
Dynamic Sculpting and Animation of Free-form Subdivision Solids

Kevin T. McDonnell and Hong Qin

Department of Computer Science
State University of New York at Stony Brook

Stony Brook, NY 11794-4400
{ktm|qin}@cs.sunysb.edu

Abstract

This paper presents a sculptured solid modeling system
founded upon dynamic Catmull-Clark subdivision-based
solids of arbitrary topology. Our primary contribution is
that we integrate the geometry of sculptured free-form solids
with the powerful physics-based modeling framework by
augmenting pure geometric entities with material proper-
ties such as mass, damping, and stiffness distributions and
with physical behaviors such as elasticity, plasticity, and
natural deformation under external forces. Our novel dy-
namic model of free-form solids frees users from having to
deal with low-level control point operations and permits
them to interact with subdivision-based virtual clay in a
more natural and intuitive fashion via “forces.”

1. Introduction

To date, the vast majority of popular solid modeling ap-
proaches as well as commonly-used solid modeling sys-
tems are built upon the following geometric foundations:
constructive solid geometry (CSG), boundary representa-
tion (B-reps), and cell decomposition. When the goals are
to interactively sculpt solid objects, deform the solid geom-
etry with ease in real-time, modify the solid topology, and
conduct kinematic and dynamic analysis of physical solids,
prior representations and the current state-of-the-art in solid
modeling fall short in offering designers an array of flexible
and powerful modeling and sculpting tools.

Free-form solid modeling provides modelers with a more
flexible interface for designing a much wider range of ob-
jects than the aforementioned approaches. However, free-
form solids typically offer users more degrees of freedom
(i.e., control points, weights, etc.) than what they can ac-
tually handle. In addition, free-form solids based on para-
metric geometry are constrained to modeling topologically
regular shapes.

Subdivision-based solid modeling, such as the Catmull-

Clark subdivision scheme for volumetric construction, al-
lows users to create sculptured solids of arbitrary topol-
ogy from user-specified initial control lattices. Despite their
modeling superiority, subdivision solids also suffer from a
large number of control points and an associated complex
topological structure of their control lattices.

In this paper, we systematically develop a physics-based
modeling framework for free-form solids that can overcome
many of the limitations associated with conventional solid
modeling techniques. Within our novel dynamic modeling
framework, free-form solids are equipped with mass and
damping distributions, internal deformation energies, and
other material properties. Consequently, users can sculpt
solids in a physically plausible and accurate manner as if
they are manipulating real-worldphysical clay. Figure 1 il-
lustrates several such objects that were sculpted using our
system. We have developed a prototype solid modeling ap-
plication in which the real-time deformation and sculpting
processes can be easily facilitated through a set of intuitive
virtual tools and through the use of efficient numerical al-
gorithms.

The remainder of this paper is organized as follows. We
discuss the motivation and present our contributions in Sec-
tion 2. In Section 3, we detail the geometry of free-form
solids and review prior research in relevant areas. In Sec-
tion 4 we present our dynamic formulation and algorithms.
Section 5 discusses the details of our implementation and
sculpting system and then presents our experimental results
with time performance. Finally, we conclude the paper and
outline future research directions in Section 6.

2. Motivation and contribution

Solid modeling has recently emerged as a very powerful
paradigm that can greatly enhance existing surface model-
ing techniques because of its unique advantages over curve
and surface modeling. Despite many advances in solid
modeling during the past decade, conventional solid mod-
eling techniques based on algebraic geometry can be rather

Figure 1. Several dynamic subdivision-based solids: tetrahedron with holes, cube with holes, soccer
player, gear-like object, cactus.

rigid and inflexible. Free-form solids are a superior mod-
eling candidate to CSG, B-reps and cell decomposition be-
cause (1) they have great potential to model a much wider
range of real-world objects; (2) they combine the benefits of
free-form surface boundaries and interior geometry within
a unified representation scheme; and (3) they facilitate effi-
cient algorithms for both interior interrogation and bound-
ary evaluation.

Nevertheless, state-of-the-art free-form solids can be
very difficult to use due to their bewildering number of de-
grees of freedom and their dependency on unintuitive con-
trol point manipulation. Physics-based modeling attempts
to overcome such shortcomings of geometric modeling
through the integration of material attributes and physical
behaviors with powerful geometric modeling techniques.
This approach alleviates the user’s burden of managing
large sets of degrees of freedom, which are typically re-
quired for the design of large, complicated objects. Fur-
thermore, a purely geometric representation of a solid does
not permit users to effectively validate physically-relevant
tests such as finite element analysis, kinematic simulation,
and material property calculation. Physics-based modeling
approaches allow users to focus more attention on the object
and to more easily create a large array of shape variations
permitted by the underlying solid mathematics. Based on
our physics-based modeling methodology for surface de-
sign, in this paper we forge ahead to tackle the challenging
problem of integrating dynamic modeling algorithms with
free-form solids in order to facilitate volumetric modeling,
synthesis, and manipulation. Our primary contributions are
as follows:

• We integrate material attributes with Catmull-Clark
subdivision solids and formulate a set of equations of
motion for arbitrary free-form solids.

• We develop a simple yet effective real-time numerical
solver that employs a finite difference approximation
for the finite element formulation of free-form solids.

• We discretize Catmull-Clark subdivision solids into a
set of cells bounded by a three-dimensional lattice. A

mass-spring discretization provides users with the in-
tuitive mechanism for physically manipulating solid
geometry.

• The mathematics of parametric geometry for free-form
solids always constrains the behavior of the mass-
spring lattice, enforces the spline structure, and syn-
chronizes two different representations throughout the
sculpting task.

• We implement a sculpting system for Catmull-Clark
solids that should appeal to both engineering design-
ers and to non-technical users because it frees users
from the need to understand the underlying compli-
cated mathematics of free-form solids.

3. Background

3.1. Catmull-Clark subdivision solids

Unlike subdivision curves and surfaces, little research
has been published on modeling solids through subdivi-
sion techniques. MacCracken and Joy extended the subdi-
vision rules for Catmull-Clark surfaces to generate a volu-
metric model from a lattice of control vertices [3]. How-
ever, their goal for using subdivision techniques was to
contrive a space in which an arbitrary object could be de-
formed (i.e., free-form deformation (FFD)). In this paper,
we treat the volumetric Catmull-Clark subdivision scheme
as a novel free-form spline solid that is obtained in the limit
through recursive application of subdivision rules on a user-
specified lattice of control vertices.

Given an initialcontrol lattice in 3-space, the Catmull-
Clark solid subdivision rules recursively subdivide the lat-
tice and refine the three-dimensional space occupied by the
lattice. The lattice consists of a set of closed cells that are
defined by a collection of their constituent faces. The faces
in the lattice are comprised of an ordered list of edges that
are defined by their end vertices. Hence, there are four types
of geometric entities in the lattice: cells, faces, edges and
points. Figure 2 shows an example of a Catmull-Clark solid.

2

Figure 2. A torus-like solid object that has
been subdivided a few times using the
Catmull-Clark solid subdivision rules. The
complex topology is particularly evident in
the first image.

The subdivision scheme recursively applies a set of four
rules, one for each type of element, in order to achieve suc-
cessively finer representations of the original lattice. Each
element in the lattice produces a new vertex that must be
subsequently incorporated into the next finer level of the
subdivided lattice.

The Catmull-Clark solid subdivision rules include:

• Cell points: for each cell, the cell point is its centroid.

• Face points: for each face, the face point is the
weighted average:f = c0+2a+c1

4 , wherea is the face’s
centroid andc0 andc1 are the centroids of the cells on
either side of the face.

• Edge points: for each edge, the edge point is the
weighted average:e = cavg+2aavg+(n−3)m

n , where
cavg is the average of the centroids of the cells that
contain the edge,aavg is the average of the centroids
of the faces that contain the edge,m is the midpoint of
the edge, andn is the number of faces that contain the
edge.

• Vertex points: for each vertexp, the vertex point is the
weighted average:v = cavg+3aavg+3mavg+p

8 , where
cavg is the average of the centroids of the cells that
contain the point,aavg is the average of the centroids

of the faces that contain the point, andmavg is the
average of the midpoints of the edges that contain the
point.

Note that these rules are a straightforward extension of the
subdivision rules for surfaces originally described by Cat-
mull and Clark [1].

The new lattice is then assembled as follows. Cell points
are connected to the new face points of the faces that de-
fined the cell; face points are connected to the new edge
points of the edges that defined the face; and edge points
are connected to the new vertex points of the vertices that
defined the edge. In the limit of this recursive subdivision
process, a smooth free-form solids can be obtained:

s(x) =
n∑

i=1

piBi(x) (1)

wherex is a parametric value whose domain is a 3-space
occupied by the initial lattice.pk is a control point, which
is one of the original lattice points,Bk(x) is a basis func-
tion, andn is the number of the initial vertices defined by
the original lattice. Note that the affine rules explained
above naturally establish one-to-one point correspondences
between lattices in two consecutive levels within the sub-
division hierarchy. As with Catmull-Clark surfaces [8], the
basis functionsBk(x) of Catmull-Clark solids in the limit
can be defined explicitly over the original lattice. How-
ever, it is non-trivial to derive the closed-form analytic equa-
tion for Bi(x), given an initial control lattice of arbitrary
connectivity and topology. In contrast, when the initial
lattice is regular, a certain basis functionBh(x) can be
computed from three univariate B-spline basis functions:
Bh(x) = Bi,q(u)Bj,r(v)Bk,s(w), whereBi,q(u), Bj,r(v),
andBk,s(w) are the piecewise B-spline polynomials. This
is because the Catmull-Clark solid of a regular lattice re-
duces to a standard tri-cubic B-spline solid.

3.2. Physics-based modeling

Although free-form modeling approaches are powerful
for representing smooth volumetric shapes, they constitute
a purely geometric representation. In addition, conventional
geometric modeling may be inconvenient for representing
complicated solids, because modelers are faced with the te-
dium of indirect shape modification and refinement through
time-consuming operations on a large number of control
vertices. In contrast, physics-based models respond to ex-
ternally applied forces in a very intuitive manner. The dy-
namic formulation marries the model geometry with time,
mass, damping and constraints via a force-balance equation.
Dynamic models produce smooth, natural motions that are
intuitive to control. In addition, they facilitate interaction –

3

especially direct manipulation – of complex geometries and
topologies.

Free-form deformable models were introduced to com-
puter graphics by Terzopouloset al. [11] and further de-
veloped by Terzopoulos and Fleischer [10], Pentland and
Williams [7], and Metaxas and Terzopoulos [5]. Qin and
Terzopoulos introduced D-NURBS surfaces, an extension
to traditional NURBS that permits more natural control of
the geometry of the surface [9, 12]. Later, Qinet al. ex-
tended such ideas to dynamic subdivision surfaces [8, 4].
Most recently, Dachilleet al. combined haptic interaction
with dynamic B-spline surfaces to provide a very natural
user interface for deformation [2]. This paper incorporates
spline-based and subdivision-based solid modeling into the
dynamic framework.

4. Formulation and algorithms

4.1. Dynamic Catmull-Clark solids

In order to associate material properties with a Catmull-
Clark solid, we begin by expressing the subdivision process
as a matrix-vector multiplication:

d = Ap (2)

wherep contains the positions of the lattice points at the
initial, coarsest level. As shown in Equation 1, such points
are called the “control points” of a Catmull-Clark solid in
analogy with parametric solids. Vectord contains the po-
sitions of the points in the lattice at the current subdivision
level. We shall call these vertices “data points” or “mass
points,” since each of them is assigned a mass. We shall use
the discretized point setd to approximate the continuous
Catmull-Clark solid in the interest of the simplicity and ef-
ficiency of dynamic simulation and manipulation. Note that
after several levels of subdivision are conducted,d can be
considered a good approximation with high precision. Ma-
trix A contains weights given by the subdivision rules and
defines how to obtain the data point positions ind from p.

During the subdivision process, each new data point
is defined by a certain affine combination of the existing
points as computed by the subdivision rules. We can store
this collection of weights for each point inA. We can then
perform the matrix multiplicationd = Ap and obtain the
positions of the points in the new lattice.

4.2. Dynamics equations

Now we set the stage to define how the dynamic system
evolves over time. A dynamic solid is characterized by its
positions(x, t), velocity ṡ(x, t) (which stands for∂s(x,t)

∂t),

and acceleration̈s(x, t) (i.e., ∂2s(x,t)
∂t2) along with material

properties including mass densityµ(x), damping density
γ(x), and internal energy functionalE(s). The continuous
form of Lagrangian equations of motion can be written as

µs̈ + γṡ +
∂E(s)

∂s
= f (3)

wheref(s) is the sum of all external force distribution act-
ing ons(x). A large variety of physical behavior ofs (e.g.,
elasticity and/or plasticity) results from different mathemat-
ical formulations of energy functionalsE [10].

The discretization of free-form solids will transform
Equation 3 to Lagrangian dynamics of all mass points:

Md̈ + Dḋ + Kd = fd (4)

Since the data point set of a solid is constrained by control
points, we obtain a new set of motion equations whose un-
knowns arep:

A>MAp̈ + A>DAṗ + A>KAp = A>fd (5)

Therefore, we can directly compute the acceleration of the
control points (̈p) based on the forces acting on the lattice
of the current data pointsd:

p̈ = (A>MA)−1(A>fd −A>Dḋ−A>Kd). (6)

4.3. Numerical integration

In order to achieve real-time, interactive performance
in our sculpting system, we employ an explicit integration
method to steer our physical simulation. At each time-step,
the state of the system is advanced based on the preceding
states. The summarized forces on the discretized lattice are
applied, and then the accelerations of the control points are
computed using Equation 6.

The velocitiesṗ of the control points are updated accord-
ing to the applied forces and material quantities (e.g., mass,
damping, and stiffness). The control points are moved to
their new positions:

ṗi+1 = ṗi + p̈i∆t pi+1 = pi + ṗi∆t

where subscripts denote time, and∆t stands for one time-
step. The updated control point positionspi+1 and their
velocities are further used to update the discretized model
defined bydi+1 =Api+1 andḋi+1 =Aṗi+1.

5. Sculpting system

We have developed a prototype sculpting system that
allows users to interactively model, design, and deform
Catmull-Clark solids in real-time. This section details the
implementation issues.

4

5.1. Forces and constraints

The discretized dynamic model has material properties
such as mass, stiffness and damping distributions. The mass
points are connected to their immediate neighbors through
springs. These springs seek to maintain the Euclidean dis-
tances between all neighboring points. However, nearest-
neighbor connections would not sufficiently constrain the
overall deformation of the solid. For this reason, we incor-
porate an additional set ofvirtual springsinto conventional
mass-spring systems. These virtual springs, whose stiff-
nesses may be different from normal springs, are intended
to help maintain internal angles of each face, and hence help
minimize the volumetric distortion of a solid object. Note
that since the stiffness matrixK (derived fromE) is a func-
tion of s and is extremely complex due to the non-quadratic
nature ofE, it would be nearly impossible to achieve real-
time sculpting performance if the system were to assem-
ble it at each time-step based on the energy functionalE.
Therefore, our mass-spring configuration explained above
only intends to achieve the objective of minimizing the vol-
umetric distortion. More accurate implementations based
on the finite element method would be more desirable for
certain applications such as engineering design and analy-
sis. Such approaches are currently under investigation.

Figure 3 illustrates an example of four virtual springs for
a single face element. For each pointm of each face in the
finest lattice, we introduce a correspondingvirtual point, v,
whose location is defined as the midpoint of the two points
adjacent to pointm in the same face. One end of the virtual
spring is attached tom and the other end to the virtual point.
The location of the virtual point is updated dynamically as
the accompanying positions of the two points evolve over
time. The virtual springs resist any changes in their cor-
responding internal angles for each face and thereby assist
in minimizing local distortions. Note that unlike traditional
“diagonal” springs, one end-point of a virtual spring is a
mass point and the other a massless point whose position
is determined by geometry. Figure 4 shows a typical cell
without and with virtual springs. In the interest of clarity,
normal springs are drawn as straight lines.

Figure 5 provides a global view of the major steps in our
system architecture. After an initial preprocessing stage, the
simulation runs in a loop and continuously updates the state
of the dynamic solid object in real-time. At any time during
the simulation the user may modify the object’s topology,
and the system will rebuild the necessary data structures to
effect the change.

5.2. Fixed regions and local modifications

For large control lattices our model can potentially be
computationally expensive due to a very large number of

virtual
point

virtual
springs

mass
point

normal
spring

v1

v2

m2

m1

m4

m3

Figure 3. The virtual and normal springs as-
sociated with a typical face of a lattice. Mass
points are drawn as filled circles, virtual
points as filled squares. The position of mass
point m1’s virtual point, v1, is defined as the
average of the positions of m1’s neighboring
mass points: v1 = 1

2 (m2 + m4).

mass points. In order to improve system performance, our
model can be modified to constrain a set of selected control
points that are attributed to certain fixed regions. This re-
duces the amount of data that needs to be processed by the
system and thereby increases the simulation speed. Such
modifications also enable the designer to make changes
only in the localized region(s) of his/her interest without
affecting a large portion of the solid object.

The necessary modifications to the matrices are fairly
straightforward. We break the free and fixed portions of the
model into two matrix-vector multiplications that we can
then add together. Specifically, we separate each ofp and
A into two matrices:p1, p2, A1 andA2, wherep1 andp2

contain the positions of the free and fixed control points, re-
spectively, andA1 andA2 contain the weights for the free
and fixed control points, respectively. The familiard = Ap
is replaced withd = A1p1 + A2p2 so that the positions
of the fixed points inp2 correctly influence the positions in
d. Figure 6 illustrates this change. Vectord1 contains the
positions of the free points fromd. Note that there is no
need to assemble a second matrix for the fixed points ofd
since they will not appear in any matrix multiplication.

5.3. Data structures

A Catmull-Clark solid requires a somewhat sophisti-
cated data structure to store the adjacency and connectiv-
ity information of the lattice. For this purpose we used a

5

Topology change:

Re-assemble matrices

Re-initialize physical
simulation

Re-subdivide model

Pre-compute matrices

Setup physical simulation

Pre-computation:

Reset all internal spring forces to 0.0

Compute internal spring forces

For each mass point:
 - sum external forces on point
 - sum internal forces on point
 - subtract internal from external
 - divide by mass to get acceleration
 - use old velocity and new acceleration
 to get new velocity
 - use old position and new velocity
 to get new position

Use forces on mass points to compute
 forces to apply to control points

Update velocities and positions of
 control points

Run-time computation:

Subdivide solid

Figure 5. System architecture of the physical simulation.

Figure 4. A typical regular cell of a mass-
spring lattice both without and with vir-
tual springs. Normal springs are drawn as
straight lines in order to avoid cluttering the
figure. Mass points are drawn as filled circles,
virtual points as filled squares.

modified version of the radial-edge data structure [13, 6].
Given a point, edge, face or cell, this data structure can
help one determine which components comprise which ele-
ments, which elements are adjacent to which elements, etc.
This functionality is achieved through the use of numerous
arrays of pointers.

A
p

d
p

1
p

2

A2d1 A1

Figure 6. Matrices d, A and p are partitioned
to speed up the simulation.

5.4. Sculpting tools

Figures 7–10 demonstrate applications of some of the
sculpting tools in our system. The main sculpting tool in our
system is a non-compressiblerope toolthat permits the user
to interactively deform the solid. Through the use of a 3D
input device, the user can select any vertex of the discretized
lattice and drag it along any direction in three dimensions.
Forces acting on the given mass point result in a solid defor-
mation that behaves in a physically plausible manner. We
undergo a simple linear search to determine which point in
the lattice is the closest to the current location of the 3D
cursor.

We have implemented an extrusion tool for the Catmull-
Clark solid that lets the user grow protrusions from the ex-
isting solid. After using the input device to select a face

6

Figure 7. Original cube-like object before and
after deformation by the rope tool.

on the surface of the object, the user presses a button in the
GUI, and the system creates a new cell in the control lat-
tice and affixes it to the highlighted face. The size of the
new cell is calculated based on the information about the
existing cell to which it is attached, and it grows along the
normal direction of the selected face.

Trimming is supported for the subdivision solid by al-
lowing the user to select any cell in the control lattice and to
subsequently remove it. This operation, as well as the extru-
sion process, entails reconstructing most of the data struc-
tures that represent both the geometry and physical prop-
erties of the object. The topology, on the other hand, can
be updated relatively easily because of the radial-edge data
structure.

We have also implemented a useful and simple feature
that permits the user to instruct the system to reset all of
the rest lengths of the springs to their current lengths. This
has the effect of re-defining the rest state of the system to
its current state. In this way we can deform an elastic object
but force it to take on a new rest shape at any time during the
simulation. Essentially, this causes a normally elastic object
to become temporarily plastic for the purpose of sculpting.
Note that the rest lengths of the virtual springs must also be
updated to their current lengths.

Figure 8. The user highlights and then deletes
a cell of the control lattice.

Figure 9. The user highlights a face and then
extrudes material.

Control points can be fixed at run-time by moving the
cursor to the desired point and pressing a button in the GUI.
The matrices and other data structures are re-assembled on
the fly. Other parameters, such as spring stiffness and damp-
ing factor, can be modified at run-time through the GUI.

5.5. Results and time performance

We now document various solids sculpted in our system
and report their time performances in Table 1. The test plat-
form was a Microsoft Windows NT PC with a single Intel
Pentium III 550 MHz CPU and 512 megabytes RAM. As
one would expect, the update time grows linearly with an
increase in the number of control points since a mass-spring
lattice lies at the core of the physical model.

6. Conclusions

We have presented a novel dynamic framework for de-
forming and sculpting free-form solid objects. We have
devised a dynamic algorithm and implemented a system
that permits physically plausible deformation and manip-
ulation ofvirtual clay expressed by Catmull-Clark subdivi-
sion solids. Using the dynamic modeling approach, graphic

Figure 10. The user fixes the left side and un-
derside of the solid and then deforms it.

7

Sub. Initial Initial Initial Initial Data Data Data Data Update
Model Name level Points Edges Faces Cells Points Edges Faces Cells Time (ms)

Cube (33) 2 27 54 36 8 729 1944 1728 512 30
Cube (33) 3 27 54 36 8 4913 13872 13056 4096 189
Cube (43) 1 64 144 108 27 343 882 756 216 20
Cube (43) 2 64 144 108 27 2197 6084 5616 1728 121
Torus 2 24 52 36 8 680 1784 1552 448 28
Torus 3 24 52 36 8 4464 12464 11584 3584 163
Gear 2 56 116 76 16 1480 3864 3344 960 71
Tetrahedron w/ holes 3 16 42 22 1 2505 6808 6048 1744 87
Cube w/ holes 2 64 144 96 20 1900 5040 4416 1280 103
Soccer player 2 104 200 122 24 2450 6320 5408 1536 151
Cactus 2 108 212 131 26 2625 6800 5840 1664 169
Cylinder 3 15 34 28 8 3553 10144 9664 3072 110

Table 1. Various subdivision solids sculpted in our system, their sizes, and their time performance.
“Initial points”, “initial edges”, etc. refer to the number of geometric elements in the control lattice;
“data points”, “data edges”, etc. refer to the number of elements in the finest subdivided lattice.

modelers can naturally enforce various functional and aes-
thetic requirements on a free-form solid without the need
to explicitly manipulate the control vertices. Our formula-
tions, algorithms, and system techniques are very general
in the sense that they can be applied to arbitrary parametric
or subdivision solids in a hierarchical and adaptive fashion.
We envision several generalizations resulting from our cur-
rent results in the near future, including extensions to other
subdivision schemes and to other physical domains, such as
fluid dynamics and heat transfer.

Acknowledgments

The authors wish to thank Frank Dachille IX and Jihad
El-Sana for providing some of the code used in implement-
ing this system. This research was supported in part by
the NSF CAREER award CCR-9896123, the NSF grant
DMI-9896170, the GAANN grant P200A97030199 and a
research grant from Ford Motor Company.

References

[1] E. Catmull and J. Clark. Recursively generated B-spline
surfaces on arbitrary topology.Computer-Aided Design,
10(6):350–355, November 1978.

[2] F. Dachille IX, H. Qin, A. Kaufman, and J. El-Sana. Hap-
tic sculpting of dynamic surfaces. InProceedings of the
1999 Symposium on Interactive 3D Graphics, pages 103–
110, 1999.

[3] R. MacCracken and K. I. Joy. Free-form deformations
with lattices of arbitrary topology. InComputer Graphics
Proceedings, Annual Conference Series, ACM SIGGRAPH,
pages 181–188, August 1996.

[4] C. Mandal, H. Qin, and B. C. Vemuri. A novel FEM-based
dynamic framework for subdivision surfaces. InProceed-
ings of the Fifth Symposium on Solid Modeling, pages 191–
202, 1999.

[5] D. Metaxas and D. Terzopoulos. Dynamic deformation of
solid primitives with constraints. InComputer Graphics
Proceedings, Annual Conference Series, ACM SIGGRAPH,
pages 309–312, July 1992.

[6] M. J. Muuss and L. A. Butler. Combinatorial solid geome-
try, boundary representations, and n-manifold geometry. In
D. F. Rogers and R. A. Earnshaw, editors,State of the Art
in Computer Graphics: Visualization and Modeling, pages
185–223. Springer-Verlag, 1991.

[7] A. Pentland and J. Williams. Good vibrations: Modal dy-
namics for graphics and animation. InComputer Graphics
Proceedings, Annual Conference Series, ACM SIGGRAPH,
pages 215–222, 1989.

[8] H. Qin, C. Mandal, and B. C. Vemuri. Dynamic Catmull-
Clark subdivision surfaces.IEEE Transactions on Visual-
ization and Computer Graphics, 4(3):215–229, July 1998.

[9] H. Qin and D. Terzopoulos. D-NURBS: a physics-based
framework for geometric design.IEEE Transactions on Vi-
sualization and Computer Graphics, 2(1):85–96, Mar. 1996.

[10] D. Terzopoulos and K. Fleischer. Deformable models.The
Visual Computer, 4(6):306–331, Dec. 1988.

[11] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. Elas-
tically deformable models. InComputer Graphics Pro-
ceedings, Annual Conference Series, ACM SIGGRAPH, July
1987.

[12] D. Terzopoulos and H. Qin. Dynamic NURBS with geomet-
ric constraints for interactive sculpting.ACM Transactions
on Graphics, 13(2):103–136, April 1994.

[13] K. J. Weiler. Topological Structures for Geometric Model-
ing. PhD thesis, Rensselaer Polytechnic Institute, August
1986.

8

