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Abstract

This paper presents PB-FFD, a novel, interactive, point-based technique for performing free-form deformation
of polygonal meshes. First, a volumetric deformation space is de�ned as the linear combination of overlapping,
ellipsoidal radial basis functions (EBFs) of compact support. Mesh vertices are then parameterized with respect to
local coordinate frames centered over the origins of the EBFs. As in traditional FFD, the mesh vertices are displaced
in response to changes in the control point positions. Hence, PB-FFD presents to the user an interface similar to that
of traditional free-form deformation, but does not require that a deformation lattice be explicitly constructed. PB-FFD
also supports multiresolution control, direct manipulation of meshes, automatic construction and re�nement of the
deformation space, among other bene�ts. The paper covers important implementation issues, discusses any special
cases that may arise during use of the technique, and provides advice to practitioners who may wish to implement
PB-FFD.

1 Introduction
This paper presents PB-FFD � point-based, free-form deformation � a new meshless, interactive FFD technique for
multiresolution manipulation of polygonal meshes. In traditional FFD, a designer embeds a polygonal mesh in a
3D space and indirectly deforms the polygons by translating the vertices of the control mesh, thereby warping the
embedding space. It is a very powerful and intuitive deformation technique, and has been incorporated into commercial
3D modeling and design software packages. In our PB-FFD technique (see Figure 1), we use ellipsoidal radial basis
functions (EBFs) to de�ne the deformation space and to serve as control points that can be manipulated to deform
the embedded mesh. The major bene�ts of PB-FFD are: (i) the deformation space can have arbitrary geometry and
topology; (ii) it does not demand that the user tediously construct and manage a complex deformation lattice; (iii) it
is easy to implement; and (iv) it is very ef�cient. PB-FFD also supports multiresolution control, direct manipulation
of meshes, automatic construction of the deformation space, curve-based deformations, and hierarchical re�nement of
the deformation space, among other bene�ts. Throughout the paper we discuss our experience in implementing and
using PB-FFD, describe special cases and how to avoid them, and provide several examples of how PB-FFD works in
practice. We show that our new deformation approach provides a very intuitive, point-based interface to the user that
is ef�cient and also very easy to implement.

(a) (b) (c) (d)

Figure 1: Point-based free-form deformation. (a) Input cow mesh (courtesy of Viewpoint). (b) Control points that
were automatically placed inside and outside the mesh. (c) Control point ROIs (zoomed out view). (d) Deformed
mesh.
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2 Overview of Space Deformation Techniques
Sederberg and Parry's [25] pioneering work on free-form deformation in the mid-1980s has inspired numerous ex-
tensions and improvements to FFD. For example, extended free-form deformations [9] and subdivision volume-based
techniques [19] permit one to apply FFD over deformation lattices that closely match the geometry of an embedded
mode. Such approaches require the construction of a potentially complex deformation lattice. This is one of the prob-
lems we have managed to solve with PB-FFD. Hsu and colleagues [12] developed approaches for directly displacing
the mesh vertices, leaving it to a numerical solver to position the control points to effect the desired displacements. PB-
FFD also provides a solution to this problem, but does not require a numerical solver. Other important developments in
FFD techniques include dynamic free-form deformations [10], volume-preserving FFD [11], discontinuity-introducing
deformations [24], sketch-driven FFD [14], and hierarchical free-form deformations [8].
PB-FFD also builds on techniques from point-based mesh manipulation, such as Scodefs [5]. Like Scodefs, our

deformations are de�ned by a collection of unconnected points and facilitate deformation of objects. Our approach
also has some aspects in common with the point-based Dirichlet Free-Form Deformation (DFFD) approach [20].
While DFFD also permits the use of arbitrarily distributed control points, (i) it relies on the explicit construction of
a Delaunay triangulation; (ii) its control point regions of in�uence (ROIs) are de�ned explicitly by the triangulation;
and (iii) it employs complicated, multivariate Bézier simplices to de�ne the deformation space. In contrast, (i) our
approach requires no Delaunay triangulation or Voronoi diagram; (ii) ROIs can be arbitrarily positioned and oriented;
and (iii) simple basis functions are used. Furthermore, our approach facilitates hierarchical manipulation, automatic
placement and simple addition/removal of control points, rapid reparameterization of embedded meshes, and other
features. Botsch and Kobbelt [6] and Kojekine et al. [16] have also introduced frameworks based on radial basis
functions (RBFs) for surface deformation. Whereas their approaches employ a set of RBFs as an effective vehicle for
constraint imposition, our technique employs EBFs primarily to de�ne and warp the deformation space via FFD. Noh
et al. [21] showed how RBFs could be employed to automatically reproduce facial animations acquired from a video
stream.
Last, there is a large body of work on 2D space warping techniques, many of which cast the shape manipulation

process as the morphing of a source shape into a target shape. Virtually all these approaches make extensive use
of interpolation, much as we use in PB-FFD. In contrast to these space warp approaches, however, PB-FFD employs
interpolation to drive a process of space warping via control point manipulation. Generally speaking, 2D space warping
techniques instead rely on constraint satisfaction methodologies to effect shape deformation. One of the seminal works
in this area is that of Beier and Neely [4], who described a simple, yet effective, technique for image warping. It works
by �rst establishing correspondences between source and target images. Then, a smooth image morphing is guaranteed
by interpolating between the two images over a sequence of time-steps. Wolberg, Lee and colleagues [17, 18] have
also published work in the 2D space warping area. Their 1995 paper that employs FFD for image warping [18]
describes work that is closely related to ours, as it too uses a deformation function to manipulate a domain. Combined
with a snake-based energy minimization technique, their approach provides a complete system for specifying the
features to be warped and for controlling the speed of the warp. More recent work in image morphing includes
that of Alexa et al. [1], Igarashi et al. [15], and Schaefer et al. [23]. All three classes of techniques seek to deform
images in a manner that is �as-rigid-as-possible,� to use Alexa's terminology [1]. Alexa's approach achieves rigid-
like deformations by minimizing local distortions to the volumes of the simplices that comprise the deforming shape
(i.e., triangles in 2D, tetrahedra in 3D). A similar approach was used by Igarashi and colleagues in developing an
interactive shape deformation system that employs a SmartSkin touchpad. Schaefer's technique is founded on moving
least squares (MLS) and provides an intuitive, point-based deformation approach that also seeks to generate realistic
looking deformations.

3 Point-based Free-Form Deformation
In PB-FFD we de�ne a volumetric deformation space as the linear combination of overlapping, ellipsoidal radial
basis functions of compact support that we will collectively call the control set. Mesh vertices are parameterized
with respect to local coordinate frames whose origins sit at the centers of the EBFs. As in traditional FFD, the mesh
vertices are displaced in response to changes in the control point positions. In subsequent sections we describe how
to parameterize polygonal meshes inside the deformation space, how to de�ne the embedding space itself, and how to
facilitate advanced interactive techniques like hierarchical manipulation and curve-based deformations.
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3.1 Mesh Parameterization
In traditional FFD, each of the N vertices in the embedded model is assigned a parameter triple to parameterize it
within the Bézier or B-spline's parametric space. In our approach, we assign to each vertex vi a set of one or more
parameterizations � i.e., one parameterization per basis function that in�uences the position of the vertex. We write
uij to denote the parameterization of a vertex vi with respect to the parametric domain of basis function �j that is
associated with exactly one of theM control points pj . The origin of this reference frame is given as the position of the
control point (i.e., pj = (pjx; pjy; pjz)) along with its three orthogonal basis vectors, (aj ;bj ; cj) (where, for example,
aj = (ajx; ajy; ajz)). These vectors form a vector space in which mesh vertices are parameterized. Speci�cally, we
express an EBF as a scaled, rotated 3D Gaussian distribution, normalized by the value � so that the basis function
takes on a value of 1 at its center:

�(x) =
1

��
p
2�
exp(� 1

2�2
(x� �)>RS�1S�1R>(x� �)); (1)

where the row vector x = [x y z 1] is a 3D point written in homogeneous coordinates, � is the center of the ellipsoid,
� is a normalization factor with the value � = 1
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2
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, S is a scaling matrix that characterizes the

ellipsoid's scaling factors (anisotropy) in the x, y and z directions, and

R =

2664
ax= jaj bx= jbj cx= jcj 0
ay= jaj by= jbj cy= jcj 0
az= jaj bz= jbj cz= jcj 0
0 0 0 1

3775 (2)

is a rotation matrix describing the orientation of the ellipsoid in terms of (a;b; c). Note that we break with traditional
EBF formulations by writing x in homogeneous coordinates. This simpli�es our formulation and its subsequent
implementation. We found in our experiments that a standard deviation of � = 3 provided suf�ciently local control
over the deformation without causing buckling or creasing artifacts in the polygonal meshes. In theory, the rotation
and scaling matrices could be utilized to create twisting and stretching effects, and it would interesting to explore these
ideas as future work.
The parameterization uij =

�
�ij ; �ij ; ij

�
for vertex i in the domain of EBF j is computed by projecting the

vertex onto the reference frame associated with the EBF:

uij =

 
(vi � pj) � aj

jaj j2
;
(vi � pj) � bj

jbj j2
;
(vi � pj) � cj

jcj j2

!
: (3)

Now we can de�ne the x position of a vertex vi = (vix; viy; viz) in terms of the control points as

vix =
MX
j=1

b�j (uij) (pjx + uij � (ajx; bjx; cjx)) (4)

where b�j (uij) = �j (uij) = MX
k=1

�k (uik) (5)

and where the origin of the domain of each basis function is simply [0 0 0]. The equations for viy and viz can likewise
be written. Intuitively speaking, b�j (uij) provides the in�uence of control point j on vertex i, the pjx term translates
the x component of the vertex towards the control point, and the dot product uij � (ajx; bjx; cjx) determines the x
component of vertex i's position with respect to the reference frame of control point j.
Since uij and b�j (uij) are constant as control points are moved, let us rewrite Equation 4 as

vix =
MX
j=1

b�j (uij) pjx + MX
j=1

h�b�j (uij)uij� � (ajx; bjx; cjx)i : (6)
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The analogous equations for y and z can likewise be rewritten. The (x; y; z) positions of all vertices can then be
concisely written (and implemented) in matrix form as

V =WP+DA; (7)

where V and P are N � 3 and M � 3 matrices of vertex and control point positions, respectively. An entry wij =b�j (uij) of the N � M matrix W speci�es the in�uence that control point j exerts on vertex i and is computed
during parameterization. The N � 3M matrix D serves to position the vertex with respect to the frame of reference
of control point j. It can be written as three N �M sub-matrices D =

�
E F G

�>, where Eij = b�j (uij)�ij ,
Fij = b�j (uij)�ij and Gij = b�j (uij) ij . The 3M � 3 matrixA speci�es the three orthogonal basis vectors of each
coordinate frame, with all the aj vectors preceding the bj and cj vectors. As the control points are repositioned by
the user, the new mesh is computed by re-evaluating Equation 7.

3.2 Automatic Placement of Control Points
In traditional FFD, vertices are transformed indirectly by translating the control points, whose displacement causes
deformation of the mesh. This functionality is supported in PB-FFD without modi�cation and will not be discussed
further. However, in traditional FFD it can be very tedious to place control points manually. Thus, we have devised an
algorithm for automatically placing control points and for constructing a deformation space suitable for PB-FFD. The
entire algorithm is summarized in Figures 2 and 3, with more details given in the following paragraphs.

1. Compute a 3D Voronoi diagram of the input mesh.
2. Discard all the Voronoi edges and vertices that lie outside the mesh.
3. Recursively decimate the remaining point-set using an octree until a user-speci�ed number of
points remains.

4. Discard the remaining edges.
5. Assign one EBF to each control point.
6. Create a second point set by copying the mesh's vertices and translating them by some fraction of
the vertex normals.

7. Decimate this point-set until a user-speci�ed number of points remains.
8. Assign one EBF to each control point.
9. Take the union of the two point-sets. This set de�nes the control points of the embedding space
used for deforming polygonal meshes.

Figure 2: Algorithm for automatic placement of control points in PB-FFD.

3.2.1 The Algorithm

In the �rst phase (steps 1-5 in Figure 2) we assemble the control points lying in the interior of the mesh. This process
provides a complete spatial decomposition for deforming the volume inside the model, much in the same way that
traditional FFD lattices support this capability. This decomposition is achieved by computing an approximation of the
medial axis of the input mesh [7] and by creating control points at or near the vertices of a Voronoi diagram (similar to
the way they are used in surface reconstruction in [22]). We compute a 3D Voronoi diagram of the mesh and discard
all edges and vertices lying outside the mesh. The discarding is done with the assistance of a kd-tree as follows. Given
a Voronoi point (call it q), we �nd the mesh vertex nearest to the point (call it r and its normal vector n). If the
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(a) (b) (c) (d)

Figure 3: Major steps in our algorithm for automatic placement of control vertices of the deformation space. (a)
Compute 3D Voronoi diagram of mesh (Step 1). (b) Discard all Vornoi edges and vertices that lie outside the mesh
(Step 2). (c) Decimate point set and �nd an approximate skeleton of the mesh (Step 3). (d) Assemble EBFs inside and
outside mesh to form the deformation space (Steps 4-9).

quantity n � (q� r) = jq� rj > 0 then we conclude q is outside the mesh and we discard it. Next, the point-set is
recursively decimated using an octree. In particular, inside each octree cell we �nd the two closest vertices, remove
them, and insert a new point lying at the mid-point of the two removed points. This is continued until the number of
vertices in the cell has reached a predetermined maximum. Then, for each vertex we �nd the distance to its nearest
neighbor and use a multiple of this value (e.g., 1.5 times) to de�ne both the lengths of the axes of the reference frame
for each control point, as well as the radius of the spherical basis function assigned to the point. We have found in our
experiments that this heuristic provides a very good EBF coverage of the deformation space and virtually avoids all
singularities.
In the second phase (steps 6-9 in Figure 2), we position control points lying outside the mesh by making a copy of

the mesh vertices and translating each by a fraction of its normal vector (e.g., 10% in our implementation). By placing
the points near the surface of the model, the system makes it easy for a designer to make large, local deformations
rapidly. This point-set is then decimated until a user-speci�ed number of vertices remains. The union of the two sets of
vertices is taken and de�nes the control points of the deformation space. The mesh vertices can then be parameterized
with respect to the control set.

3.2.2 Preventing Discontinuities in the Deformation Space

In traditional FFD, if the modeler is not careful when positioning the control points of the deformation lattice, it is
possible to create a discontinuity at the mesh/lattice interface. This situation arises when the deformation lattice does
not entirely enclose the mesh. The same phenomenon can occur with PB-FFD at the boundary of the ROI for a control
point. If there exists a portion of the mesh not under the in�uence of any control point, a discontinuity will result, as
can be seen in Figure 4. It is very easy to solve this problem. By inserting a control point with large ROI at the center of
the 3D working space and by parameterizing all vertices with respect to that control point, we prevent discontinuities
entirely. This control point � which we call the master control point and denote with p1 � is given a ROI suf�ciently
large that it includes all mesh vertices. We observed in our experiments that it was rare that a mesh vertex would be
under the in�uence of no control points other than the master control point.

3.2.3 Dealing with Open Surfaces

The algorithm described in Section 3.2.1 for placing control points demands that the mesh is closed and has a clearly
identi�able interior and exterior. It can be easily modi�ed to handle open surfaces. Naturally, the �rst phase must be
skipped since the surface has no discernible interior. During the second phase, we create two sets of control points.
The �rst set is assembled by making a copy of the mesh vertices and translating each along the direction of its normal
vector by some small, �xed distance. The second set is assembled by making a second copy of the mesh vertices and
translating each along the direction of its inverted normal vector. As a consequence, a cloud of points is placed around
the surface. Then, the union of these two sets can be taken and be decimated using the algorithm described earlier.



6

(a) (b) (c)

Figure 4: Signi�cance of the master control point in preventing discontinuities. (a) Before deformation. (b) Deforma-
tion with master control point activated. (c) Deformation with master control point de-activated.

(a) (b) (c) (d)

Figure 5: Example of multiple point constraints. The vertices nearest the four points will be translated to those points'
positions. (a) Desired point constraints. (b) Original control set. (c) Deformed mesh satisfying the constraints. (d)
Resulting control set.

3.3 Direct Manipulation
Direct manipulation of vertices in PB-FFD can be achieved by imposing point constraints. Let h = fh1; : : : ; hKg
denote the set of indices of the vertices to be constrained. Let V0 =

�
v0h1 v0h2 � � � v0hK

�> be the matrix of
the desired positions of the vertices and �V =

�
v0h1 � vh1 v0h2 � vh2 � � � v0hK � vhK

�> indicate the desired
displacements. Let P2 denote the submatrix of P consisting rows 2 throughM of P. Following the approach in [13],
we seek to �nd a matrix � of displacements �j for each control point pj to effect the desired changes.
If we de�ne an (M � 1)�K constraint matrix

C =

26664
w2h1 w2h2 � � � w2hK
w3h1 w3h2 � � � w3hK
...

...
. . .

...
wMh1 wMh2 � � � wMhK

37775 : (8)

and set � = C(C>C)�1�V, the new value for P2 is given simply as P2 + �, with p1 remaining unchanged. (The
immovability of the master control point explains why the �rst subscripts on the wij terms start with 2.) As stated
in [13], the existence of � depends on (C>C)�1, which does not always exist. This can happen, for example, if more
constraints are desired than can be satis�ed. We describe solutions to this problem in the Discussion section, below.
An example of direct manipulation can be seen in Figure 5.

3.4 Multiresolution Editing
PB-FFD supports multiresolution control by hierarchically decomposing the deformation space. An example is given
in Figure 6. At the top level of the hierarchy is a set of EBFs that provide a �ne decomposition of the space, while
lower levels provide coarser decompositions and are embedded within each other in a recursive structure.
Let us assume there are L+ 1 levels in the hierarchy and re-write Equation 7 as:

V = PL+1 =WLPL+DLAL; (9)
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(a) (b) (c)

Figure 6: PB-FFD control point hierarchy. (a) Level 1: 20 control points. (b) Level 2: 40 control points. (c) Level 3:
80 control points.

(a) (b) (c) (d) (e) (f)

Figure 7: Multiresolution point-based deformations applied to the head of the �dinopet� model. (a)-(c) Deformations
at coarsest level to elongate the neck. The surfaces in (b) and (c) have been drawn transparently to reveal the con-
trol points inside the surface. Note that some control points have been moved outside of this camera view. (d)-(f)
Deformations at �nest level to stretch the snout.

where the superscript indicates the level. Expressing the control points at level ` + 1 (for 1 � ` � L) in terms of the
control points at level ` yields a set of equations of the form:

P`+1 =W`P` +D`A`: (10)

A change in position of a point in the coarsest level (P1) cascades through the hierarchy to the �ner levels.
Initially, PL and AL are given explicitly by the user or are assembled through the automatic control point place-

ment algorithm described in Section 3.2.1. The matricesWL andDL are assembled by the system. The points PL�1
are de�ned by decimating a copy of the control points corresponding with PL until the set of points is half its original
size. Control points are merged on a pairwise basis, starting with the two points closest to each other. Given two
nearby control points, pLi and pLj , these points are replaced with a new one positioned at their mid-point. The new
point's reference frame is computed by �nding an ellipsoid (or a sphere, as in our implementation) that completely
encloses the reference frames of pLi and pLj . After PL has been iteratively reduced in this fashion to half its original
size, we have the new set of control points corresponding with PL�1. The matricesWL�1 and DL�1 can next be
assembled by the system. The user can then manipulate the mesh at level L�1, and points at levels greater than L�1
will be displaced. This entire decimation-driven process is executed recursively to produce levels L� 2, L� 3, : : :, 1
of the hierarchy, each level containing half the number of control points as the previous one.
Now we must de�ne how changes at level ` affect points at levels less than `. We considered several possibilities.

We experimented with a hierarchical point constraint imposition technique similar to that of Section 3.3, but found
that the (C>C)�1 matrix was singular too often for this option to be of practical use. Instead, we elected to use a
reparameterization-based approach for imposing the constraints. Suppose we are directly editing the control points
at P`. To update the positions at level ` � 1, we view the control point positions at level ` as point constraints to
be satis�ed by repositioning P`�1. The point constraints can be imposed by reparameterizing that subset of points
in level ` that is being moved. This provides a simple solution that can be computed very rapidly. However, one
must be careful not to move a control point outside the domains of all the EBFs in a particular level. Otherwise, after
reparameterization, that point will no longer in�uence the deformation of the mesh.
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(a) (b)

Figure 8: Spline curves can be employed to perform skeleton-drived deformations in a very intuitive manner. (a)
Before deformations. (b) After deformations.

3.5 Curve-based Deformations
Curve-based deformations (Figure 8) can be simulated by de�ning interpolating spline curves whose ROIs enclose
portions of the mesh. Once the control polygon of a curve has been de�ned and the spline has been discretized at
a high resolution into a collection of EBFs, the enclosed portion of the mesh can be parameterized and deformed
directly. Note that it should be possible to extend this functionality to skeleton-based deformations using the medial
axis computed during automatic control point placement. This might prove to be an interesting deformation tool and
would be a worthwhile direction for future work.

4 Implementation Issues and Performance Data
We have implemented a prototype sculpting system based on our PB-FFD framework on a generic PC workstation
containing a 2.8 GHz CPU and 1 GB RAM. The algorithms and data structures can be implemented relatively easily in
C++ and OpenGL with the assistance of the Qhull library [3] to compute the Voronoi diagram and the ANN library [2]
to help determine which Voronoi points are inside the mesh (see Section 3.2.1). Performance data and some additional
examples that were created with our system are shown below. The time for assembling the control set includes the
construction of a three-level control point hierarchy with 200 control points at the �nest level. Since only a fraction
of a second is required to update the mesh after repositioning the control points (either directly or indirectly), such
timings are not included in Table 1.

Model (# triangles) Qhull Assemble Control Set Parameterization
Cow (5.8K) 1.062 7.204 0.157
Dinopet (15.9K) 3.250 21.374 0.375
Pit bull (25.0K) 5.032 38.375 0.657
Dragon (108.6K) 26.937 200.281 2.625

Table 1: Performance data for the preprocessing stages of PB-FFD. All times are in seconds. The somewhat costly
step of automatic control set assembly can be skipped entirely if the user wishes to place control points manually.

5 Discussion
By and large the theoretical formulation of point-based free-form deformations translates well into program code. As
indicated in Section 4, we have sought to use existing libraries (Qhull and ANN) wherever possible to expedite the
implementation. We employed an in-house linear algebra library for performing traditional matrix operations like
multiplication and inversion.
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(a) (b) (c) (d)

Figure 9: Additional examples of PB-FFD. (a)-(b) Pit bull model before and after deformations. (c)-(d) Dinopet model
before and after deformations.

One question we did not discuss earlier is the determination of which EBFs parameterize which vertices. Since
we employ compactly supported EBFs, each vertex will generally be under the in�uence of only a few control points.
For each vertex in our implementation, we simply performed a linear search of the EBFs to determine which ones
contained that vertex. Although this is a relatively inef�cient O(MN) algorithm, we assert that it would be overkill
to use a kd-tree or similar data structure for accelerating nearest-neighbor queries for such small values of M . The
ef�cient timings for �Parameterization� given in Table 1 demonstrate this quite clearly. Moreover, sinceM � N ,M
can be considered a constant in practice.
In most of our experiments we employed approximately 100 control points at the �nest level of the control point

hierarchy. This number is typical for FFD-based interaction since more than a few dozen control points tend to clutter
the screen and confuse the user. Naturally, if this number is too small or too great � i.e., there are not enough degrees
of freedom, or there are too many � the user could manually add or remove vertices, or simply instruct the system to
adjust the number of control points automatically. We �nd a similar situation in traditional FFD in which the user-
selected deformation lattice may be too sparse or too dense. Both in our technique and in FFD it is a simple matter of
changing a few parameters to generate a new deformation space. Note that when a user adds a new control point, its
behavior will be in�uenced by that of existing points. If this is undesirable, the designer can simply disable or delete
control points near the new point so as to provide the new control point with greater control over the deformation.
Regarding the run-time usability of PB-FFD, every mesh vertex should be under the in�uence of at least two

control points. Otherwise, the translation of a control point will cause a discontinuity in the mesh at the limit of the
control point's ROI. Our solution is to use the master control point, which we advise not to render on-screen.
Another implementation concern is whether the matrix � of displacements always exists (see Section 3.3). We

found that for single-level manipulation, it was very rare that � could not be computed because C>C was singular.
We experimented with various iterative techniques for �nding an approximate solution to � in those situations, but
found that their relatively slow convergence rates hampered the interactive design experience. In the end we decided
that since this situation arose so infrequently, it would not be an undue burden on the user to request that he modify
the point constraint slightly and try again.
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