
Dynamic Implicit Solids with Constraints for Haptic Sculpting

Jing Hua Hong Qin
Department of Computer Science

State University of New York at Stony Brook
Stony Brook, NY 11794-4400, U.S.A.
Email: {jinghua|qin}@cs.sunysb.edu

Abstract
In this paper we present a novel, interactive shape
modeling technique: Dynamic Implicit Solid Modeling,
which unifies volumetric implicit functions and powerful
physics-based modeling. Although implicit functions are
extremely powerful in graphics, geometric design, and
shape modeling, the full potential of implicit functions is
yet to be fully realized due to the lack of flexible and
interactive design techniques. In order to broaden the
accessibility of implicit functions in geometric modeling,
we marry the implicit solids, which are semi-algebraic sets
of volumetric implicit functions, with the principle of
physics-based models and formulate dynamic implicit
solids. By using “density springs” to connect the scalar
values of implicit functions, we offer a viable solution to
introduce the elasticity into implicit representations. As a
result, our dynamic implicit solids respond to sculpting
forces in a natural and predictive manner. The geometric
and physical behaviors are tightly coupled in our
modeling system. The flexibility of our modeling technique
allows users to easily modify the geometry and topology of
sculpted objects, while the inherent physical properties
can provide a natural interface for direct, force-based
free-from deformation. The additional constraints provide
users more control on the dynamic implicit solids. We
have developed a sculpting system equipped with a large
variety of physics-based toolkits and an intuitive haptic
interface to facilitate the direct, natural editing of implicit
functions in real-time. Our experiments demonstrate many
attractive advantages of our dynamic approach for
implicit modeling such as intuitive control, direct
manipulation, real-time haptic feedback, and capability to
model complicated geometry and arbitrary topology.

1. Introduction and Motivation

The efficiency and flexibility of shape modeling are
vital to the success of graphics, geometric design, and
virtual environments. Despite the prevalence of parametric
forms in visual computing fields, the traditional
representation of geometric entities such as commonly-
used analytic shapes comes from implicit functions
because of many of their attractive properties [1]. It has
been proved that every rational parametric
curve/surface/solid can be represented by an implicit
algebraic equation, but not vice versa. In contrast with

parametric forms, implicit functions have a number of
modeling advantages such as point classification,
intersection computation, and unbounded geometry.

Nevertheless, existing techniques associated with
implicit functions have certain severe shortcomings. First,
effectively digitizing and rendering an implicit function is
oftentimes far from trivial. It is extremely difficult to
control the shape of implicit solids while re-rendering the
modified regions fast enough for their use within an
interactive environment. Second, a designer often has no
intuitive and quantified understanding on the effect of
altering polynomial coefficients or adding/deleting
components. The coefficients provide neither direct,
natural geometric interpretation nor intuitive insight into
the underlying shape. Third, there are no convenient tools
for the intuitive shape control of this type of algebraic
solids. Moreover, general implicit functions usually have a
property of global control. Flexible and direct modeling
techniques for implicit solids remain under-explored in
general.

Physics-based modeling techniques can alleviate many
of these problems by augmenting geometric objects with
physical attributes such as mass, damping and stiffness
distributions. For implicit functions, however, since their
geometry is generated indirectly from the zero-set of their
function evaluation, we cannot directly associate physics
with the underlying zero-set because of the time-varying
nature for the zero-set geometry. Note that, this is perhaps
the most difficulty matter that prevents the integration of
physics-based modeling and implicit representations. We
propose a feasible technique to overcome this difficulty.
Therefore, geometric parameters can be hidden from users
through the use of natural, force-based interfaces that
facilitate direct manipulation of solid objects. Our system
synchronizes the geometric and physical representations of
objects in order to maintain the underlying geometric
structures of the sculpted solids. Such dynamic and
interactive approaches can provide users with a natural,
force-based interface and geometric interface at the same
time. Physics-based modeling does not attempt to replace
existing geometry-based interfaces but rather to augment
them with additional flexibilities.

We also develop a haptic interface and provide a suite
of haptic sculpting tools in our system, in order to further
improve physics-based modeling techniques. This is
because both haptics and dynamic models depend on real-
world physical laws to govern the interaction of dynamic

objects and the realistic simulation. We observe that the
integration of haptic interface and dynamic implicit
models can maximize the potential offered by both
physics-based modeling and implicit functions. Haptics
provides users a hand-based mechanism for intuitive,
manual interactions within virtual environments towards
realistic tactile exploration and manipulation. With a
standard haptic device, our approach permits users to
interactively sculpt virtual materials having realistic
properties and feel the physically realistic presence with
force feedback throughout the design process. Force
feedback provides additional sensory cues to designers.
This tactile exploration can afford designers to gain a
richer understanding of the 3D nature.

2. Research Contribution

In this paper we integrate volumetric implicit functions

and powerful physics-based modeling into one single
framework: Dynamic Implicit Solid Modeling, which
permits interactive and direct manipulation of implicit
solids in real-time. Further enhancing our modeling
framework with a haptic interface makes the framework
more powerful and realizes more potential of dynamic
implicit functions.

In our system, the sculpted object is evaluated as a
level-set of a volumetric implicit function defined over a
three-dimensional working space. Our volumetric implicit
functions [9] integrate implicit functions with parametric
representations. It should be noted that in [9] there are
neither material quantities nor dynamic behaviors in the
system. The direct manipulation was achieved by solving a
static linear system. The haptic simulation was derived
directly from the geometric representation, and it is yet to
reflect the true physical feeling when interacting with real
deformable material. We now propose a novel technique
to associate physics with implicit representations. Physical
attributes are assigned inside the working space. In our
framework the inherent control coefficients of the implicit
functions dictate the shape geometry, while the physical
attributes govern the dynamic behavior and facilitate the
direct manipulation. Rather than modifying the
coefficients associated with the volumetric implicit
function as exhibited in [5], our sculpting tools support the
direct editing of implicit functions' scalar values. Our
algorithms can automatically determine all of the unknown
control coefficients and effectively reconstruct a new
volumetric implicit function after the local/global free-
form deformation. The additional constraints allow users
to gain more sophisticated control over the dynamic
models. Our system offers a wider array of intuitive
sculpting tools (especially the haptics-based tools)
responsible for the effective construction of various
complicated geometric shapes with diverse topologies.

To the authors' best knowledge, there is little work
about integrating physics-based modeling with volumetric
implicit functions and applying physics-based or haptic
tools on density-based volumetric datasets due to the

aforementioned difficulties. Our work aims to incorporate
the elasticity into implicit functions and advance the state
of the knowledge in the effective integration of implicit
functions, physics-based modeling, and haptic sculpting.

3. Background Review

3.1 Implicit Functions

Blinn [3] demonstrated that implicit functions are well
suited for both scientific visualization and the modeling
tasks in computer graphics. Hoffmann [13] systematically
reviewed the implicit function techniques including
implicitization, parameterization, and parametric/implicit
conversion in CAGD. Bajaj and Ihm [14] presented an
efficient algorithm to implement Hermite interpolation of
low-degree algebraic surfaces with C1 or G1 continuity.
Note that, neither point nor curve interpolation is an
attractive mechanism for defining an implicit surface
because it is difficult for designers to predict the surface
behavior beyond interpolating curves and points. In order
to create the implicit surfaces easily and gain more control
on them, Bloomenthal et al. [1][2] used skeleton methods
to construct implicit surfaces and Hart et al. [10] proposed
a method of finding the critical points of implicit surfaces.

Implicit functions can also be used to represent a solid.
Commonly-used techniques includes Boolean operations
and functional compositions. The common feature
essential to all implicit solid modeling methods [15] is the
creation of an oriented three-dimensional boundary surface
which partitions the entire 3D space into two distinct
regions, namely the one occupied by the solid interior and
the one outside of the defined solid. Recently, Raviv and
Elber [5] presented a 3D interactive sculpting paradigm
that employed a set of scalar uniform trivariate B-spline
functions as underlying representation. Users can
indirectly sculpt objects to a desirable shape by directly
modifying relevant scalar control coefficients of the
underlying functions with geometric tools. In the past, the
representation of sculpted objects might be of discrete
type, e.g., [4]. Raviv and Elber [5] pioneered the use of a
continuous characteristic function for volume sculpting.

3.2 Physics-based Modeling

Conventional geometric modeling may be inconvenient
for representing complicated solids, because modelers are
faced with the tedium of indirect shape modification and
refinement through time-consuming operations on a large
number of control vertices. In contrast, physics-based
models respond to externally applied forces in a very
intuitive manner. The dynamic formulation marries the
model geometry with time, mass, damping and constraints
via Lagrangian equations of motion. Dynamic models
produce smooth, natural motions that are intuitive to
control. In addition, they facilitate direct manipulation of
complex geometries and topologies.

Free-form deformable models were first introduced to
computer graphics by Terzopoulos et al. [18] and further
developed by Pentland and Williams [19], and Metaxas
and Terzopoulos [20]. Qin and Terzopoulos introduced D-
NURBS surfaces, an extension to traditional NURBS that
permits more natural control of the surface geometry [12].

3.3 Haptic Interface

Haptic rendering is a process of applying forces through
the use of force-feedback devices and augmenting a virtual
environment with haptic interaction. Thompson et al. [6]
derived efficient intersection techniques that can be
applied to nearly any type of haptic interfaces. Dachille et
al. [16] developed a haptic interface to permit the direct
manipulation of dynamic B-spline surfaces. McDonnell et
al. [7] employed haptic toolkits to explore the dynamic
subdivision solids. Hua et al. [9] presented a haptic
interface for volume sculpting. Avila et al. [8] presented a
haptic interaction that is suitable for both volume
visualization and modeling applications. Despite the
widespread utilizations of haptics in visual computing
areas, haptics-based interaction was primarily applied to
parametric representations for shape modeling and
sculpting. We integrate the principle of haptic modeling
with the direct manipulation of dynamic implicit solids
and employ force-based, haptic tools to directly work on
density-centered volumetric datasets.

4. Dynamic Volumetric Implicit Functions

4.1 Spline-based Volumetric Implicit Functions

Throughout this paper, we utilize scalar trivariate B-
spline functions as the underlying shape primitives for
object representation. The use of implicit B-spline
functions for solid modeling is strongly inspired by their
attractive properties including simplicity, generality, local
control, etc. The generic B-spline functions are of the
following form:

∑∑∑
−

=

−

=

−

=
=

1

0

1

0

1

0
,,,)()()(),,(

l

i

m

j

n

k
tksjriijk wDvCuBpwvus , (1)

where),,(wvus represents the scalar value at position (u,
v, w) in a parametric domain. u, v, w change from 0 to U,
V, W, which represent the size of sampling points along
three dimensions of the parametric domain. ijkp are the
scalar control coefficients with the domain of I, J, K that
are [0, l-1], [0, m-1], and [0, n-1], respectively. In addition,

)(, uB ri ,)(, vC sj and)(, wD tk are the basis functions
corresponding to ijkp , evaluated at (u, v, w). The degrees
of the three basis functions are r-1, s-1, and t-1,
respectively. To simplify the mathematical notation, (1)
can also be expressed as the following matrix form:

pDCBd)(⊗⊗= , (2)
where ⊗ denotes Kronecker Product, and

]),0[],,0[],,0[(],,[WkVjUis T
ijk ∈∈∈= ��d ,

])1,0[],1,0[],1,0[(],,[−∈−∈−∈= nkmjlip T
ijk ��p ,

B, C, and D are matrices composed of the sampling of
basis functions.)(DCB ⊗⊗ could be precomputed in
order to save runtime computation and improve real-time
performance. To simplify the mathematical derivation in
the rest of the paper, we use A to represent)(DCB ⊗⊗ .
Collecting all the level-sets whose return values are greater
(or smaller) than a given threshold, we could define an
implicit solid:

>
=

0

),,(
ww

zyxFw
. (3)

In our work we shall collect different B-spline patches
defined over the 3D working space to form a volumetric
implicit function that can be collectively used to represent
objects of complicated geometry and arbitrary topology.
Note that, significantly different from commonly-used
parametric B-splines, implicit B-spline functions formulate
the scalar value distribution in a 3D space where implicit
solids are uniquely defined as semi-algebraic point sets. In
our system, we enhance the scalar B-spline representation
power by incorporating the modeling advantages from
hierarchical splines, generalized CSG-based Boolean
operations, and non-uniform knot insertion.

Consider N B-spline patches in the sculpting space,
which are located at any location and with any orientation.
In general, these patches may be formulated by different
number of control coefficients in order to achieve the goal
of multiresolution analysis and level-of-details control.
Then the scalar value at the location (x, y, z) can be
computed as

∑
=

=
N

i
ii zyxszyxF

1
)),,((),,(T , (4)

where iT is an affine transformation from the Euclidian
space to the parametric domain of patch is . Since the
trivariate B-spline has the affine invariance property, this
transformation can be easily implemented. For each
different patch is , there is a corresponding transformation

iT . Now),,(zyxF becomes a new volumetric implicit
function defined over the 3D working space. In essence,
(4) is a hierarchical organization of the N patches. Without
loss of generality, we make use of cubic B-splines with
nonperiodic knot vectors. In order to make the boundaries
of different trivariate patches achieve 1C continuity, the
first and last four layers of control coefficients along three
principal directions of the parametric domain should be set
to zero.

Users may also intend to sculpt implicit solids to form
sharp features over their boundaries or modify the
continuity requirements across their smooth boundaries. In
light of this demand from users, our system provides CSG-
based operations on any user-defined trivariate patch in
order to facilitate the rapid construction of complicated
models satisfying many feature-oriented requirements.
Therefore, complicated geometry is readily available in
our system through the use of

)),,((),,(
1

zyxszyxF ii

N

i
TΩ

=
= , (5)

where Ω is a Boolean operation such as Union,
Intersection, or Difference. In addition, iT and is have the
same geometric meaning as those appeared in (4). In our
system, the Boolean operation information will be stored
in a tree structure in order to speedup the data query.

Our system allows users to specify a non-uniform vector
during the initialization phase of the object design session.
In addition, users could insert more knots anywhere into
current knot vector at any time during the sculpting
process. When new knots are inserted, the system will
generate corresponding control coefficients and the
sculpted object will be reevaluated upon the refined knot
vector. Thus, the underlying model represented by
volumetric implicit functions is essentially a non-uniform
scalar B-spline.

Through different combinations of these three
techniques, our system could offer users a large array of
modeling operations and enhance the already-powerful
shape variation of implicit B-splines with the additional
flexibility in a hierarchical fashion.

4.2 Dynamic Implicit Solids

In order to introduce physics into our system, the
sculpted object of a B-spline based implicit function is
discretized into a voxel raster. Every voxel contains a
scalar value, called density value, sampled at a grid point.
The volumetric implicit function described in Section 4.1
is employed to assign the density value to the sample
points to indicate if there is material at that location. The
function will be used to formulate the density distribution
over the 3D working space and represent the sculpted
object by a given level-set. Fig. 1 shows a simple sculpted
object and its corresponding voxelmap in a 3D space. This
voxelmap defines a function, where the solid particles
(colored in dark) denote locations in which material exists
and the empty particles (colored in gray) denote locations
in which there is no material. Note that, in our system the
characteristic function is not a binary function, rather it is
a continuous function.

 (a) (b)
Fig. 1. (a) A simple sculpted object. (b) Its
corresponding voxelmap.

In the discretized working space, we can use
Apd = (6)

to formulate the density values associated with the
sampling points in a patch. A is a sparse basis matrix that
contains weights given by our spline-based volumetric
implicit functions.

The discretized dynamic implicit solid has material
quantities such as mass, damping, and stiffness
distribution. These values are defined as functions

),,(wvuµ ,),,(wvuγ and),,(wvuρ , respectively, which
often can be considered to be constant. However, these
material distributions are allowed to be modified by users
interactively and directly over the solid model in real-time.
The discretized solid is modeled as a collection of mass-
points connected by a network of springs across nearest
neighbors. Here we use a mass-spring model because of its
simplicity and the critical need of real-time haptic volume
sculpting. Since we employ volumetric implicit functions
as the solid representation, we shall consider our models in
4D space rather than 3D space. Fig. 2 shows the mass-
spring network in the vicinity of a mass point.
 (xi,j+1,k ,di,j+1,k)

 (xi,j,k-1 ,di,j,k-1)

 (xi-1,j,k ,di-1,j,k) (xi+1,j,k ,di+1,j,k)

 (xi,j,k+1 ,di,j,k+1)
 (xi,j-1,k ,di,j-1,k)

Fig. 2. The mass-spring network in the vicinity of
a point P(xi,j,k , di,j,k), where xi,j,k represents the
position of a mass point mi,j,k in the 3D space, di,j,k
is the density at that position.

We refer those springs as "density springs". This is
because, these springs are unconventional in a sense that
they are significantly different from ordinary springs
commonly-used in parametric deformable models. Our
special springs do not change the geometric position xi,j,k
of the mass mi,j,k at all. However, they permit the
magnitude change of the density di,j,k of the mass mi,j,k,
which is the vector component of the forth dimension.
Essentially, this new type of springs will attract density
values of neighbors. When users manipulate the dynamic
implicit solids, the density values are changed by the
mass-spring system. Consequently, this results in the
deformable behavior of the object’s shape modeled by the
scalar B-splines. This novel approach affords a systematic
mechanism for users to directly manipulate arbitrary
implicit functions and their different level-sets without the
need to modify their associated control coefficients. We
will explain this new technique and its system
implementation in details in the following and Section 5.2.

The motion equation of all mass-points is formulated as
a discrete simulation of Lagrangian dynamics:

dfKddDdM =++ DDD , (7)
where M is a mass matrix, D is a damping matrix, K is a
stiffness matrix, and the force at every mass-point in the
solid is the summation of all possible external forces:

∑= extd ff . The internal forces are generated by the

connecting springs, where each spring has force
)lk(lf 0−= according to Hook’s law. In the system the

geometric positions of mass-points do not change and only
density values change. So only the component of forces
along the density axis will be taken into account in the
dynamic simulation. The rest length of each spring is
determined upon initialization, however, it is free to vary
if plastic deformations or other non-linear phenomena are
desired.

Since all the discretized points and springs are
constrained by the spline-based volumetric implicit
function, we shall formulate the motion equation of
physical behavior for all the control coefficients that
define the scalar B-splines. We augment the discrete
Lagrangian equation of motion with geometric and
topological quantities related to the volumetric implicit
function. By multiplying each side with ΤA and
substituting d with Ap, we obtain:

dfAKApApDAApMAA ΤΤΤ =++ DDD
Τ . (8)

Therefore, we can directly compute the acceleration of
the control coefficient vector based on the sculpting forces
in the discretized space:

dfAKdAdDApMAA ΤΤΤ =++ ���
Τ ,

KdAdDAfApMAA d
ΤΤΤ −−= ���

Τ ,

)()(1Τ KdAdDAfAMAAp d
ΤΤΤ− −−= ��� , (9)

Then the model’s control coefficients and their velocity
can be computed using a forward Euler method:

t
t

iii

iii

∆+=
∆+=

+

+

ppp
ppp
D

DDDD

1

1 . (10)

The updated control coefficients 1+ip are further used
to update the discretized model defined by 11 ++ = ii Apd .
As a result, the new dynamic approach can continuously
evolve the implicit functions, and therefore permit users to
directly work on both the level-set geometry and the
enclosed material distribution with a continuous visual
feedback. Although the more robust, implicit Euler solver
is readily available in our system, we employ a simpler,
forward method for the purpose of real-time, haptic
sculpting.

5. Interactive Techniques

Our system provides two primary types of sculpting
tools. One type of tools is called "geometric tools", and the
other one is called "force-based tools". Whenever a
sculpting tool is used to sculpt the object, the density
values of the working space at some regions will be
modified correspondingly. Then the system will
reconstruct the volumetric implicit function to represent
the new, modified object undergoing deformation. By
using local Marching Cubes technique [11][17], the iso-
surface of the object could be displayed interactively.

By integrating physics-based modeling with a haptic
interface, our force-based tools allow users to reach toward

an object, feel the physical presence of its shape, and
sculpt free-form solids with force feedback. Through the
use of many haptic tools available in our system, users can
obtain both intuitive feeling and better understanding of
the virtual material. The feedback forces are computed
based on the object geometry and the associated physical
properties.

Since the sculpted object is discretized in a voxel raster,
usually there are many homogeneously empty regions
outside the object of interest. If those regions could be
quickly separated from the sculpting region, it will
significantly reduce the memory consumption and speed
up the volume rendering and modeling tasks. Therefore, an
octree-based data structure is employed in our system,
which can locate where the modification is performed and
only locally updates the volumetric implicit function for
efficiency purpose. Our system uses Marching Cubes
technique to render the iso-surface of the sculpted object.
The local update property can speed up the Marching
Cubes rendering by only conducting the re-evaluation task
on the modified parts.

5.1 Geometric Tools

5.1.1 Geometric Tool Modeling

Tools are represented by any 3D implicit function
),,(0 zyxGw = . It is easy to determine whether a location

is inside the tool volume by simply evaluating the
function. In order to prevent object spatial aliasing, a
filtering operation must be used inside the tool volume.
The filtering algorithm used in our system is similar to the
one in [4]. Given a location (x, y, z), the shortest distance
from (x, y, z) to the boundary of the tools is computed
using the evaluation function. Then this shortest distance
is used to filter the density values at the location (x, y, z).
Here we use a linear filter in the interest of simplicity. The
minimal density value is assigned to the boundary and the
maximal one is assigned to the center of the tool. The
density values at the intermediate locations are linearly
interpolated.

5.1.2 Tool-Object Interaction

When users assign a sculpting tool to a new location,
the tool is mapped to the coordinate system, which
contains the sculpted object. The bounding box of the tool
is then computed. The density values inside the tool
volume are modified as described in Section 5.1.1. If the
tool is to add material, those density values should be
greater than the object iso-value. If the tool is to remove
material, those density values should be less than the iso-
value. After this initial modification on material
distribution, we have to reconstruct the volumetric implicit
function of B-splines according to the new density
distribution. The mathematics of the above manipulation is
formulated as follows:

newnew dAp = , (11)
where newd represents the new density distribution over
the sculpted patch region and newp are new control

coefficients. Because of the local support property of B-
splines, only a very small subset of the control coefficients
needs to be modified. Hence, we only need to solve this
system of linear equations within the tool-sculpting region.
Therefore, (9) can be further simplified into:

modmod' dpA = , (12)
where modd and modp only come from the modified
region. A' is a small subset of the original basis matrix,
which is corresponding to the local modified region.

By using the least-square fitting, modp could be derived
as follows:

[] mod
1

mod dA'A'A'p TT −= . (13)
After the new control coefficients are generated, the

system uses the Local Marching Cubes algorithm to render
the modified part in order to generate the new iso-surface
of the sculpted object.

Demonstrated in Section 5.1.1, our geometric tools
could be easily defined using any implicit functions.
Therefore, using the geometric tools users can create
objects of complicated geometry and arbitrary topology
with ease. Fig. 3 shows a number of sculpted examples
using our geometric toolkits including sphere-based
carving and addition tools, cylinder-based carving and
addition tools, rectangle-based carving and addition tools,
torus-based carving and addition tools, etc.

Fig. 3. Sculpted examples using geometric tools.

5.2 Force-based Tools

Although geometric tools are powerful to create
complicated volumetric shapes, they constitute a purely
geometric representation. To perform free-form
deformation, modelers have to design complicated tools
based on popular function primitives. This indirect shape
modification and refinement are time-consuming
operations. To alleviate these problems, our system offers
force-based tools, which allow users to perform free-form
deformation with ease.

5.2.1 Free-form Deformation via Forces
In order to directly deform the implicit solids via force-

based physical manner, we must address the important
issue of force mapping. Note that, the generated forces
will be input to the dynamic system as external forces and
will also be fed back to a haptic device. Therefore, any
force mapping algorithm should be meaningful and
suitable for both the dynamic simulation and the haptic
interaction.

In our system the simple force-based tool allows the
user to grab the nearest mass-point in the solid. In
addition, our system provides other tools to allow users to
grab a subset of the mass-points in a nearby region
simultaneously. The force is then distributed among
nearby points using a user-defined function),,(zyxβ ,
which can be constant, Gaussian, spherical, cylindrical,
conical, or any other distributions.

Let us consider a point-based force tool first. To
illustrate the concept clearly, we shall use a one-
dimensional implicit function to describe how to
implement the force mapping mechanism in our system.
More complicated situations in 3D space can be trivially
generalized. For arbitrary one-dimensional implicit
function the zero-set is just a set of points. As shown in
Fig. 4, suppose that a user wants to move one point of the
zero-set, x0, to x1, our system then automatically generates
a series of forces f applied on every mass point between x0
and x1. As a result, these forces will increase the density
value from)(s1 x to)(s2 x correspondingly at all the
affected locations. Eventually, the density value at x1 will
be zero and the density values between x0 and x1 will be
greater than zero. So the iso-surface evolves from x0 to x1,
undergoing real-time deformation controlled by the
numerical integration of Lagrangian dynamics. To further
convey this idea, we can imagine that the above process is
equivalent to the lifting of the "density height" for every
affected mass-point via applied forces.

 springs

 x1 x0

 (a) (b)
Fig. 4. (a) Iso-surface changing from x0 to x1 via
applied force f, which is proportional to the gray
area. (b) Close-up view of the mass-spring
network of)(s1 x , where f is applied on every
mass-point between x0 and x1.

In our system the sculpting force is calculated directly
from the continuous representation by performing
integration from the starting point to the ending point
along the direction set by the force vector. In this one-
dimensional example, the force vector is simply a straight
line-segment, so

∫−= 1

0

)(1

x

x
dxxsf .

Because 0)(1

0
1 <∫

x

x
dxxs in this example, the minus

sign outside the integral operator makes the force positive,
matching the case shown in Fig. 4. In our system we
define the following conventions to keep the consistency.
The positive force is to increase density value and the
negative force is to decrease the density value. Note that,
f is decreasing over time as x0 moves towards x1.

The force mapping mechanism of our system is very
general, which can deal with iso-surface enlarging (as
shown above) as well as iso-surface shrinking with the
same force calculation formula. In Fig. 4, suppose that the
user intends to move x1 to x0 instead, then the force
calculation will be

∫−= 0

1

)(2

x

x
dxxsf .

Obviously, f becomes negative, which will decrease the
density values between x0 to x1 from)(s2 x to)(s1 x
correspondingly.

Now we shall generalize our force mapping technique to
3D domain,

∫−=
C

dcu,v,wf)s(, (14)

where C is the force vector, s(u, v, w) is the density
distribution function in the 3D working space. Using the
parametric form (u(t), v(t), w(t)) to represent C, then we
have

dttwtvtutwtvtuf
t

t
)()()())(),(),(s(2221

0

��� ++−= ∫ . (15)

If assuming the force vector as a straight line, then C
can be formulated as follows:

−+=
−+=
−+=

twwwtw
tvvvtv
tuuutu

)()(
)()(
)()(

010

010

010

 [0,1]∈t ,

where),,(000 wvu is the starting point of the force vector
C and),,(111 wvu is the ending point. Then,

∫ −+−+−+⋅−=
1

0 010010010))(,)(,)(s(dttwwwtwwwtuuulf ,

where 2
01

2
01

2
01)()()(wwvvuul −+−+−= .

In a more general case, if C is a spatial curve instead, a
general curve-based tool will be readily available in our
system without any additional difficulty. Users can pre-
define a curve and limit the force mapping only along that
curve. Therefore, when users sculpt the object with the
curve-based tool, the integral of forces is along the curve
force vector. The generated forces are applied on all the
mass-points sitting on the curve. For the more advanced,
area-based tools, our system can discretize the area into a
set of sampled (straight and/or curved) tracks, then
perform integration along every track, and result in a more
sophisticated deformation in any user-specified area. In a

nutshell, area-based tools allow users to manipulate a set
of mass-points instead of only one point. Fig. 5 shows
several examples for force-based deformation.

Fig. 5. Free-form deformation with force-based
tools, where the arrows denote the directions of
the applied forces.

5.2.2 Force Feedback

In order to enhance the realism of the virtual sculpting,
our system offers force feedback, which can give users a
realistic feel of the virtual objects. Thus, users can gain a
richer understanding of their sculpted model. Our work
significantly extends the notion of simply touching
compliant objects (i.e., haptic rendering) to interactively
and directly sculpting of virtual solids (i.e., haptic
modeling).

From the standpoint of volume sculpting, the following
problems must be addressed in order to provide
meaningful force feedback for haptic interaction:

a) Force computational rate: the computational rate
must be high and latency must be low in order to
offer users a realistic illusion in the virtual
environment.

b) Generation of contacting forces: this creates the
"feel" of an object. Contacting forces can reflect the
user's feeling about the stiffness of the object, its
damping distribution, and other material properties.
Therefore, the accurate computation of contacting
forces is vital.

By adding external input forces based on the user's
actions, the iso-surface deforms according to the physical
properties of the model. The external forces that apply to
the model are generated using the technique described in
Section 5.2.1. In order to satisfy the haptic refresh
requirement, we use Gaussian Quadrature method for the
fast evaluation on the integral. Along each force vector,
the continuous function is only evaluated at four sampled
points to effectively calculate the integral.

Whenever the force-based tool pulls or pushes on mass-
points to introduce forces along the force vector, an equal
and opposite force is generated at the other end of the
force vector (i.e., the user's cursor). The force is calculated

at 1000Hz and transmitted to the haptic device where the
force magnitude is then converted to motor torques leading
to a real force at the cursor position. When the iso-surface
gradually moves toward the user's cursor, the force
decreases gradually to zero. Then the user is connected
directly to the iso-surface. The gradual decreasing property
prevents high-variational jerking forces from occurring,
which otherwise can potentially injure the user of the
haptic device or damage the device.

5.3 Enforcing Additional Constraints

Enforcing constraints offers additional intuitive control
of a shape during the physics-based design process.
Constraining geometric and physical properties of
dynamic implicit solids can facilitate feature-centered
design, which can significantly improve the system
performance. Typical geometric constraints include point,
curve, and normal constraints. In order to achieve the real-
time performance in our haptic sculpting system, all the
constraints are implemented as additional constraint
springs, which transform constraints to external constraint
forces and then add them to models.

5.3.1 Point Constraints
Suppose that a user wants to constrain the density value

of a mass-point at (x, y, z), an additional high stiffness
spring is then attached between),,,(dzyx and)',,,(dzyx ,
where 'd is desired density value. If setting 0'=d , then
(x, y, z) is lying on the iso-surface. Otherwise, (x, y, z) is
lying inside the iso-surface if 0'>d or outside the iso-
surface if 0'<d . Through the use of point constraints, the
user can let the iso-surface interpolate a set of points.

5.3.2 Curve Constraints
Curve constraints are implemented based on the same

technique as used in point constraints. A user can specify a
curve using a parametric form or an implicit form.
Alternatively, the user can sketch it with a free hand. Then
the curve is discretized to a set of points with the total
number of N. Each spring is connecting between (xi, yi, zi,
di) and (xi, yi, zi, di'), where i ranges from 0 to N. If setting

0'=id , then the iso-surface interpolates the curve network.
Fig. 6 shows an example subject to the point and curve
constraints.

Fig. 6. Illustration of point constraints and curve
constraints during a design process. Dark color
points indicate off-surface points, light color
points denote on-surface points, and the two
specified curves must be on the iso-surface.

5.3.3 Sculpting Localized Regions
Since our volumetric implicit function uses B-splines as

underlying constituents, local support can be easily
accomplished. Designers can specify the region R in which
he/she wishes the deformation to occur. Control
coefficients and mass points outside the specified region
are not processed by the system and remain fixed. For the
localized region R,

RR pAd '= ,
where 'A is a small subset of the original basis matrix.

The haptic device we are currently using requires
1000Hz refresh rate. This hardware limitation only permits
the real-time simulation of a few thousand mass-points.
Therefore, local sculpting is much more attractive for the
system to deal with large sculpted objects by constraining
the physical simulation to occur in a local region and
speeding up frame rates. Fig. 7(a) shows a localized region
with a semi-transparent box, which limits physical
operations within its boundary.

5.3.4 Physical Property Constraints

Through the use of physical property constraints, users
can locally modify the mass distribution, spring stiffness,
or rest length for springs. Mass modification allows users
to control how quickly a part of a sculpture can move in
response to the external force. Regions of high mass
density tend to move slowly while less massive parts
respond quickly to a deformation force.

Stiffness modification can help users constrain certain
parts of a sculpted object subject to soft constraints. Users
can fix a region by increasing the stiffness of that part.
This is similar to the popular penalty method. Therefore,
the normal deformation forces will have less effect on the
density distribution of the high stiffness region.

Rest-length modification can make a specified region
deflate or inflate. With the decrease of the rest length, all
the springs inside the region generates recovery forces,
which results in the effect of solid shrinking. To produce
the inflation effect, the rest length is increased instead. Fig.
7(b) shows an inflation operation within the localized
region.

 (a) (b)
Fig. 7. Inflation operation performed inside the
bounding box around the nose of a mask.

6. Implementation

Our system is implemented on a Microsoft Windows
NT PC with a 550MHz CPU and 512MB RAM. A

SIMULATION
THREAD

Is a geometric tool or
force-based tool?

Initialize geometry
and physics

Compute internal
and external forces

Map forces to
control coeffiecients

Initialize geometry
and physics

Update control
coefficients

Object-Tool
interaction

Solve the control
coefficients

Update
the sculpted object

Object
Representation

Local Marching
Cubes Algorithm

Update display

GRAPHIC
THREAD

HAPTIC
THREAD

Get haptic input

Force mapping

Send back force

Is a force-based tool?
No

Yes
force-based

tool
geometric

tool

 Fig. 8. User interface. Fig. 9. The structure of multithreads.

PHANToM 1.0 3D Haptic input/output device from
Sensable Technologies is employed to provide a natural
and realistic force feedback. The entire system is written in
Microsoft Visual C++ and the graphics rendering module
is built upon OpenGL. Fig. 8 shows the system interface.

When using haptic tools, to reduce the latency and
maximize the throughput, we resort to a parallel technique
that can multithread the haptics, graphics, and sculpting
processes with weak synchronization. This technique leads
to a significant performance improvement, and ultimately,
a parallel implementation of haptic sculpting, should the
high-end multi-processor environment is available.
Therefore, our system can be readily extended to many
different configurations. Fig. 9 shows the structure of the
multithreads, where thick arrows represent data flow and
thin arrows represent control flow.

The haptic loop is implemented in a single thread. It
maintains the haptic refresh rate, which is no less than
1KHz. This requirement is critical to the realistic feedback
of haptic interaction. If the update rate were below the
threshold of 1KHz, users would have an uncomfortable
feeling. In our system, the haptic thread has the highest
priority.

The simulation loop is implemented in another thread. It
controls the physical simulation. In order to keep up with
the frame rate, the physical simulation is limited to a small
region by using the techniques described in Section 5.3.3.
Usually users' design intention and their sculpting
operations would not exceed this limited region during one
design cycle. In order to keep the system more stable we
employ a simple adaptive method to adjust the simulation
time-step. Essentially, if ipDD is greater than a specified
threshold, we shall use half of the previous time-step as
the current simulation time-step.

The graphics loop is developed to handle the rendering
of volumetric objects. The rendering task makes use of
local Marching Cubes algorithm and only updates the very
small region in order to achieve interactive rendering rate
and make graphics display consistent with sculpting
operations, physical simulation and force feedback.

7. Results
We have developed a modeling system for haptic

sculpting of dynamic volumetric implicit functions based
on non-uniform scalar B-splines and physics-based
modeling. The dynamic implicit solids can be generated
with a varying number of control coefficients and
sampling rates and with any user-specified physical
properties. We have conducted a large number of
experiments and documented the running time for the
sculpting of dynamic implicit solids. The experiments are
based on a working space sampled at 128128128 ×× . The
geometric tool size is given as the number of data points
that the tool affects. The results are detailed in Table 1.

Control coefficient
resolution Tool size Update time

(ms)
101010 ×× 1.5
202020 ×× 11 646464 ××
404040 ×× 92
101010 ×× 2
202020 ×× 20 128128128 ××
404040 ×× 151

Table 1: Run time of object interaction with
geometric Tools.

Control coefficient
resolution Sampling points Explicit time

(ms)
555 ×× 0.5 555 ××
101010 ×× 3.2
101010 ×× 22 101010 ××
151515 ×× 50

151515 ×× 151515 ×× 120

Table 2: Physical simulation timings using an
explicit solver.

We have also examined the timings achieved for
physical simulations using various configurations of the
control coefficients and the discretized space samples (see
Table 2).

Within our dynamic implicit modeling framework and
without using any other external resources, we have
created several interesting objects and scenes from scratch
as shown in Fig. 10 (see color plates).

8. Conclusion

We have presented a novel haptics-based dynamic solid
modeling framework that employs trivariate scalar non-
uniform B-splines as underlying representation. All the
volumetric objects sculpted in our modeling system are
characterized by piece-wise implicit functions. We have
proposed a new approach that unifies implicit functions,
parametric representations, and physics-based modeling
within a single haptics-based solid modeling framework.
We have developed a large variety of algorithms and
toolkits that afford designers the intuitive mechanism of
interactive and direct manipulation of implicit solids with
force feedback in real-time. The proposed force mapping
technique can be easily extended to any other haptic
sculpting applications without additional difficulties. More
importantly, our physics-based force tools can be directly
employed to act on density-based volumetric datasets. We
have also incorporated three popular modeling techniques:
hierarchical B-splines, CSG-based functional composition,
and knot insertion into our framework, making our
dynamic implicit solid modeling techniques even more
powerful and flexible to handle both complicated
geometry and arbitrary topologies.

Our experiments have demonstrated that our modeling
framework and direct editing techniques can not only
overcome the existing disadvantages associated with
conventional modeling of implicit functions, but also
realize all the potentials exhibited in both implicit
functions and physics-based modeling in visual computing
fields. The powerful 3D haptics-based interface of our
system is more intuitive and natural than 2D mouse-based
interfaces, making it possible for our dynamic implicit
solid modeling framework to appeal to a spectrum of users
ranging from highly-trained engineering designers,
computer professionals, artists, to even computer
illiterates. Our sculpting system permits designers to create
real-world, complicated models in real-time.

Acknowledgements

This research was supported in part by the NSF
CAREER award CCR-9896123, the NSF grant DMI-
9896170, the NSF ITR grant IIS-0082035, the NSF grant
IIS-0097646, Honda Initiation Grant, and Alfred P. Sloan
Fellowship.

References
[1] J. Bloomenthal and B. Wyvill. Interactive techniques for

implicit modeling. Computer Graphics, Vol. 24, No. 2, pp
109-116, March 1990.

[2] J. Bloomenthal. Introduction to implicit surfaces. Edited by
J. Bloomenthal with C. Bajaj, J. Blinn, etc. Morgan
Kaufmann, 1997.

[3] J. F. Blinn. Generalization of algebraic surface drawing.
ACM Trans. On Graphics, Vol. 1, No. 3, pp 235-256, July
1982.

[4] T. A. Galyean and J. F. Hughes. Sculpting: An interactive
volumetric modeling technique. Computer Graphics, Vol.
25, No. 4, pp 267-274, July 1991.

[5] A. Raviv and G. Elber. Three dimensional freeform
sculpting via zero sets of scalar trivariate functions. In Proc.
of 5th ACM Symposium on Solid Modeling and
Applications, pp 246-257, 1999.

[6] T. V. Thompson, D. E. Johnson, and E. Cohen. Direct
haptic rendering of sculptured models. In Proc. of the 1997
Symposium on Interactive 3D Graphics, pp 167-176, 1997.

[7] K. T. McDonnell, H. Qin, and R. A. Wlodarczyk. Virtual
Clay: A real-time sculpting system with Haptic Toolkits. In
Proc. of the 2001 Symposium on Interactive 3D Graphics,
pp 179-190, 2001.

[8] R. S. Avila and L. M. Sobierajski. A haptic interaction
method for volume visualization. In Proc. of the 7th IEEE
Visualization ‘96, pp 197-204, 1996.

[9] J. Hua and H. Qin. Haptic sculpting of volumetric implicit
functions. In Proc. of Ninth Pacific Conference on
Computer Graphics and Applications, pp 254-264, 2001.

[10] J. C. Hart, A. Durr, and D. Harsh. Critical points of
polynomial meatballs. In Proc. Implicit Surfaces 98,
Eurographics/SIGGRAPH Workshop, pp 69-76, June 1998.

[11] W. E. Lorensen and H. E. Cline. Marching Cubes: A high
resolution 3D surface construction algorithm. Computer
Graphics, Vol. 21, No. 4, pp 163-169, July 1987.

[12] H. Qin and D. Terzopoulos. D-NURBS: a physics-based
framework for geometric design. IEEE Trans. on
Visualization and Computer Graphics, Vol. 2, No. 1, pp 85-
96, Mar. 1996.

[13] C. Hoffmann. Implicit curves and surfaces in CAGD. IEEE
Computer Graphics and Applications, Vol. 13, No. 1, pp
79-88, 1993.

[14] C. Bajaj and I. Ihm. Algebraic surface design with Hermite
interpolation. ACM Transactions on Graphics, Vol. 11, No.
1, pp 61-91, 1992.

[15] J. L. Blechschmidt and D. Nagasuru. The use of algebraic
functions as a solid modeling alternative. Advances in
Design Automation, B. Ravani Ed., ASME Design
Conference, Chicago, IL, pp 33-41, Sept. 1990.

[16] F. Dachille IX, H. Qin, and A. E. Kaufman. A novel
haptics-based interface and sculpting system for physics-
based geometric design. Computer-Aided Design, Vol. 33,
No. 5, pp 403-420, 2001.

[17] G. Wyvill. C. McPheeters and B. Wyvill. Data structure for
soft objects. The Visual Computer, Vol. 2, No. 4, pp 227-
234, 1988.

[18] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer.
Elastically deformable models. Computer Graphics, Vol.
21, No. 4, pp 205-214, July 1987.

[19] A. Pentland and J. Williams. Good vibrations: Modal
dynamics for graphics and animation. Computer Graphics,
Vol. 23, No. 3, pp 215-222, 1989.

[20] D. Metaxas and D. Terzopoulos. Dynamic deformation of
solid primitives with constrains. Computer Graphics, Vol.
26, No. 2, pp 309-312, July 1992.

Fig. 10. Several sculptures and scenes created entirely with our system and rendered with POV-Ray.

