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Abstract

PDE surfaces, which are defined as solutions of partial differential equations (PDEs), offer

many modeling advantages in surface blending, free-form surface modeling, and specifying

surface�s aesthetic or functional requirements. Despite the earlier advances of PDE surfaces,

previous PDE-based techniques exhibit certain difficulties such as lack of interactive sculpting

capabilities and restrained topological structure of modeled objects. This paper presents an in-

tegrated approach that can incorporate PDE surfaces into the powerful physics-based model-

ing framework, to realize the full potential of PDE methodology. We have developed a

prototype system that allows interactive design of flexible topological surfaces as PDE surfaces

and displacements using generalized boundary conditions as well as a variety of geometric and

physical constraints, hence supporting various interactive techniques beyond the conventional

boundary control. The system offers a set of sculpting toolkits that allow users to interactively

modify arbitrary points, curve spans, and/or regions of interest across the entire PDE surfaces

and displacements in an intuitive and physically meaningful way. To achieve real-time perfor-

mance, we employ several simple, yet efficient numerical techniques, including the finite-differ-

ence discretization, the multigrid-like subdivision, and the mass-spring approximation of

elastic PDE surfaces and displacements. In addition, we present the standard bivariant B-

spline finite element approximations of dynamic PDEs, which can subsequently be sculpted

and deformed directly in real-time subject to the intrinsic PDE constraints. Our experiments
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demonstrate many attractive advantages of the physics-based PDE formulation such as intu-

itive control, real-time feedback, and usability to both professional and common users.

� 2004 Elsevier Inc. All rights reserved.

Keywords: PDE surfaces; Geometric design; Deformable models; Interactive techniques; Physics-based
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1. Introduction and motivation

Surface modeling techniques are fundamental for many visual computing applica-

tions including interactive graphics, CAD/CAM, animation, and virtual environ-

ments. Frequently-used representation schemes for free-form surface modeling such

as spline-based techniques [1–6] make use of simple polynomial functions in associa-

tion with control points (and weights or knots). Spline-based models offer a unified

mathematical formulation for free-form curves, surfaces, and solids. Despite the rapid

advances in theoretical foundations and mathematical properties of free-form splines
during the past several decades, traditional spline-based modeling techniques can be

difficult, time-consuming, less natural, and counter-intuitive. This is primarily because

free-form splines are frequently associated with tedious and indirect shape manipula-

tions through time-consuming operations on a large number of (oftentimes irregular)

control vertices, non-unityweights, and/or non-uniformknots. In addition,mathemat-

ical splines only model geometric attributes and require strong mathematical sophisti-

cation from users.

In sharp contrast, PDE techniques have various applications in graphics and
modeling, such as surface fairing [7], model reconstruction [8,9], and shape metamor-

phosis [10], etc. Furthermore, PDE techniques provide an alternative way to model

parametric surfaces [11–14]. PDE surfaces permit geometric objects to be defined

and governed by a set of partial differential equations. In comparison with tradition-

al control-point-based techniques, PDE surfaces offer many advantages:

� Natural physical processes are frequently characterized by PDEs. In principle,

PDE surfaces are controlled by physical laws, so they are natural and close to
the real world. They can potentially integrate geometric attributes with functional

constraints for surface modeling, design, and analysis.

� The formulation of differential equations is well-conditioned and technically

sound. Smooth surfaces with high-order continuity requirements can be readily

defined through PDEs.

� Smooth surfaces that minimize certain energy functionals are oftentimes associat-

ed with differential equations according to the minimum principle of variational

calculus. Hence, optimization techniques can be unified with PDE surfaces.
� Many powerful numerical techniques to solve PDEs are commercially available.

Parallel algorithms can be deployed for large-scale problems in industrial settings.

� Users can easily understand the underlying physical process associated with

PDEs, therefore, high-level intuitive and natural control is possible through the

modification of physical parameters.
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� PDE surfaces may potentially unify both geometric and physical aspects. They are

invaluable throughout the entire modeling, design, analysis, and manufacturing

tasks. Various heterogeneous requirements can be enforced and satisfied simulta-

neously.

Despite the rapid advances and modeling successes of PDE surfaces, they demand

a lot of novel interactive techniques to realize their full potential. Typical modeling

difficulties associated with PDE surfaces include:

� The prior work on PDE surfaces mainly concentrates on elliptic PDEs and is lack

of interactive techniques for direct shape manipulation.

� Besides simple geometric conditions along PDE surface boundaries, as well as

manual editing on PDE coefficients, there are few techniques for the direct manip-
ulation of PDE surfaces in general.

� Traditional elliptic PDE surfaces only result from Hermite-like boundary condi-

tions (i.e., boundary curves and their corresponding derivatives up to order n).

More flexible and general boundary constraints have not yet been addressed.

� Conventional PDE techniques govern the entire parametric domain, but are un-

able to support localized geometric operations. Global control is less intuitive

to manipulate.

To ameliorate it, we [15] proposed an interactive method and developed novel

modeling techniques that can facilitate the direct manipulation and interactive

sculpting of PDE surfaces. Our algorithms and design framework are founded upon

the integrated principle of differential equations and physics-based modeling. To fur-

ther promote the applicability of PDE surfaces in interactive graphics, CAD/CAM,

and virtual engineering, we [16] extended both the geometric coverage and topolog-

ical variation of PDE surfaces. Our new system provides users a set of more powerful

sculpting tools than previously developed point-based editing capabilities. These
toolkits allow PDE surfaces to be defined through the use of general, flexible bound-

ary constraints. PDE surfaces of complicated geometry and diverse types of topology

are readily available in our modeling environment. Other typical design tools in our

environment include merging multiple surfaces, manipulations of isoparametric

curves and/or arbitrary curve networks, editing any user-specified sub-surface, etc.

Using our system, users are able to enforce both physical requirements and geomet-

ric criteria on PDE surfaces simultaneously with ease.

In this paper, we summarize the interactive techniques and the prototype software
system facilitating the direct manipulation and interactive sculpting of PDE surfaces

with flexible boundary conditions. To further extend PDE techniques for manipula-

tion of existing models, we employ the PDE formulation to model displacements on

parametric surfaces, which defines the surfaces as the original surfaces plus displace-

ments and surface deformation can be achieved by manipulating the PDE governed

displacements through the interactive toolkits. This extension allows users to directly

model existing parametric surfaces through our system. It facilitates data exchange

of PDE techniques with other parametric modeling methods. Our modeling algo-
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rithms and design framework are founded upon the integrated methodology of phys-

ics-based modeling and differential equations, which provides real-time sculpting of

PDE surfaces.

The remainder of this paper is structured as follows. Section 2 reviews the prior

work of PDE surfaces, physics-based modeling techniques, and other interactive sur-
face modeling techniques. In Section 3, we detail the PDE and physics-based mod-

eling formulations and present our integrated approach. Section 4 presents novel

techniques of directly manipulating PDE surfaces with generalized boundary con-

straints and flexible topology and PDE-based surface displacements model. We out-

line the system implementation and present our experimental results in Section 5.

Finally, Section 6 gives the conclusion.
2. Background review

Since earlier 1970�s, we have witnessed the ever-increasing popularity of the

spline-based surface modeling techniques [2] in CAD/CAM applications. Non-uni-

form rational B-splines (NURBS), developed in 1975 and incorporated into initial

graphics exchanged specification (IGES) in 1983, have become an industrial

standard for modeling and data exchange in CAD/CAM. Various NURBS-based

techniques have been developed during the past 20 years. Piegl and Tiller [6]
detailed various NURBS-based modeling techniques such as interpolation/approx-

imation of a set of data points and surface definition from a set of cross-sectional

curves.

In contrast to spline surfaces, Bloor and Wilson in 1989 [11,12] introduced a dif-

ferent method—PDE surfaces—which defines smooth surfaces as solutions of an el-

liptic PDE. Since the initial application on surface blending, PDE surfaces have

broadened their applications in surface description, functional design, solid model-

ing, and B-spline approximation in recent years. In principle, a PDE surface is gov-
erned by a set of boundary-value conditions and global coefficients associated with

the elliptic PDE. This method has the advantage that most of the information defin-

ing a surface can be derived from its boundaries, which permits a surface to be gen-

erated and controlled through a relatively small set of parameters compared with the

spline-based methods and subdivision schemes. This PDE technique can be used to

generate piecewise free-form surfaces [13]. By varying the boundary conditions and

control coefficients in the PDE, designers can obtain various surface shapes. Further-

more, Lowe et al. [14] presented a method with which certain engineering design cri-
teria such as functional constraints can be incorporated into the geometric design of

PDE surfaces. Therefore, it is possible to simultaneously introduce geometric con-

straints, aesthetic criteria, and physical and engineering requirements into the design

process. Additionally, Bloor and Wilson [17] developed an algorithm that approxi-

mates PDE surfaces using standard B-splines. This work intends to demonstrate that

PDE surfaces are virtually compatible with other mature and well established tech-

niques based on popular splines for surface design. Hence, PDE surfaces can be

readily incorporated into existing commercial design systems. Later on, in 1993,
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PDE solids were formulated in terms of parametric boundary surfaces by Bloor and

Wilson [18], which further expands the geometric coverage of PDE methodology. In

[18], it shows the specific PDE can be used to facilitate the accurate analysis of mass

attributes or physical properties for PDE objects. For certain simple boundary con-

ditions, the elliptic PDEs can be solved analytically, i.e., PDE surfaces in these cases
have a close-form formulation that frequently involves functions of Fourier series.

However, for general boundary conditions, a PDE solution will have to be sought

numerically instead. Later on, Bloor and Wilson [19] derived a set of approximate

analytic solutions for PDEs in close-form for general boundary conditions. In

1999, Ugail et al. [20] have developed some techniques for interactively defining

and changing boundary conditions to construct PDE surfaces.

However, the above methods and techniques can only afford users indirect and

non-intuitive shape manipulation on PDE surfaces. Physics-based modeling, in con-
trast, offers users a means to overcome the drawback of indirect design mechanism

associated with PDE surfaces. It is possible to unify physics-based modeling meth-

odology with PDE approach, mainly because the dynamic behavior of physics-

based models is also controlled by differential equations (e.g., Lagrangian equations

of motion). Hence, physics-based modeling augments (rather than replaces) the ex-

isting PDE methodology, offering extra advantages for shape modeling. Free-form

deformable models were initially introduced to computer graphics by Terzopoulos

et al. [21] in 1987. Terzopoulos and Fleischer [22,23] demonstrated simple interac-
tive sculpting using viscoelastic and plastic models. Celniker and Gossard [24] devel-

oped an interesting prototype system for interactive free-form design based on the

finite-element optimization of energy functions proposed in [23]. Terzopoulos and

Qin [25,26] formulated a novel model for interactive sculpting using Dynamic

NURBS (D-NURBS). Ye et al. [27] incorporated certain functional constraints into

the design process of geometric shapes. Dachille et al. [28] presented a haptic ap-

proach for the direct manipulation of physics-based B-spline surfaces. In general,

physics-based techniques have various applications in visual computing areas [29–
34]. Since the majority of physical phenomena can be characterized by differential

equations, it is necessary to bridge the gap between geometric PDE surfaces and

physics-based modeling approaches towards the realization of the full potential of

PDE methods.

Some other interactive manipulation techniques for geometric surfaces are also

available. Hsu et al. introduced direct manipulation of B-spline Free-Form Defor-

mation (FFD) which used least squares to calculate the control points of B-spline

FFD based on the direct movement of objects. Singh and Fiume [35] presented a
geometric deformation technique called ‘‘wires’’ to deform objects using space

curves and implicit functions. Biermann et al. [36] introduced a set of improved

rules for subdivision models to generate smooth surfaces with normal control.

Such techniques provide shape deformation based on control lattices or reference

curve networks instead of working on the geometric objects directly. Further-

more, physical properties such as mass, damping, and stiffness attributes have

not yet been considered for more realistic sculpting of objects in the above refer-

ences.
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3. Dynamic formulation and integration

This section formulates PDE surfaces and displacements, and discusses properties

of the unified principle of PDE surfaces and physics-based modeling.

3.1. Elliptic PDEs

Throughout this paper, we focus on the fourth-order elliptic PDE which is a gen-

eralized version from the equation introduced by Bloor and Wilson [12]:

o2

ou2
þ a2ðu; vÞ o2

ov2

� �2

Pðu; vÞ ¼ 0; ð1Þ

where u, v are parametric coordinates on the 2D parametric domain, a(u,v) is a
smoothing function of u and v that controls the behavior of PDE surfaces locally,

and P(u,v) = [x(u,v) y(u,v) z(u,v)]T denotes the PDE surface in 3D space. Note that,

in [12], the control coefficient is a constant a. To offer users more flexibility for inter-

active manipulation, we replace the constant coefficient using an arbitrary function

of u and v, which can be defined by users. Because a(u,v) may vary across P(u,v),

local control on PDE surfaces can be achieved. Furthermore, although our system

is focusing on this particular elliptic PDE, our mathematical derivation and its asso-

ciated numerical techniques can be readily generalized to other PDEs. To solve (1),
at least four boundary conditions are required to derive a unique solution. We fur-

ther assume that a PDE surface is geometrically either closed or open along its two

parametric directions (i.e., u and v). Therefore, our PDE surfaces may be topologi-

cally flexible, yielding diverse types of surfaces equivalent to four-sided open patches,

spheres, cylinders, and tori. We restrain u and v to vary between 0 and 1, because

reparameterization process can be conducted without changing the geometry of

PDE surfaces if either u or v belongs to any [a,b]. Various boundary conditions

can be imposed. To simplify our implementation, we classify PDE surfaces into three
types: (1) open along both u- and v-directions, (2) open along u-direction and closed

along v-direction, and (3) closed along both directions.

The four boundary curves in previous work are Hermite-like boundary conditions

which comprise two curves defining a pair of the curved surface boundaries at the

opposite side along one parametric direction (e.g., u-direction), and a pair of their

associated derivative curves defining gradient information across the two curved

boundaries. They are of the following form:

Pð0; vÞ ¼ c0ðvÞ; Pð1; vÞ ¼ c1ðvÞ;
o

ou
Pð0; vÞ ¼ d0ðvÞ;

o

ou
Pð1; vÞ ¼ d1ðvÞ:

ð2Þ

The boundary conditions of P(0,v) and P(1,v) define two boundary edges of the sur-

face represented by (1). The derivative conditions at u = 0 and u = 1 in (2) determine

surface normal at the corresponding surface boundaries. These derivatives signifi-

cantly influence the overall shape of the underlying PDE surface.



H. Du, H. Qin / Graphical Models 67 (2005) 43–71 49
In our system, we generalize the boundary conditions of a PDE surface to a

curve network. This can enhance the cross-sectional design of PDE surfaces from

a set of curves. For instance, consider the design techniques of Gordon surface

and Coons patch, our generalized boundary constraints can have the following

form

Pðui; vÞ ¼ f iðvÞ; Pðu; vjÞ ¼ gjðuÞ; ð3Þ

where 0 6 ui 6 1 and 0 6 vj 6 1, and fi(v) and gi(u) are isoparametric curves.

Moreover, a set of non-isoparametric curves can be easily added into our formula-

tion.

By interactively modifying generalized boundary constraints, users are capable of

manipulating the entire surface in an indirect manner. This property offers the de-

signer an efficient way to edit the PDE surface through a fewer number of parame-

ters that define boundary curves.

3.2. Displacement model

The idea of displacing a surface by a function was introduced by Cook [37]. Dis-

placement maps are often used for texture mapping of bumped surfaces or modeling

of complicated detailed meshes of arbitrary topology with regular surface patches.

The complex surface can be represented as a scalar/vector-valued displacement over

smooth domain surface. The displacement maps can be viewed as images, and this
type of representation facilitates the use of image processing operators for manipu-

lating the geometric detail of an object. They are also compatible with modern pho-

to-realistic rendering system [38]. The idea is also used in subdivision techniques to

produce displaced subdivision surfaces [39] and multiresolution surfaces [40]. The dis-

placement maps can decrease the complexity of the model. The advantages of this

representation lie in its simplicity and flexibility. The natural hierarchical division be-

tween coarse and fine features allows rapid computation of local surface features,

and makes the data structure ideal for rapid collision detection for interactive oper-
ations. Furthermore, if local features are represented by an array of scalar values,

limited editing of the local geometry can be done rapidly by modifying the values

in the displacement map [41]. An illustration of the idea of displacement models is

shown in Fig. 1.

To further explore the modeling potentials of PDE techniques on existing surface

models, we employ the PDE formulation on surface displacements, i.e., offsets of the
Fig. 1. Illustration of displacement models: (A) displacement curve model based on the displacements

along curve normal; (B) displacement curve model based on the displacement vectors on the original

curve.
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input surface. The target surface will be the result by adding corresponding displace-

ments onto the original surface. Different with popular displacement techniques, our

PDE method will model displacement vector maps of the surface instead of scalar-

valued maps associated with surface normal and leave the underlying surface un-

touched. The formulation of PDE displacement models is a slightly modified version
of (1):

Pðu; vÞ ¼ P0ðu; vÞ þOðu; vÞ;

o2

ou2
þ a2ðu; vÞ o2

ov2

� �2
Oðu; vÞ ¼ 0;

ð4Þ

where P(u,v) is the target surface, P0(u,v) is the original surface, and O(u,v) is the

corresponding surface displacements. Note that, (1) is the simplest case of (4) by sim-

plifying the original surface to P0(u,v) = 0, i.e. shrinking to a point at the coordinate

origin.
3.3. Numerical approximation techniques

Prior work on PDE surfaces mainly seeks close-form analytic solutions (e.g., Fou-

rier series functions) to exploit many attractive properties associated with analytic

formulations for surface design. However, in the interest of allowing arbitrary
boundary conditions, we resort to numerical techniques that guarantee approximat-

ed solutions of the integrated formulation for PDE surfaces of flexible topology. Nu-

merical algorithms also facilitate the material modeling of anisotropic distribution

and its realistic physical simulation, where there are no close-form analytic solutions

available for PDE surfaces. Among many mature techniques, we employ two popu-

lar numerical approaches to demonstrate the universal applicability of our frame-

work: (1) finite-difference discretization, and (2) finite-element method based on

B-spline approximation.
The finite-difference method is to transform a PDE to a system of algebraic equa-

tions by sampling the parametric domain into regular grids, then replacing all the

partial derivatives in the differential equation with their discretized approximations

on the sample points. The algebraic equations can then be solved numerically either

through an iterative process or a direct procedure to obtain an approximated discrete

solution to the continuous PDE.

Based on the Taylor series expansion of a continuous function f(x), we derive

the central-difference approximation of derivatives: f0(x) � (f(x + h) � f(x � h))/2h,
and f00(x) � (f(x + h) � 2f(x) + f(x � h))/h2, where h is the space interval along x.

This method can be generalized to compute partial derivatives for bivariate sur-

face geometry, by dividing the continuous parametric domain of u and v into m

and n discretized points, respectively. This allows us to discretize P(u,v) as a

collection of data points pi, j. For example, given a pair of parametric value

[ui,vj], P(ui,vj) becomes pi, j, P(ui + Du,vj) becomes pi + 1,j, and P(ui � Du,vj) be-

comes pi � 1,j, etc. (Fig. 2). The discretized partial derivatives have the following

forms:



Fig. 2. Illustration of surface discretization: (A) discretization of the 2D parametric domain; (B)

illustration of the point discretization of a continuous surface.
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o4

ou4
pi;j �

1

Du4
½piþ2;j � 4piþ1;j þ 6pi;j � 4pi�1;j þ pi�2;j�;

o4

ov4
pi;j �

1

Dv4
½pi;jþ2 � 4pi;jþ1 þ 6pi;j � 4pi;j�1 þ pi;j�2�;

o
4

ou2ov2
pi;j �

piþ1;jþ1 � 2pi;jþ1 þ pi�1;jþ1 � 2piþ1;j

Du2Dv2

þ
4pi;j � 2pi�1;jþ1 þ piþ1;j�1 � 2pi�1;j þ pi�1;j�1

Du2Dv2
;

ð5Þ

where Du and Dv denote the spatial intervals along u and v directions in the paramet-

ric domain, respectively.

Meanwhile, we discretize the blending bivariate function a(u,v) into a set of ai, j
that have a one-to-one correspondence with surface points pi, j. Therefore, applying

the boundary constraints on the discretized boundary sample points and using (5)

for the interior points, we obtain m · n difference equations for (1):

QP ¼ b; ð6Þ
where Q contains the difference operators associated with control coefficients for

each sample point,

Q ¼

q1;1 q1;2 . . . q1;m�n

q2;1 q2;2 . . . q2;m�n

. . . . . . . . . . . .

qm�n;1 qm�n;2 . . . qm�n;m�n

2
6664

3
7775;

and

P ¼ ½ p>1;1 p>1;2 . . . p>m;n �
>
; b ¼ ½ b>1 b>2 . . . b>m�n �

>
:

Similarly, the PDE for displacements in (4) can be discretized as QO = b. Thus, (4)

has the approximated numerical form
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P ¼ P0 þO

QO ¼ b:
ð7Þ

Different topological types of PDE surfaces are available in our system. First, the

surface can be closed along one parametric direction (e.g., v-direction), in which case

the points on v = 0 are the same as those on v = 1. The central-difference scheme suf-

fices for the computation of partial derivatives with respect to v. Second, the PDE

surface is open along both u and v directions. In this case, the computation of partial

derivatives on two boundary curves requires special care, and forward or backward

difference approximation shall be utilized along the open boundary curves instead.
Third, the PDE surface is closed along both directions, and the central-difference ap-

proximation can be applied anywhere across the surface geometry. Boundary con-

straints determine all the point coordinates lying on the user-specified curves.

Moreover, for the Hermite-like boundary conditions, the initial derivative informa-

tion across boundary curves determines additional point coordinates in the vicinity

of specified boundaries (e.g., p2, j and pm � 1, j) that are adjacent to two boundary

curves at u = 0 (p1, j) and u = 1 (pm, j). Arbitrary boundary conditions can be easily

enforced without any difficulty using finite-difference method. Note that, in spite
of certain combinations of constraint imposition shown in our experiments, in gen-

eral this type of elliptic PDEs allows the boundary conditions to be explicitly formu-

lated in arbitrary form. This permits designers to choose (various) constraints based

on diverse design tasks. The same flexible topological feature also applies to PDE

displacements. However, the topological type of displacements depends on the un-

derlying original surface. This gives designers more freedom when modeling surfaces

of flexible topology.

3.4. Physics-based modeling

To obtain interactive and direct sculpting on the PDE surfaces, we integrate the

physics-based modeling techniques with the PDE model.
An elastic deformable model is characterized by the position p(u,v,t), velocity

_pðu; v; tÞ (which stands for opðu;v;tÞ
ot ), and acceleration €pðu; v; tÞ (i.e., o

2pðu;v;tÞ
ot2 ) alongwithma-

terial properties such asmass, damping, and stiffness distributions. These values are de-

fined over the surface as functions l(u,v),c(u,v), and q(u,v), respectively, which

oftentimes can be considered to be constant at certain time. However, these material

quantities are allowed to bemodified by users interactively anddirectly over the surface

model. In general, to simulate the real-time performance of direct manipulations, a

continuous dynamic surface can be discretized into a collection of mass-points con-

nected by a network of springs across nearest neighbors (and/or along both diagonals)
in the parametric domain. Other springs can be incorporated into the discretized sur-

face if certain types of dynamic behavior are more desirable. We use a mass-spring

model because of its simplicity and the critical need of real-time surface sculpting.

By applying Lagrangian mechanics, we obtain a set of second-order differential

equations that govern the physical behavior of the underlying physics-based mass-

spring model:
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M€PþD _Pþ KP ¼ f; ð8Þ
where M is a mass matrix, D is a damping matrix, K is a stiffness matrix, P denotes

the collection of the sample points of the model, and f represents the entire external

force applied on the surface. The force at every mass-point in the mesh is the sum of

all possible external forces: f ¼
P

fext. The internal forces are generated by the con-
necting springs, where each spring is modeled with force fint = k(l � l0) according to

Hook�s law. The rest length l0 of each spring is determined during the initialization of

the PDE surface. Our system allows users to modify the rest length interactively.

It now sets a stage for us to combine the benefits of both physics-based models

and PDE surfaces to support the interactive surface design with real-time feedback.

By attaching mass points to the geometric grid and adding springs between adjacent

points on the discretized PDE mesh, as shown in Fig. 3, we can integrate the La-

grangian mechanics with (6) to form the unified framework, then we obtain a dy-
namic version of PDE surfaces:

M€PþD _Pþ ðKþQÞP ¼ bþ f; ð9Þ
where both the velocity and the acceleration of P can be discretized along the time

axis analogously:

€P � ðPtþDt � 2Pt þ Pt�DtÞ=Dt2; _P � ðPtþDt � Pt�DtÞ=2Dt:
The composite dynamic PDE displacement surface model can be obtained in the

same way:

P ¼ P0 þO;

M €OþD _Oþ ðKþQÞO ¼ bþ f;
ð10Þ

where

€O � ðOtþDt � 2Ot þOt�DtÞ=Dt2; _O � ðOtþDt �Ot�DtÞ=2Dt:
By allowing the PDE model to dynamically deform in time domain, users will have a

natural feeling when they interactively manipulate the PDE model, which is lacking

without Lagrangian equations of motion. Furthermore, material properties can be

introduced to govern the behavior of the underlying PDE model. This hybrid formu-

lation permits users to obtain a surface that satisfies both geometric criteria and
functional requirements at the same time.
Fig. 3. Mass-spring network in the vicinity of surface point pi, j.



54 H. Du, H. Qin / Graphical Models 67 (2005) 43–71
In this paper, we conduct various experiments on different numerical techniques

in solving (6), (7), (9), and (10) to compare their performance. In general, we either

resort to direct approaches or make use of iterative techniques. Certain variants of

iterative techniques exist for solving the above difference equations [42]. We solve

the above equations using Gauss–Seidel iteration, which starts from the initial
guess (approximated values) of the discretized surface points, then recursively cal-

culates the data points in a pre-defined order. After a finite number of iteration

steps, the value obtained through the recursive approach are considered to be ex-

tremely close to the accurate solution. To further speed up the convergent rate of

Gauss–Seidel iteration, we take into account the error factor that is defined by the

difference between the approximation and the real value. This leads to the method

of successive over-relaxation iteration, or SOR iteration. With SOR iteration, an

Over-Relaxation factor r(1 < r 6 2) is introduced to achieve a better approxima-
tion at each step. When r = 1, it reduces to Gauss–Seidel iteration. The different

choice of r leads to different convergent speed, and the optimal value of r is al-

lowed to vary depending on different problems. Our system provides the interactive

modification of the value of r, which is suitable for the solution of different kinds

of linear equations. When using iterative approaches to solve the difference equa-

tions of PDEs, the initial guess plays a significant role that affects the convergent

speed. Hence, extra cares need to be taken to warrant fewer calculations and better

time performance. Furthermore, we take advantage of the multi-grid-like subdivi-
sion method to speed up the numerical integration. The surface is first solved on

the coarsest sample points, and then it is refined into a finer grid whose initial val-

ues are computed through the simple linear interpolation or more complicated sub-

division schemes such as Butterfly subdivision [43] or quadrilateral interpolating

subdivision [44]. As a result, the convergent rate of our multi-grid technique can

be greatly increased. In addition, this method allows the user to control the error

bound of the approximated solution.
4. Interactive surface manipulation

This section details various interactive techniques and explains the implementa-

tion algorithm for PDE surface editing.

4.1. PDE surface initialization

Our system supports three topological types of PDE surfaces. At the beginning of

the initialization phase, the user must specify the surface type, i.e., whether the sur-

face is open or closed along u and v directions. Because any direct manipulation must

be based on the user-defined initial surface, we need to select boundary conditions to

generate a PDE surface as an initial step. We provide users two different ways to set

up the boundary conditions of the PDE surface. First, users can interactively input

some control points by clicking/dragging the mouse at desired locations on the

screen, and the system will calculate cubic B-spline curves as boundary curves,
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boundary derivative curves, and other special curves the PDE surface must interpo-

late. The boundary derivative curves are curves corresponding to boundary curves,

respectively. The difference between any point on a boundary curve and its corre-

spondence on the associated derivative curve will be used to determine both magni-

tude and direction of the tangent vector across the boundary curve. Alternatively,
users are allowed to define the boundary conditions using certain analytic functions.

The point coordinates are sampled along the analytic curves, and are saved into a

data file. The system then can access data files and initialize the PDE surface based

on these curves. After boundary conditions are determined, the PDE surface can be

derived from the solution of the linear equations subject to these conditions. If

boundary curves are B-splines, we can modify their shape by changing B-spline con-

trol points. Subsequently, the entire PDE surface will be re-computed and modified

with the new boundary conditions. If boundary curves are obtained through certain
analytic functions, we can calculate their B-spline approximations and modify their

shapes.

4.2. Generalized boundary constraints

The solution of (1) is subject to boundary conditions. In general, there are several

types of boundary conditions according to the information they contain. In this pa-

per, we consider three types of boundary conditions: (1) Hermite-like conditions; (2)
Coons-like conditions; and (3) Gordon-like conditions in analogy with their corre-

sponding free-form surface formulation.

Hermite-like conditions include positions and the first-order or even higher-order

derivatives of boundary curves. For the fourth-order PDE shown in (1), the bound-

ary conditions may be Hermite-like (i.e., two boundary curves at u = 0 and u = 1,

and their corresponding first-order derivatives). Boundary curves define the edges

of the surface and corresponding derivative curves determine the gradient informa-

tion across the boundaries, which outline the surface shape. Figs. 7 and 10 show ex-
amples of this type of conditions.

For any four-sided surface patch, there are four boundary curves in general. In

our case, the boundary curves are those at u = 0, u = 1, v = 0, and v = 1, respectively.

Such constraints, in analogy with Coons patch, are considered as Coons-like bound-

ary conditions. Using such conditions, we can easily obtain surfaces that are open

along both u-direction and v-direction, or closed along v and open along u. Note

that, for surfaces that are closed only along v, it is equivalent to consider that two

boundary curves at v = 0 and v = 1 are the same. Fig. 8 has an example of this
boundary type.

Although four boundary curves can define PDE surfaces, they are far from en-

ough to formulate complicated geometry or shapes with details. In this case, we need

to define a curve network containing features that the PDE surface must interpolate.

This kind of boundary constraints is a direct generalization of Gordon surfaces [3].

Hence, the Gordon-like boundary conditions consist of a family of isoparametric

curves P(ui,v) = fi(v) and P(u,vj) = gj(u), where 0 6 ui 6 1 and 0 6 vj 6 1. We show

an example of this type of surface construction (Fig. 8).
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4.3. Subdivision on the PDE surface

Although the iterative techniques are easily implemented, oftentimes the large

number of sample points of a PDE surface result in the slow convergence of

such techniques. To improve the computation performance, we develop a mul-
ti-grid approximation based on popular subdivision schemes. At first, we can

start with a small number of sample points on the coarsest grid of a PDE sur-

face, the coarse solution of the PDE surface can be easily obtained quickly. Sec-

ond, users can refine the coarse mesh through subdivision and use the new

subdivided mesh as an initial guess for successive iterations. The finer grid is then

computed iteratively to achieve a more accurate and smoother solution of the

PDE surface. During the multi-grid process, the up-sampling of all generalized

boundary curves is achieved through the use of four-point interpolatory subdivi-
sion scheme [43] to guarantee the smoothness requirement of the refined curves.

Given control points fp0i g
nþ2
i¼�2, the points at level k + 1 of the subdivision are de-

fined by

pkþ1
2i ¼ pki ;

pkþ1
2iþ1 ¼

1

2
þ w

� �
ðpki þ pkiþ1Þ � wðpki�1 þ pkiþ2Þ;

ð11Þ

where �1 6 i 6 2kn + 1.

According to [43], the curve is tightened toward the control polygon as w fi 0,

and for any 0 < w < ð
ffiffiffi
5

p
� 1Þ=8, the interpolated curve is a C1 curve. Because w in-

fluences the smoothness of the boundary curves, the system allows users to change

the value of w to obtain satisfactory results. For refinement of surface points, we cur-
rently employ linear interpolation to obtain an initial guess and use the PDE to ap-

proximate the solution. However, several subdivision techniques can be used to

obtain initial guesses of finer grids from coarse approximations. Fig. 9 shows an ex-

ample using the multi-grid subdivision.

4.4. Manipulating boundary conditions

Because boundary curves are defined by B-spline curves, or have B-spline approx-
imation, we can modify the shape of the PDE surface globally by changing B-spline

control points of boundary curves. Fig. 10 shows an example.

4.5. Modifying control function a(u,v)

The blending coefficient function a(u,v) can influence the surface shape. The value

of a(u,v) controls the relative smoothness and the level of variable dependence be-

tween the parametric directions of u and v. For a large ai, j at point pi, j, changes in
the u-direction occur within a relatively short length scale, i.e., it is 1/ai, j times the

length scale in the v-direction in which similar changes can take place. Consequently,

users can control how boundary conditions influence the interior of the surface by
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modifying the length scale (i.e., ai, j) at arbitrary point on the PDE surface. In gen-

eral, a(u,v) can be interactively painted over the entire surface (see Fig. 11).

4.6. Joining multiple surfaces

Oftentimes a single PDE surface may not satisfy complicated design require-

ments, because real-world objects exhibit both complex topological structure and ir-

regular geometric shape. We can piece multiple PDE surfaces together for this

purpose. In our system, users can join n � 1 PDE surfaces sequentially by specifying
2n Hermite-like boundary conditions (where n P 3). Note that, 2n conditions are

necessary to satisfy C1 continuity, because two neighboring PDE patches share

one common boundary and the tangent vectors across the shared boundary should

be same. Note that, because our coefficient function a(u,v) in (1) may vary through-

out the u � v domain, we can consider the technique of joining multiple surfaces to

be equivalent to generating one larger PDE surface with local control. Fig. 7 has an

example.

4.7. Sculpting tools and geometric constraints for global and local deformation

By changing the boundary curves, we can modify the entire shape of a PDE sur-

face. However, when the global appearance of a PDE surface is satisfactory, any

subsequent sculpting via boundary conditions may destroy certain existing features

of the underlying surface. In this situation, making small changes on a localized re-

gion is more desirable. This can be done by enforcing additional constraints on the

PDE surface. Note that, the original finite-difference formulation consists of m · n

equations and m · n unknowns, i.e., the coefficient matrix is a square matrix. The in-

troduction of additional conditions forces the system to incorporate a set of new

equations into the original set. There are two ways to solve such a system with those

additional constraints. One way is to treat the constraints as hard constraints, i.e.,

the additional equations must be satisfied. This can be done by replacing the corre-

sponding equations in the original system with these hard constraints. For example,

if we want to move a sample point pi, j on the discretized surface to a new location, p0,

the equation pi, j = p0 will be used to replace the corresponding discretized difference
equation approximating the PDE at the point pi, j, i.e., q(i � 1) · n + j,(i � 1) · n + j = 1,

all other q(i � 1) · n + j,k = 0 for k „ (i � 1) · n + j, and b(i � 1) · n + j = p0 in (6). This

method works well if the additional constraints are of linear form (e.g., fixing a sub-

set of certain unknowns or three points must be co-linear, etc.). As a result, (6) be-

comes

QcP ¼ bc; ð12Þ
where Qc and bc are obtained by incorporating additional hard constraints. And it

can be solved by iterative methods analogously.

Alternatively, these additional conditions can be treated as soft constraints by di-

rectly adding the equations of the constraints into the original linear system. Using

the same example, pi, j = p0 will be added into (6) as the m · n + 1 row, i.e.,
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qm · n + 1,(i � 1) · n + j = 1, all other qm · n + 1,k = 0 for k „ (i � 1) · n + j, and

bm · n + 1 = p0. By adding all the additional constraints, (6) will then turn into

QaP ¼ ba; ð13Þ
where Qa has m · n + k rows and m · n columns with k > 0 as the number of addi-

tional constraints. We now have an over-constrained system with more equations

than the number of unknowns. This system cannot be directly solved through the

aforementioned techniques. Instead, we solve the above equations in a least-square

manner [42]. The least-square approximation is a solution of the following equation

Q>
a QaP ¼ Q>

a ba: ð14Þ
Now the composite matrix becomes a square matrix, and the equations can be solved

using aforementioned techniques.

Because the additional constraints discussed in this paper are all expressed as lin-

ear equations, we use the hard-constraint approach to solve the linear system. Note

that, other more robust algorithms such as singular value decomposition are amena-

ble to our PDE sculpting as well.

4.7.1. Manipulating surface points

To manipulate a surface directly, one desirable way is to enforce the PDE surface

interpolating a specific location in 3D space. This can be done by picking a point on

the sampling surface grid, e.g., pi, j, then dragging it to the position where the surface

should pass through. Then the PDE is re-solved, with this additional interpolating

condition for pi, j associated with the original difference equation system. Users

can edit a set of points in a sequential order, and the modified surface interpolates
all the selected data points. Fig. 12A shows a modified PDE surface by changing

the position of one point on the original surface.

4.7.2. Changing surface normal

We can also manipulate the surface normal on any sample point to obtain the lo-

cal editing capability on the surface in the vicinity of the selected point, as demon-

strated in Fig. 4. This is because the normal of a continuous surface at a selected

point can be approximated by the neighboring points using finite-difference method:

ni;j ¼
piþ1;j � pi�1;j

2Du
�
pi;jþ1 � pi;j�1

2Dv
:

Fig. 4. The change of the normal of a point corresponds to the change of positions of neighbor points: (A)

normal ni, j of pi, j; (B) the new normal ni, j leads to the change of points pi � 1,j, pi + 1,j, pi,j � 1, and pi,j + 1.
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When we change the surface normal at a selected point, our system will subsequently

compute its four neighboring points according to the new normal direction. In our

implementation, we simply enforce four new equations in the difference equation sys-

tem (6). By solving the constrained system, we obtain a modified surface with the

normal constraint at the selected point. An example for this kind of constraints is
shown in Fig. 12B.

4.7.3. Editing surface curvature

Since the curvature measures the intrinsic shape of a curve/surface, we can change

the shape of a PDE surface by modifying the curvature at arbitrary point. The cur-

vature of a curve can be defined by: j ¼ kx0�x00k
kx0k3 . Now we consider the curvature at any

surface point along u-direction and v-direction, respectively:

ju ¼
op

ou �
o2p

ou2

��� ���
op

ou

�� ��3
; jv ¼

op

ov �
o2p

ov2

��� ���
op

ov

�� ��3
:

These equations imply that changing curvature will modify the positions of the

neighboring points. But if we solve the above equations directly, we need to deal with
non-linear equations. To avoid this and keep the implementation algorithms simple

for real-time geometric design, we approximate the solution of curvature modifica-

tion by moving the neighboring points along the corresponding parametric direction

(refer to Fig. 5), so we interactively edit the curvature information by changing the

distribution of the neighboring points (e.g., pi � 1,j and pi + 1,j for ju at pi, j). After we

compute the new position of relevant neighbors corresponding to the curvature ma-

nipulation, we can incorporate these known values of data points into the system

and re-solve the equations to derive a new surface that satisfies a set of curvature
constraints simultaneously. In Fig. 12C, we modify a PDE surface with curvature

constraints.

4.7.4. Curve constraints

Although point-based conditions provide designers useful manipulation tools,

point editing is less appropriate when users are faced with complicate design require-

ments. We provide editing tools that afford the intuitive specification of curve-based

constraints. First, users can select a source curve on the PDE surface by picking
points on the u � v domain. The curve is allowed to be of arbitrary form because

the selected points may have arbitrary values of u and v, giving users more freedom
Fig. 5. Curvature modification via the change of the distance between the neighboring sample points: (A)

high curvature due to reducing distance; (B) low curvature due to stretching distance.



60 H. Du, H. Qin / Graphical Models 67 (2005) 43–71
for the effective surface editing. Second, users may interactively specify a cubic B-

spline curve as the destination curve which will then be mapped to the selected sur-

face curve. The B-spline curve shares the same number of sample points as that of

the source curve. Third, our system will enforce the source curve to be in the same

shape as the destination curve. The mapping of B-spline destination curve adds a
number of new linear equations into (6), and the PDE surface will be modified ac-

cordingly. Users can freely modify or even re-define a destination curve which leads

to different surface geometry. In principle, boundary conditions can be special vari-

ants of curve-based constraints. Fig. 14 illustrates an example of non-isoparametric

curve constraints.

4.7.5. Region manipulation

Certain surface models exhibit special features in specific regions, hence it is more

desirable to develop region-based editing tools toward the ultimate goal of feature-

based design. Analogous to the aforementioned curve tool, our system can map a

user-specified B-spline patch onto a region of interest over the PDE surface. First,

users select an area over the PDE surface and define a B-spline patch which are sam-
pled to have the same number of grid points as those in the source region. Then our

system maps the shape of the B-spline patch to the specified area. Users can interac-

tively deform the B-spline patch or create a new destination patch that imposes area

constraints on the PDE geometry (Fig. 15). Because the surface–surface mapping al-

gorithm depends on the structure of sample grid, we only consider source regions

with rectangular grid in the interest of simplicity.

4.7.6. Sculpting and trimming localized regions

Conventional PDE surfaces only support global manipulation, i.e., any modifica-

tion results in a new surface undergone the global deformation. This deficiency se-

verely restrains users� freedom of arbitrary surface manipulation at any localized

region(s). To overcome this difficulty, we allow designers to freeze any specified area

of a PDE surface which they do not want to change. This can be achieved in our sys-

tem by marking a region in u � v domain, then any changes outside this region will

not affect any data points inside, or fixing the outside while modifying inside the re-

gion, as shown in Fig. 13. In addition, our system offers users functionalities to trim
a PDE surface for arbitrary topological shapes. This can be done by removing ma-

terial from the PDE surface either inside or outside the specified regions.

4.7.7. Interactive sculpting of PDE displacements

Our interactive sculpting toolkits can be applied to manipulate the vector-valued

displacements controlled by the PDE formulation. Similar to the constrained PDE sur-

face (12), the formulation for hard-constrainedPDE surface displacements canbewrit-

ten as

QcO ¼ bc: ð15Þ
The surface deformation is done through the manipulation of displacements while

the original surface remains untouched. This enhancement allows the system not
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only to design the surfaces by boundary conditions but also to manipulate existing

parametric models directly, which further broadens the applications of the PDE-

based surface modeling system. Fig. 16 has examples of local point editing on the

PDE displacements. Fig. 17 shows examples for curve manipulation and region

sculpting of displacement models.

4.8. Sculpting dynamic PDE surfaces

Up to this point, we have discussed several methods to change the linear equation

system and recalculate it to derive a new PDE surface satisfying various global and

local geometric criteria such as position, normal, curvature, curve span, and region

constraints. Because the time performance of standard numerical solvers depends on

the number of the sample points on the PDE model, users oftentimes have to patient-
ly wait for the final stable surface as the large number of equations are solved within

the system. When the number of sample points is extremely large, the computation

time is at the order of seconds/minutes. This significantly limits the interactivity of

surface modeling and manipulation as no visual feedback between the initial and fi-

nal states are provided. To ameliorate, we consider the integrated mass-spring PDE

model whose dynamic behavior is governed by (9) or (10). The external force f can be

computed implicitly based on various additional constraints. We then divide the time

domain into small time steps and approximate both velocities and accelerations of
data points through successive time intervals. We can dynamically manipulate the

PDE surface with forces in real-time by solving

M€PþD _Pþ ðKþQcÞP ¼ bc þ f: ð16Þ
The same idea can be applied to PDE displacement model for dynamic deformation

and real-time manipulation.

Additional constraints that control the behavior of the PDE surface can result

from the editing of material properties such as mass/damping quantities and stiffness

distributions. When additional constraints are incorporated into our mass-spring

model, the surface points gradually evolve along consecutive time steps, hence the
number of iterations to solve (16) is very small (less than 10). This results in real-time

performance.

4.9. B-spline approximation

To facilitate the data exchange capability of PDE surfaces with standard spline-

based systems, we compute a B-spline approximation of the PDE surface throughout

the manipulation process. A B-spline surface over u � v domain can be defined as

Pðu; vÞ ¼
Xk

i¼1

Xl

j¼1

Bi;rðuÞBj;sðvÞci;j; ð17Þ

where Bi,r(u) and Bj,s(v) are B-spline basic functions of u and v with the order r and s,

respectively, ci, j (where 1 6 i 6 k, and 1 6 j 6 l) are B-spline control points.
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Oftentimes, the number of control points is less than the number of sample points on

the PDE surface, therefore the B-spline approximation results in over-constrained

linear equations whose unknowns are fewer than the number of equations. For ex-

ample, given the m · n sample points on the PDE surface, the approximation using

k · l control points results in the following formulation

BC ¼ P; ð18Þ
where there are m · n linear equations with k · l unknowns. Assuming fixed param-

etrization of data points in B-spline approximation, the matrix B is a discretization

of B-spline basis functions. Note that, B is a constant matrix. C is the collection of

control points and P represents the collection of sample points on the PDE surface.

This over-constrained system for B-spline control points can be solved by multi-
plying BT on both sides of (18). Consequently, we obtain a B-spline surface that ap-

proximate the PDE surface by solving the B-spline control mesh in least-square

sense, as shown in (19)

C ¼ ðB>BÞ�1
B>P: ð19Þ

Fig. 18 shows examples of B-spline approximation for PDE surfaces.

Meanwhile, we also use B-spline finite elements to approximate the dynamic mod-

el of PDE surfaces at each time step. This allows users to interactively manipulate the

B-spline solution of PDE surfaces with forces in real-time. Because the B-spline con-

trol mesh is obtained using least-square fitting, the additional constraints of the ap-

proximated PDE surface are treated as soft constraints which result in a smoother

solution for the PDE surface than the one obtained under hard constraints.
5. System implementation and results

This section outlines the system functionalities and presents our experimental

results.

5.1. System functionalities

We have developed a prototype software system that permits users to interactively

manipulate PDE surfaces and displacements with various constraints either locally

or globally. The system is written in Visual C++ and runs on Windows systems.
Fig. 6 illustrates the architecture of our prototype system. Our system provides

the following functionalities:

5.1.1. Boundary conditions

Users can interactively input and edit several types of boundary conditions de-

fined by cubic B-spline curves or commonly used analytic functions, and obtain

PDE surfaces satisfying these constraints. Boundary conditions can also be modified

freely as curve-based constraints. Moreover, the system offers a multi-grid-like sub-
division scheme to improve the time performance of our system.



Fig. 6. System architecture.

Fig. 7. The PDE surfaces from Hermite-like boundary conditions: (A) boundary conditions, where

boundary curves are in red and derivative curves in purple; (B) the surface subject to (A); (C) three sets of

boundary and derivative curves for connected PDE surface; (D) the connecting result. (For interpretation

of the references to colours in this figure legend, the reader is referred to the web version of this paper.)
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5.1.2. Displacement models

To additionally broaden the applications of PDE methods on surfaces, we extend

the PDE formulation to model surface displacements, which represent the offsets of a

given surface. This enables our PDE models to model a large set of surfaces of flex-

ible topology.



Fig. 8. The open PDE surfaces with Coons-like and Gordon-like boundary conditions: (A) Coons-like

boundary curves; (B) the corresponding surface of (A); (C) Gordon-like curve network with curves at

u = 0, u = 0.5, u = 1, v = 0, v = 0.5, and v = 1; and (D) the PDE surface from (C).

Fig. 9. The multigrid solution for a PDE surface: (A) initial boundary conditions; (B) PDE surface of

sample grids 15 · 15; (C) PDE surface of sample grids 30 · 30; and (D) PDE surface of sample grids

60 · 60. Note that, w is 0.1 in this example.

Fig. 10. Changing direct-input B-spline boundary conditions of a PDE surface: (A) initial B-spline

boundary curves with control points; (B) the corresponding PDE surface; (C) modified boundary

conditions; and (D) the modified surface.

Fig. 11. Effects of changing blending coefficient a(u,v): (A) the PDE surface of a(u,v) = 3.0; (B) the surface

after changing value of a(u,v) on the yellow part on the surface to 5.0; and (C) the surface by setting

a(u,v) = 5.0 for all sample points.

64 H. Du, H. Qin / Graphical Models 67 (2005) 43–71



Fig. 12. Examples of point-based manipulation: (A) changing the location of a surface point; (B) normal

modification of a selected point on the PDE surface; and (C) the modified surface after changing curvature

at a selected point.

Fig. 13. Examples of surface manipulation with fixed regions: (A) the yellow part on the surface is fixed;

(B) only yellow part is allowed to change. (For interpretation of the references to colours in this figure

legend, the reader is referred to the web version of this paper.)

Fig. 14. Curve editing: (A) the selected source curve shown in red; (B) the destination curve shown in blue;

and (C) the deformed PDE surface after curve attachment. (For interpretation of the references to colours

in this figure legend, the reader is referred to the web version of this paper.)

Fig. 15. Region sculpting: (A) the selected source region shown in red; (B) the B-spline destination patch;

and (C) the deformed surface after area attachment. (For interpretation of the references to colours in this

figure legend, the reader is referred to the web version of this paper.)
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Fig. 16. Examples for point-based displacement PDE surface sculpting: (A) changing a point�s location on

a PDE displacement model; (B) the vector-valued displacement map on the original surface is shown in

lines; (C) point sculpting outside the fixed region (yellow) of displacements; and (D) the original surface

and the displacement vectors of (C). (For interpretation of the references to colours in this figure legend,

the reader is referred to the web version of this paper.)

Fig. 17. Examples for curve and region editing on PDE surface displacements: (A) a PDE surface sculpted

using curve editing on displacements; (B) the corresponding vector-valued displacement map on the

underlying surface; (C) region manipulation of PDE displacements; (D) the original surface and the

displacement vector map of (C).

Fig. 18. B-spline approximations for PDE surfaces. The blue lines with purple points are B-spline control

meshes.
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5.1.3. Dynamic models

Our system supports novel physics-based PDE surface techniques including: (1)

finite-difference discretization for mass-spring models; (2) multigrid-like subdivision

for model refinement; and (3) finite element approximation using B-splines. Material

properties and dynamic behavior can greatly enhance the interactive manipulation of

conventional PDE surfaces.

5.1.4. Sculpting tools

Our system provides various manipulation toolkits to offer users the capability of

interactive sculpting of the physics-based PDE surfaces/displacements. These tool-
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kits include: (1) patching several PDE surfaces smoothly; (2) moving (a set of)

arbitrary surface points to desired locations; (3) modifying surface normal at arbi-

trary data points; (4) editing surface curvatures of arbitrary surface points; (5)

changing boundary conditions; (6) modifying the blending control function (i.e.,

a(u,v)) associated with the PDE; (7) specifying and enforcing a set of curve
constraints; (8) deforming a set of user-specified regions to the desired shape; (9)

freezing any local region(s); (10) applying local operations only on user-selected

areas; (11) trimming the specified part of the surface; (12) modifying material prop-

erties such as mass, damping, and stiffness distributions locally; (13) computing the

B-spline approximation of PDE surfaces; and (14) directly deforming B-spline finite

elements with forces.

In addition to the previous PDE surface deformations through boundary and co-

efficient modifications, our integrated physics-based PDE modeling method offers di-
rect and interactive surface manipulation with flexible boundary and additional

constraints and physical properties which are lacking from the traditional PDE-

based techniques. Our method uses an elliptic PDE to define smooth surfaces

through boundary information instead of control network over the entire surface re-

gions in spline-based techniques. Interpolating constraints can be applied naturally

as generalized boundary conditions to define PDE surfaces. The sculpting of PDE

surfaces through direct manipulation can be automatically obtained by the govern-

ing PDE instead of using control network of spline-based techniques to guide the
surface deformation. The unified physics-based PDE surface modeling framework

provides real-time manipulation of smooth surfaces with high-order continuity

and material properties. It offers modeling advantages of both physics-based meth-

ods and PDE techniques.

5.2. Results and discussion

We use several numerical techniques to solve the PDE surface subject to various
constraints. Table 1 summarizes the CPU time of three different numerical solvers on

the PDE surface (Fig. 7B) discretized using different grids. Because the time to solve

the discretized PDE mainly depends on the number of sampling grids, the time per-

formance for other similar examples will be very close to Table 1. G-E represents

Gaussian elimination method, G-S stands for Gauss–Seidel iteration, and SOR

stands for SOR iteration. The iteration threshold (0.001) for the two iterative meth-

ods is the sum of the distance between sample points in successive steps. From Table
Table 1

CPU-time (seconds) of different solvers for the PDE surface (Fig. 7B) with different discretization

resolutions

Grids G-E G-S SOR (r = 1.25)

15 · 15 0.094 1 0.593

30 · 30 3.187 15.016 6

60 · 60 122.156 64.719 34.391
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1, we observe that it is generally very time consuming to solve the PDE surface of

large sample grids using direct method such as Gaussian elimination. The multi-

grid-like subdivision method will allow us to start from the coarse approximation

of the surface at very small sample grids, then apply subdivision refinement on the

coarse level to obtain a more accurate solution at finer resolution. The total CPU
time of using this method is much less than directly solving the equation on the same

grids.

Table 2 compares the CPU time of using Gauss–Seidel iteration and SOR iteration

with themulti-grid subdivision forFig. 9.We start solving the surface at the sample grid

15 · 15. The total CPU time to obtain a solution through the iterative approaches at

selected grid is the sum of the numbers from the coarsest level to the current level in

the same column. The choice of r will also influence the time performance in our

SOR solver. r = 1.05, 1.15, and 1.25 for SOR1, SOR2, and SOR3, respectively.
Table 3 lists number of iterations for typical manipulation toolkits on some exam-

ples under the two iterative methods. P, N, and V represent the point, normal, and

curvature manipulations, respectively. C denotes curve editing with 20 sample

points, while R stands for the regional manipulation of 10 · 10 sample points at-

tached to a B-spline patch. Note that, it generally takes more iterations in a coarsely

sampled grid, however, the CPU time spent on the coarser grid is far less than that

on the finer grid.

Besides traditional boundary conditions of PDE techniques, our system allows us-
ers to specify and enforce a large variety of additional constraints on a set of points,

cross-sectional curves, and surface regions. These constraints provide more freedom

to designers, making the design process of PDE surfaces more intuitive, natural, and

cost-effective. We develop our prototype system using both finite-difference and B-

spline finite element techniques. The advantages of these approximation techniques

are that they are simple, easy to implement, and suitable for the incorporation of

complicated, flexible constraints. On the other hand, the time and space complexity
Table 2

CPU-time (seconds) of different iterative methods in multigrid-like subdivision for the PDE surface

(Fig. 9)

Grids G-S SOR1 SOR2 SOR3

15 · 15 1 0.109 0.437 0.593

30 · 30 0.266 0.079 0.171 0.282

60 · 60 1.1 0.156 0.344 0.5

Table 3

Number of iterations for various manipulation techniques with different sampling grids

Grids G-S P (Fig. 12A) N (Fig. 12B) V (Fig. 12C) C (Fig. 14) R (Fig. 15)

15 · 15 1438 253 146 447 497 102

30 · 30 1751 1420 146 494 1681 457

60 · 60 4000 933 146 190 3504 2000
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are increased correspondingly with higher resolution as well as increased accuracy.

The convergent rate of iterations depends on the initial values. Our multigrid-like

subdivision method for various levels of refinements achieves an anticipated result

in our experiments.
6. Conclusion

We have presented a set of interactive techniques that supports both global and

local deformations of PDE-based surface models subject to general and flexible con-

straints. We have proposed a unified methodology that marries PDE-based paramet-

ric surface models with physics-based techniques. Physics-based modeling permits

the PDE surfaces and displacements to be governed by physical laws and equipped
with dynamic behavior, making PDE-based surface models more realistic and inter-

active than the prior kinematic PDE surfaces. Our prototype software system pro-

vides users a wide range of powerful toolkits for interactive surface and

displacement sculpting including: point-based manipulation such as position modifi-

cation, normal editing, and curvature control; cross-sectional design such as bound-

ary control and the manipulation of non-isoparametric curves; and region

deformations. These toolkits permit users to model and manipulate physics-based

PDE surfaces and displacements intuitively and interactively in real-time. Our exper-
iments have shown that general and flexible constraints offer users freedom and a

natural interface to manipulate the physics-based PDE surface satisfying a set of de-

sign criteria and functional requirements. Our system also computes the B-spline fi-

nite element approximation of the PDE surface and allows users to interactively

manipulate B-splines to support the data exchange capability in commercially avail-

able geometric modeling systems. Our unified approach and novel PDE techniques

greatly expand the geometric coverage and the topological flexibility of conventional

PDE surfaces, improving the utility of PDE surfaces for modeling and design appli-
cations, as well as helping the realization of the full potential of PDE technology in

visual computing fields.
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