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ABSTRACT 
 
This paper presents a novel, powerful reconstruction algorithm 
that can recover correct shape geometry as well as its unknown 
topology from arbitrarily complicated volumetric datasets. The 
algorithm starts from a simple seed model (of genus zero) that can 
be initialized automatically without user intervention. The 
deformable behavior of the model is then governed by a locally 
defined objective function associated with each vertex of the 
model. Through the numerical computation of function 
optimization, the algorithm can adaptively subdivide the model 
geometry, automatically detect self-collision of the model, 
properly modify its topology (because of the occurrence of self-
collision), continuously evolve the model towards the object 
boundary, and reduce fitting error and improve fitting quality via 
global subdivision. Commonly used mesh optimization 
techniques are employed throughout the geometric deformation 
and topological variation in order to ensure the model both locally 
smooth and globally well-defined. We have applied our algorithm 
to various real and synthetic volumetric datasets in order to 
empirically verify and validate its utility and efficacy. Our 
experiments have demonstrated that the new modeling algorithm 
is extremely valuable for surface reconstruction in volume 
graphics, volume segmentation in medical imaging, and iso-
surface extraction in visualization. 
 

1. INTRODUCTION 
 
Recent technical breakthroughs in new imaging modalities such 
as CT, MRI and Ultrasound as well as other 3-D scanning 
technologies have given rise to massive volumetric datasets 
available in modern computer era. How to extract and reconstruct 
the shape of 3-D objects from these datasets accurately and 
efficiently remains to be both extremely challenging and 
significant in volume graphics, medical imaging, and 
visualization. One of its important applications that have proven 
to be essential in numerous engineering and medical fields is the 
non-invasive evaluation of an object’s internal structure. For 
example, it allows the inspection of mechanical parts without 
destroying the product and the examination of internal organs 
without operating on the patient. 
 

At present, many algorithms and techniques have been developed 
to effectively deal with the acquired volume data for various 
modeling and rendering tasks. In general, existing approaches can 
be classified into two different categories: they are either model-
less techniques such as direct volume-rendering from voxel 
datasets or model-centered techniques such as deformable models. 
One major rationale for model-based approaches is that they 
provide the great potential for users to effectively interact with the 
dataset (especially regions of interest) and facilitate other 
subsequent processes such as segmentation, shape representation, 
matching, and motion tracking. Moreover, the inherent continuity 
and smoothness of the model can compensate for the unwanted 
sampling artifacts such as noise, gaps, and other irregularities on 
object boundaries. Hence, model-based approaches are more 
robust, especially for noise-corrupted datasets. Among the wide 
spectrum of model-driven techniques, deformable models [3, 15, 
16, 17] have been extremely popular and successful primarily 
because they offer a unified and powerful approach that combines 
the knowledge from geometry, physics, approximation theory, 
and functional analysis. Nevertheless, there are several limitations 
associated with deformable models that are currently available. 
Among them, one of the most severe limitations is that the 
topology of the underlying shape either is very simple (such as 
genus zero) or must be known a priori (i.e., is determined 
elsewhere in a separate pre-processing stage) and remains 
unchanged throughout the time integration of model deformation. 
Another limitation of traditional deformable models is that users 
are often required to manually place the initial model inside the 
dataset. 
 
In this paper, we propose a new modeling algorithm that can be 
employed to overcome these limitations. It can recover both 
complicated shape geometry and arbitrary unknown topology 
simultaneously from any volume datasets. Furthermore, the model 
can be automatically initialized by the system. The geometry and 
the deformable behavior of the model are governed by the 
principle of energy minimization. After a simple seed model is 
initialized, the model will deform and grow towards the boundary 
of the modeled dataset in accordance with the local cost function 
associated with each vertex of the model. During the process of 
model deformation, both global and local/adaptive subdivision 
operations on the model can be automatically applied whenever 
necessary in order to refine the model to an appropriate resolution 
and achieve different levels of detail. More importantly, by using 

  



a novel distance-based collision detection scheme, the model can 
automatically detect self-collision and modify its topology 
accordingly. In order to ensure the recovery of the correct 
topology from arbitrary datasets, we develop a novel, yet simple 
scheme that can prevent inter-penetration in the vicinity of any 
vertex of the model. This scheme, combined with mature mesh 
optimization techniques, has proven to be effective and can 
generate a good, high-quality polygonal mesh which can both 
reconstruct the data geometry and extract the arbitrary topology 
from any complicated dataset through model deformation. 
 
The rest of the paper is organized as follows. The next section 
summarizes all the important literatures that are relevant to our 
work. Section 3 introduces the energy-based minimization method 
used in our paper, which is the key mechanism behind the model-
growing step of the algorithm. The other six main steps of our 
algorithm are discussed in detail in Section 4. Section 5 
demonstrates the experimental results we obtained using our 
algorithm. Finally, the conclusion and some future work are given 
in Section 6 and Section 7, respectively. 
 

2. RELATED WORK 
 
During recent years, a lot of research has been conducted in the 
areas of surface reconstruction, volume segmentation, and iso- 
surface extraction. The majority of the published results falls into 
two groups: (1) static, geometric techniques; and (2) dynamic, 
energy-based techniques. Among the static methods, one of the 
first algorithms was devised by Fuchs et al. [3]. They developed a 
means of stitching a series of two-dimensional contours together 
by fitting a triangular strip between adjacent contours. The main 
drawback of this approach is that the user must manually identify 
a contour in every slice that comprises the object. Later on, 
Lorenson and Cline developed an algorithm called marching 
cubes [6] that has proven very useful for generating three-
dimensional polygonal surface from volume data with no 
connectivity information. In their algorithm, a cube is bounded by 
eight pixels located on two adjacent slices. Each vertex is coded 
as either inside or outside the object relative to the surface-
defining threshold. Based on the configuration of vertices that lie 
inside and outside the object, the cube is triangulated. The 
triangles indicate where the surface passes through the cube. The 
technique of marching cubes provides an accurate method for 
creating three-dimensional polygonal surfaces from slice data that 
can then be manipulated and visualized. However, the marching 
cubes model records all the details associated with the original 
data regardless of whether these details are insignificant or 
sampling artifacts. Also, since marching cubes generate at least 
one triangle per voxel through which the surface passes. This 
results in an enormous number of extremely small triangles, thus 
making it difficult to interactively render these models. On the 
other hand, our underlying model is a subdivision-based 
deformable model. It can produce models of varying resolution 
and can remove noise much easier. 
 
In the category of dynamic approaches, the most famous one is 
the snake model proposed by Kass, Witkin and Terzopoulos [4]. 
A snake is essentially a spline that minimizes the energy 
associated with the spline. The total energy of the snake model is 

contributed from three different sources: (1) the internal energy of 
the spline, (2) image forces, and (3) external constraints.  Through 
the minimization of the spline's internal energy, the snake will 
always remain smooth. The image forces guide the snake toward 
lines and edges of interest, while the external constraints allow the 
user to identify specific features to model. The original snake 
model only behaves and deforms on a 2-D plane, and can only 
model the topology of simple 2-D objects. Later on, Terzopoulos, 
Kass and Witkin generalized the concept of snakes into 
symmetry-seeking models [18]. They derive a three-dimensional 
shape from a two-dimensional image by modeling an axis-
symmetric elastic skin spread over a flexible spine. Finite element 
methods are also explored in deformable models by several 
researchers, including Cohen and Cohen [2], Terzopoulos and 
Metaxas [17], and McInerney and Terzopoulos [10]. On the other 
hand, Miller et al. [12, 13] proposed a polygon-based deformable 
model.  The behavior of the model is determined by a local cost 
function associated with each model vertex. The cost function is a 
weighted linear combination of three terms: (1) a deformation 
potential that pushes the model vertices towards the object 
boundary, (2) an image term that identifies features such as edges 
and acts against the model expansion, and (3) a term that 
constrains the motion of each vertex to remain not far from the 
centroid of its neighbors. Similar to the snake model, the 
topological variation in Miller et al.'s work is not allowed. The 
modeled dataset must be homomorphic to a sphere. Recently, Qin 
and Mandal [14, 8] proposed dynamic subdivision surfaces for 
surface reconstruction. Their approaches combine the advantages 
of free-form deformable models with the nice properties of 
subdivision surfaces, and their algorithm allows the direct 
manipulation of the limit surfaces defined by the subdivision 
process on the initial control mesh. One severe limitation of all 
aforementioned deformable models is that the topology must be 
determined before the geometric deformation, i.e., only geometric 
aspects of the underlying dataset are reconstructed through 
energy-based simulation. 
 
To overcome this limitation, several researchers have proposed 
implicit-based methods [1, 7, 21]. The key part of these schemes 
is the modeling of an evolving level set of some implicitly defined 
function. Despite the advantages of topological and geometric 
flexibility, implicit models are in general not very convenient for 
shape analysis and visualization, and also very difficult for user 
interaction. Recently, McInerney and Terzopoulos [11] proposed 
topological adaptable snake, which is a parametric snakes model 
that has the power of an implicit formulation. The basic idea is to 
superimpose a simplicial grid on the image domain and iteratively 
reparameterize the geometry of deforming snakes. In a different 
approach, Szeliski et al. [15] use a dynamic, self-organizing 
oriented particle system to model the surface boundary of objects. 
The particles can reconstruct objects with complex shapes and 
topologies by "flowing" over the data, extracting and conforming 
to meaningful surfaces. A triangulation is then performed which 
connects the particles to form a continuous global model that is 
consistent with the inferred surface of the underlying object. 
 
Our algorithm is based on a polygonal model with the capability 
of recursive refinements through surface subdivision. It further 
generalizes the work of Miller et al. [12, 13] and can overcome 
some limitations of their algorithm. In particular, our technique is 
capable of recovering geometric shape of arbitrary, unknown 

 



topology from volume data and the initial model is automatically 
placed within the dataset. Besides the aforementioned work, two 
other research advances are also of relevance. One is the work of 
Welch and Witkin [19, 20]. They use a triangle mesh to 
approximate the underlying smooth variational surface for free-
form surface design. Another one is the more recent work called 
"skin" algorithm proposed by Marksoian et al. [9]. Their goal is to 
generate a triangle mesh to approximate the surface implicitly 
defined by the "skeletons". 
 

3. ENERGY-BASED OPTIMIZATION 
 
The deformable behavior of the model is governed by the 
principle of energy-based minimization. A locally defined cost 
function is associated with each vertex of the polygonal model. 
The cost function is a weighted linear combination of four 
constraints whose objectives are to achieve the desired behaviors 
in the simulated model. We shall briefly review these four 
components in Section 3.1 followed by the minimization method 
in Section 3.2. 
 

3.1 Constraint Modeling 
 
The energy function C  associated with the current 
location of each model is explicitly formulated as 
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where  is the deformation potential, B  is the 
boundary constraints, V  is the curvature constraint, and 

 is the angular constraint. a  are the four 
corresponding non-negative weighting parameters. 
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3.1.1 Deformation potential --  ),,( zyxD
 
Deformation potential  offers the mechanism to 
inflate the model. It defines a scalar field where each position in 
space is assigned a value based on the frame of reference. The 
vertex will move along the direction of the lowest local potential 
(in absence of other constraints). In order to model concave 
objects, the normal tracking method is used, i.e., each vertex is 
attracted to a point located in the vicinity of normal direction of 
the polyhedron surface. During each evolving step, every vertex 
moves in the general direction of the local surface normal in order 
to decrease its deformation potential. 
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During the refinement process (local and global subdivision) 
which we will discuss in detail in Section 4, it is possible that new 
vertices are added to the model on the opposite of the boundary. 
In order to move these model points to the other side of the 
boundary and hence increase the accuracy and quality of the 
model, the surface normal used in the deformation potential of 
these model points is defined to point in the opposite direction. 

The effect is that a model point will migrate towards the true 
boundary of the object regardless of whether the model point is 
located inside or outside the object. Hence, as long as the initial 
model intersects the object boundary, i.e. some of the model 
points are inside object, the remainders are outside the object, the 
model tends to seek out the true boundary of the object.  
 

3.1.2 Boundary constraint --  ),,( zyxB
 
Boundary constraint  affords the mechanism for the 
model to interact with the dataset and identify the boundary. It is 
used to counter-balance the deformation potential and will 
restrict, direct, and counter-act the general progression of the 
deformation. We make use of a shifted threshold operator: 
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where  is the gray-level intensity distribution of 
the voxel at location (x,y,z), and T is the threshold value that 
identifies the object. 
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When a model point steps over the edge of an object, the 
algorithm returns a value that should increase the overall cost of 
the system. Therefore, the minimization process is required to 
either move the vertex by a smaller amount or not move the 
vertex at all. Hence the vertex will approach the boundary without 
crossing over it (unless its neighbors pull it over the edge).  
 
3.1.3 Curvature constraint -- V  ),,( zyx
 
The first two constraints have the ability to grow the model until 
all the vertices reach the boundary of the underlying object. 
During the deformation process, it is desirable for a vertex not to 
stray far away from its neighbors. This suggests the use of 
Curvature constraint V  which is a reasonable 
approximant of the local curvature, and it is defined as the ratio of 
the distance from the current model point to the centroid of its 
neighbors over the maximum distance among all the neighbors of 
the current model point: 
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where  is the current model point, n  is the number of 
neighbors to the current model point,  

are the neighbors of the current model point, .1
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Curvature constraint also has the effect of keeping the vertices 
well distributed during the deformation process. We will discuss 
this issue in more details in the next section. 

 



3.1.4 Angular constraint A  ),,( zyx
 
The fourth constraint--Angular constraint  is used to 
simulate the effect of attaching a very stiff string between any two 
adjacent faces. Similar to the boundary constraint, the value of 
angular constraint is either zero or very large. At each 
deformation step, the edges on the one-neighborhood of each 
vertex are identified, and all the dihedral angles between the two 
adjacent faces of these edges are calculated. If the next move of 
the vertex will cause any of these dihedral angles to become 
smaller than the threshold, the angular constraint will become 
very large and the vertex is not allowed to move at this 
deformation cycle. Otherwise, the angular constraint is zero. 
Angular constraint can effectively keep any two adjacent faces 
from being too close to each other. This constraint, used in 
concert with the more aggressive stressed-edge resolution 
approach and the mesh optimization techniques that will both be 
discussed later in this paper, will effectively prevent the local 
inter-penetration of adjacent faces. 
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3.2 Optimization Method 
 
An iterative method is employed to numerically compute the 
minimization of our cost function explained above. The advantage 
of this approach is that it is extremely general and can offer an 
accurate, stable solution even for very large systems, therefore, it 
is well suited for our purpose in shape recovery of large datasets. 
A vertex of the model will move along the direction of the 
steepest descent along the cost surface, which is opposite to the 
gradient of the cost function C . The gradient i ),,
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numerically approximated using the central difference of the 
overall cost function for the current position of the model vertex 
with a very small perturbation. The amount that a vertex can 
move is adjusted based upon the current configuration of the cost 
space. The step size can be reduced several times if the magnitude 
of the current step size results in an increase in the cost function. 
If a step size is no longer able to reduce the cost of the vertex, 
then the vertex is not allowed to move at this step. If a vertex has 
not moved for a certain number of deformation cycles, the vertex 
will be marked as non-active and will be excluded from future 
numerical integrations. 

 

4. ALGORITHM 
 
The entire pipeline of the modeling algorithm consists of the 
following seven main steps: 

1. Model initialization. 
2. Stressed edge resolution. 
3. Model growing. 
4. Local adaptive subdivision. 
5. Mesh optimization. 
6. Collision detection and topology changes. 
7. Global subdivision. 
 

After the model is automatically initialized at step one, the model 
will start its deformation process. It will loop through step two to 
step six at each deformation cycle. The deformation process stops 
when the model reaches its equilibrium, i.e. all the vertices of the 
model have been marked as non-active. Finally, the model can be 
globally subdivided several times until a user-given error criterion 
is met. Figure 1 shows the flow chart of the algorithm. We have 
highlighted the mechanism of model growing (step 3) in the 
previous section. In this section, we will detail the other six steps 
of the algorithm. 
 

 
 
Figure 1: Pipeline of the algorithm. 

 

4.1 Model Initialization 
 
The seed model may be any kind of closed polyhedra. For 
simplicity and without loss of generality, we use a sphere-like 
polyhedron consisting of 24 triangles of equal size. Before the 
deformation process starts, the algorithm will search through the 
input volume datasets and find a non-boundary voxel. This voxel 
is then identified as the initial center position of the seed model. 
Note that the seed model does not need to be completely inside 
the dataset because the model will flip the normal tracking 
direction of the vertex if the vertex is detected to be outside the 
dataset.  

 



4.2 Stressed Edge Resolution 
 
One phenomenon which oftentimes appears in a polygon based 
deformable model is the local inter-penetration of neighboring 
faces. Local inter-penetration typically occurs between two 
portions of the surface separated by a chain of stressed edges.  In 
practice, a stressed edge is identified if its two adjacent faces form 
an angle of less than 60 degrees (this value may vary across 
different systems). In this paper, we propose a simple, yet very 
powerful method that can efficiently solve this problem. At the 
beginning of each deformation cycle, all the stressed edges are 
detected by calculating the dihedral angle. Then each stressed 
edge is split into two small edges at the middle point and the 
middle point is further moved to the middle position of the two 
opposite vertices. Figure 2 demonstrates our method of resolving 
stressed edges.  
 

 
(a)  (b)     (c) 
 

Figure 2: Stressed edge resolution. (a) Edge BD is marked as 
stressed edge because the dihedral angle between its two adjacent 
faces ABD and EBD is less than the threshold. (b) Edge BD is 
split at the middle, and the middle point F of edge BD is 
connected with vertices A, B, D and E. (c) Finally, F is moved to 
the middle of vertices A and E. 
 

4.3 Local Adaptive Subdivision 
 
In order to control the smoothness of the model and the size of 
each polygon during the model-growing phase, we must allow the 
model to be able to increase its degrees of freedom during the 
deformation process. One simple, straightforward technique is 
global subdivision, i.e., globally subdivide the model whenever 
necessary. The drawback of the global subdivision approach is 
that it may generate a lot of unnecessary vertices on surface 
regions where a good approximation to the data boundary has 
already been achieved. Alternatively, we take advantage of the 
local adaptive subdivision approach, i.e., we only need to 
subdivide active regions that are still growing. A face is 
subdivided if its area is larger than a certain user-defined 
threshold, and moreover, at least one of its three vertices is still 
active. The typical subdivision rule is as follows. The algorithm 
will introduce a new vertex at the middle position of each old 
edge, and connect all the three new vertices. Thus four smaller 
new faces are generated from each old face. To maintain 
subdivision connectivity, all the triangles adjacent to the current 
face also need to be subdivided correspondingly. For example, in 
Figure 3, in order to subdivide the central triangle BDE, all the 
three adjacent triangles ADB, CBE and DFE need to be 
subdivided as well. And each of these three triangles is 
subdivided into two smaller ones by splitting the adjacent edge 
they share with the central triangle BDE. 

 

 
 

Figure 3: Local adaptive subdivision scheme. The solid lines are 
the old edges, the dashed lines are the new edges. The center 
triangle BDE is divided into four smaller triangles by connecting 
the three middle points of the old edges. Each of the three 
adjacent triangles ADB, CBE and DFE is split into two smaller 
triangles. 
 

4.4 Mesh Optimization 
 
The algorithm can automatically construct the new subdivision 
mesh during the deformation phase. Therefore, it's critical to 
improve and maintain the mesh quality throughout the process to 
keep the model both locally smooth and globally well 
conditioned. In general, three issues must be considered as also 
observed by Welch et al. [17]: (1) how to keep the nodes well 
distributed; (2) how to keep the triangles well shaped; and (3) 
how to keep an appropriate node density. 
 
4.4.1 Nodes distribution 
 
A popular scheme for keeping the nodes well distributed is called 
Laplacian Smoothing. It can be implemented by iteratively 
moving each node to the centroid of its neighbors. In our 
algorithm, we decide not to implement this scheme because of the 
high numerical cost associated with it. Instead, we rely on the 
curvature constraint V  in our local cost function 

 in equation (1) associated with each vertex to keep 
vertices from straying too far away from the centroid of their 
neighboring vertices. We observe that our curvature constraint 
behaves well in maintaining a good distribution of the nodes. 
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4.4.2 Triangle shape 
 
A triangulation with nodes well distributed can still have many 
skinny triangles. It is well known that the best possible surface 
triangulation over a set of points with known topology is the 
Delaunay triangulation. In addition, a Delaunay triangulation of 
an arbitrary surface can be incrementally recovered from a valid 
initial surface triangulation through edge swapping. We swap an 
edge if doing so will increase the minimum angle within its 
adjacent faces. Repeated applications of this swap operation 
always keep increasing the minimum angle and hence result in a 
Delaunay triangulation at the end of the procedure. That is, it 
maximizes the minimum angle on all the triangles of the mesh. In 
practice, an edge is eligible for swapping only if the dihedral 
angle between its two adjacent faces is larger than a certain user-

 



defined threshold, i.e., the local surface across the edge is flat 
enough. Moreover, an edge is swapped only if its local minimum-
angle will be increased by a certain small minimum (specified by 
users and heuristically determined by the algorithm). These two 
conditions can guarantee that the edge-swapping algorithm 
always functions correctly and terminates eventually. 
 
4.4.3 Nodes density 
 
During the deformation process, some nodes may cluster with 
each other, and some other nodes may be too far away from each 
other. To maintain an appropriate node density, two other 
operations are needed here: edge split and edge collapse. An 
edge-split is triggered if any two neighbors are too far apart. 
Similarly, if any node is too close to each of its neighbors, the 
node is destroyed using the edge collapse. In addition, skinny 
triangles are also eliminated at this step by edge collapsing. All 
the three inner-angles of each triangle are calculated. If any one of 
the three inner-angles of a triangle is too small, then the triangle 
containing the inner-angle will be eliminated by collapsing the 
edge opposite to this inner-angle. To restore a quality mesh, the 
edge swapping is always applied after any edge split and edge 
collapse operations. Figure 4 illustrates the three mesh operations. 
 

 
         (a)     (b)               (c) 
 
Figure 4: Mesh optimization operations. (a) Edge swap. (b) Edge 
split. (c) Edge collapse. 
 

4.5 Collision Detection and Topology Changes 
 
In order to recover a shape of arbitrary, unknown topology, the 
model must be able to change its topology properly whenever a 
collision with other parts of the model is detected. Various kinds 
of collisions can be considered, such as face-to-face, edge-to-
edge, vertex-to-vertex, edge-to-face, etc. Techniques such as 
surface-surface intersection and trimming have been proposed to 
solve collision detections. However, these techniques are usually 
very time consuming. We propose a novel distance based 
collision detection scheme that is simple, fast and efficient. Figure 
5 illustrates the three steps of the scheme: (1) collision detection, 

(2) identify one-neighborhood and put them into correspondence, 
and (3) change the topology. 
 
Collision detection: If the distance of two non-neighbor active 
vertices is smaller than the threshold, a collision will be identified 
and a merge-operation is triggered. If the distance between 
several pairs of active vertices is smaller than the threshold, the 
closest pair of vertices is chosen. For example, in Fig. 5(a), 
because the distance between two active vertices A and B is 
smaller than the threshold, a collision between regions around 
vertex A and B is detected and a merge operation is triggered. 
 
Identify one-neighborhoods and put them into correspondence: 
To merge the two parts of the model. First, we need to identify 
and collect all the one-neighborhood points for each of these two 
vertices. Then these two sets of points (i.e., one-neighborhood 
points) are sequenced separately and are put into correspondence. 
To do so, we use the same procedure as [19]: Iteratively refine the 
neighborhood with fewer edges by splitting its longest edge until 
both have the same number of nodes, then choose the alignment 
that minimizes the sum of squared distances between nodes. In 
Fig. 5(a), originally the one-neighborhood of vertex A has five 
nodes: {A1, A2, A3, A4, A5}, the one-neighborhood of vertex B 
has six nodes: {B1, B2, B3, B4, B5, B6}.  To make these two 
one-neighborhoods have the same number of nodes, we first find 
the longest edge of the one-neighborhood of vertex A, which is 
the edge between nodes A2 and A3. And then split this edge into 
two edges and insert a new node in between. Finally, we put these 
two sets of points into correspondence by finding the alignment 
that minimizes the sum of squared distances between nodes. In 
Fig. 5(b), point set {A1, A2, …, A5} are corresponding to {B1, 
B2, …, B6} respectively. 
 
Change the topology: After the two sets of points are put into 
correspondence, each point is connected with its corresponding 
point in the opposite point set. The two center vertices and all its 
incident edges are removed (Fig. 5(c)). The newly created 
quadrilaterals are further triangulated by splitting each 
quadrilateral into two triangles along one of its diagonals (Fig. 
5(d)). 
 
The mesh optimization processes will quickly smooth out any 
artifacts that may result from the matching procedure once the 
merge has been completed. 

 
 

 
 
   (a) 

 



 
 
   (b) 
 

 
   (c) 

 

 
 
   (d) 
 
 
Figure 5: Collision detection and topology change. (a) A collision 
is detected between the region around vertex A and the region 
around vertex B. (b) The one-neighborhoods of vertex A and 
vertex B are put into correspondence. (c) The corresponding 
vertices between the one-neighborhoods of vertex A and vertex B 
are connected. Vertex A and vertex B and their incident edges are 
removed. The topology of the model is modified. (d) Each of the 
newly created quadrilaterals is split into two triangles. 
 

4.6 Global Subdivision 
 
Once a rough estimation of the topology and geometry of a shape 
is achieved, the model can be subdivided several times to improve 

the fitting accuracy. We choose Loop's scheme [7] in our model 
though other schemes would also achieve this goal. Figure 6 
shows the Loop’s subdivision scheme. There are two kinds of 
new vertices generated at each level of subdivision: edge points 
and vertex points. Each old edge will generate a new edge point 
using the rule shown in Fig. 6(a). Each old vertex will generate a 
new vertex point using the rule shown in Fig. 6(b). By connecting 
each vertex point with its two adjacent edge points and connect 
the three edge points with each other, four smaller triangles are 
generated from each old triangle. After one level of global 
subdivision, the model will deform again based on the cost 
function explained above, and will arrive at a more accurate 
configuration of the shape because we now have more degrees of 
freedom for the model. Since the unknown topology of the 
underlying data set has already been recovered, there is no need 
for collision detection at this stage. 
 

           
 

 (a)        (b) 
 
 

Figure 6: Subdivision rules for Loop’s scheme: (a) Edge point 

rule. (b) Vertex point rule. 
8n
3  =a  for  n > 3 and 

16
3  =a  for n = 

3, n is the valence of the vertex. 
 

5. EXPERIMENTAL RESULTS 
 
We have developed an experimental system using C++ and 
FLTK. 
Figures 7, 8, 9, and 10 show some of the experimental results we 
have conducted using this system. In all figures, (a) shows a 
volume-rendered image of the original volume datasets. (b) and 
(c) are the two snapshots of the model during the deformation 
process. (d) is the first round estimation of geometry and topology 
of the model. Red color shows the regions of the model that are 
still active, while the non-active regions of the model are colored 
as blue. (e) is the refined shape of the model after one level of 
global subdivision. By comparing (d) and (e), we can clearly see 
the improvement of the fitting accuracy of the model after one 
level of global subdivision.  
 
In addition, Fig. 10(f) shows the refined shape of the model after 
two levels of global subdivision, the groves on the inner-surface 
of the nut are recovered very well. Fig. 10(g), (h) and (i) are the 
error maps of the models of Fig. 10(c), (d) and (f), respectively. 
The fitting error is calculated by dividing the distance between the 
model vertex and the closest volume boundary voxel by the 
diameter of the smallest bounding sphere of the object. The green 

 



color shows regions whose fitting error is less than 0.5%. The red 
color represents regions whose fitting error is greater than 2%. 
These three error maps illustrate that the fitting error is greatly 
reduced after two levels of global subdivision. Since our model 
currently cannot recover sharp edges and corners, the regions that 
are still red after two levels of subdivision are primarily the 
regions in the vicinity of sharp edges and corners. 
 
Our algorithm also supports multiple seed model initialization. 
For example, in Fig. 9(b), four seeds are initialized at four 
different positions at the same time. Each model will grow 
independently (Fig. 9(c)) and will merge with other models 
whenever a collision is detected (Fig. 9(d)). 
 
Table 1 lists the four weighting coefficients for calculating the 
local cost function associated with each vertex using Equation (1). 
Table 2 and Table 3 summarize the statistics of our examples. In 
particular, Table 2 is the input of three dimensions of the 
volumetric image data. Table 3 lists the size of recovered shape of 
the model along with the maximum fitting error of each model. 
 
Currently, several parameters need to be set by the user at the 
start of the deformation process. They are: (1) the face area 
threshold for local adaptive subdivision, (2) the distance threshold 
for collision detection, and (3) the edge length threshold for mesh 
operations such as edge split and edge collapse. In the future, we 
plan to simplify these parameters by conducting a preprocessing 
step and normalize the input dataset to the same scale. Then it 
should be possible for the algorithm to automatically set the 
proper values for these parameters. 
 

0a  1a  2a  3a  
1 1 1.6 1 

Table 1: Weighting coefficients. 
 
 

Figure# X(#voxels) Y(#voxels) Z(#voxels) 
7 67 127 67 
8 128 120 47 
9 32 32 64 

10 68 41 59 
Table 2: The dimensions of the input volume datasets. 

 
 

Figure# #Vertices #Edges #Faces Max. fitting 
error ( %) 

7(d) 2491 7491 4994 1.05 
7(e) 9889 29685 19790 0.92 
8(d) 1005 3015 2010 0.533 
8(e) 4299 12897 8598 0.38 
9(d) 2379 7161 4774 1.26 
9(e) 9848 29568 19712 0.94 

10(b) 187 561 374 3.88 
10(c) 774 2322 1548 2.22 
10(d) 3141 9423 6282 1.85 

      Table 3: Recovered model information. 
 

6. CONCLUSIONS 
 
In this paper, we have presented a new modeling algorithm for the 
extraction of boundary surfaces from volumetric datasets. 
Through the use of a new collision-detection method and a novel 
stressed-edge resolution scheme, coupled with mesh optimization 
techniques, the algorithm is able to overcome several limitations 
associated with conventional deformable models. The algorithm 
can recover the shape of arbitrary geometry and its unknown 
topology simultaneously. Because the underlying model is a 
subdivision-based model, it naturally supports levels of detail. 
After the initial estimation of both topology and geometry of the 
dataset is achieved, the user can control the fitting quality easily 
by specifying the number of levels of global subdivision. 
Furthermore, the algorithm can be multi-threaded for improved 
performance, i.e., multiple seed models can be initialized at 
different locations at the same time. Hence, parallel 
implementation is readily available. Throughout the deformation 
process, each seed model will grow independently and will merge 
with neighboring models whenever a collision occurs.  
 
We expect our modeling algorithm to be extremely valuable in 
such areas as computer graphics, medical imaging, computer 
aided design, and visualization. It can be used to extract the 
internal organs for medicine, or to model scanned mechanical 
parts for engineering. Furthermore, our model can be easily 
extended to higher dimensional spaces (e.g., to model a series of 
time varying volume data which is essential in motion tracking). 
 

7. FUTURE WORK 
 
Several improvements are possible. First, we currently use a 
brute-force searching algorithm for collision detection. We shall 
continue to improve their time performance by using techniques 
such as hierarchical bounding box. Second, our current modeling 
algorithm functions in a semi-automatic fashion. Although the 
seed model is automatically initialized, users have to interactively 
select several parameters before the deformation process starts. 
This would require certain knowledge for users. Hence, the 
current version of our system is perhaps more appropriate for 
domain specialists who are more familiar with the underlying 
datasets and their attributes. It would be ideal to fully automate 
our system so that all relevant parameters can be determined 
heuristically without user intervention. Making all the parameters 
transparent in our system would appeal to naive users.  
 
We also plan to extend the functionality of our model and its 
associated system along the following directions in the future. We 
shall enhance our model so that it can recover sharp features such 
as corners and creases. Also, besides the coarse-to-fine levels of 
detail currently available in our system, we shall explore the data-
reduction capability (i.e., from fine to coarse), this will enable us 
to use very few degrees of freedom to model complicated shapes 
of geometry and topology. 
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  (a)   (b)               (c)            (d)            (e) 

Figure 7: Surface reconstruction from volumetric image data of a chair. 

                 
  (a)   (b)               (c)            (d)            (e) 

Figure 8: Surface reconstruction from volumetric image data of a phantom vertebral. 

                 
  (a)   (b)               (c)            (d)            (e) 

Figure 9: Surface reconstruction from volumetric image data using multiple seeds. 

                 

  (a)   (b)               (c)            (d)            (e) 
 

    
 (f)       (g)          (h)                 (i) 

Figure 10: Surface reconstruction from volumetric image data of a nut along with the corresponding error maps. 
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