
logical disk comprised by a set of faces ofM, τi : Ui → R2 maps
Ui onto the plane, namely,(Ui ,τi) forms a local coordinate chart.
The chart transition functionsτi j : τi(Ui ∩U j ) → τ j(Ui ∩U j ) is a
rigid-body motion inR2.

A manifold spline is defined on the meshF : M → R3, such that

• The local representations of manifold splines,F ◦ τ−1
i :

τi(Ui) → R3, are commonly used spline schemes with pla-
nar parameter domain.

• The evaluation of manifold splines is independent of the
choice of local parameter charts,

F◦τ−1
i = F◦τ−1

j ◦τi j

In our current implementation for this paper, we use triangular
B-splines, because it has no restrictions on the connectivity of the
mesh and it can represent any polynomials defined over planardo-
main. The implementation details are also described in [Gu et al.
2005]. The implementation of Ricci flow algorithm is very simple,
and it takes tens of lines of source code in C++. We have imple-
mented our own version based on a generic half edge mesh library
as in [Hoppe 1998], while adding the edge lengths, vertex radii, and
curvature as the new attributes for the underlying mesh.

In our prototype software system, we have tested several meshes
of genus from zero to three. In this paper, we choose manifold
triangularB-spline because of its flexibility in domain construction.
This method can be also applied to other manifold splines, such as
T-splines and Powell-Sabin splines.

Given a domain manifoldM, a manifold triangularB-spline sur-
face is defined as follows:

F(u) = ∑
I

∑
|β |=n

cI ,β NI ,β (τI (u)), u ∈ M,

whereI is the triangle index. The algorithm for constructing mani-
fold triangularB-spline is as follows:

1. The initial control pointscI ,β are chosen by uniformly subdi-
vided the domain manifoldM according to the user-specified
degreen. Each domain triangle is associated with(n+1)(n+
2)/2 control points.

2. We modify the control pointscI ,β by solving the following
least square problem:

min
c̃

∑
I

∑
|β |=n

‖c̃I ,β −cI ,β ‖
2 (16)

subject tõcI ,β = f J(V I
β ),∀I ,∀β , |β |= n,β2 ≤ r

whereV I
β = {tI0,0, . . . , t

I
0,β0−1, . . . , t

I
2,0, . . . , t

I
2,β2−1} andtIi, j are

the knots for triangleI .

Note that the initial manifold triangularB-spline surfaces ac-
quired by step 1 usually have very bad curvature distribution, es-
pecially along the edges of the domain triangles. The purpose of
step 2 is to fair the spline surface by modifying the control points.
In the objective function Eq (16), we minimize the squared distance
between the control points of the original and the new splinesur-
face, which implies that the minimal change of the shape. In the
constraints, we use an integerr, 0≤ r ≤ n−1, to control the fair-
ness of the spline surface. The bigger the valuer, the more faired
surface we obtain. In our experiments, we can get visually pleasing
surfaces withr = 1 for cubic splines orr = 2 for splines of degree
5 or above. For the detailed information about spline fairing, please
refer to [He et al. 2005].

Figure 8 shows the flat circle packing metric of a genus two sur-
face and its affine atlas. Figure 9 demonstrates the process of using
Ricci flow on how to compute the affine atlas. The sculpture sur-
faces in Figure 12 is of genus three with different resolutions. The
singular vertex and the cut graph are explicitly shown in this figure.
The affine atlas are also highlighted in the figure. All the examples
of manifold triangularB-splines are shown in Figure 13. Table 1
shows the statistics of the test cases. As shown in this table, our
algorithms for constructing the affine atlas and manifold triangular
B-splines are extremely fast, i.e., within only a few seconds.

6 Conclusion and Future Work
This paper has developed an efficient and rigorous algorithmfor
constructing a manifold spline surface of complicated topology and
complex geometry with single extraordinary point, which has al-
ready reached the theoretic lower bound of the number of singular-
ities. The uniqueness of this construction algorithm for manifold
splines is that, it is solely based on a simple and powerful com-
putational tool: Ricci flow. From the mathematical point of view,
Ricci flow has substantial relevance to the curvature flow method
in differential geometry. For example, Ricci flow can conformally
deform the metric to induce any prescribed curvature.

The intrinsic connection between manifold splines and polar
forms results from affine structure and affine atlas. To make these
geometric structures computational tractable in shape modeling ap-
plications, we resort to the powerful tool of global parameteriza-
tion over arbitrary manifold domain. The quality of the finalglobal
parameterization is determined by many factors, such as thecon-
nectivity of the mesh, the weights on edges, the positions and cur-
vatures of the singularities. It is technically challenging on how to
optimize these factors towards the quality improvement of global
parameterization. In the near future, we plan to further investigate
the design of new algorithms to localize singularities and have a full
control on the curvature distribution.

Current manifold splines are essentially founded upon the nat-
ural integration of the affine atlas for domain manifold and polar
forms used to define conventional spline surfaces over any planar
domain. Due to their topological obstruction, general highgenus
surfaces admit neither a flat metric nor an affine atlas. Therefore,
ideally the most natural spline solutions for high genus manifolds
should not depend on the affine structure. In the near future,we
shall investigate different spline schemes which are not based on
the affine structure of the underlying surface domain.
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Figure 13: Examples of manifold triangular B-splines. The affine atlas are computed using Ricci flow under free boundary condition.
The transition function is a combination of translation androtation. The red curves on the spline surfaces (see (d)) highlight the triangular
patchwork.


