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Super-Resolution of Multi-Observed RGB-D Images
Based on Nonlocal Regression and Total Variation
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Abstract— There is growing demand for accuracy in image
processing and visualization, and the super-resolution (SR)
technique for multi-observed RGB-D images has become popular,
because it provides space-redundant information and produces
a detailed reconstruction even with a large magnification factor.
This technique has been thoroughly investigated in recent years.
Nevertheless, technical challenges remain, such as finding sub-
pixel correspondences with low-resolution (LR) observations,
exploiting space-redundant information, formulating space homo-
geneity constraints, and leveraging cross-image similarities in
structures. To address these challenges, this paper proposes
a unified optimization framework to estimate both the super-
resolved RGB image and the super-resolved depth image from the
multi-observed LR RGB-D images using their correlations. Using
depth-assisted cross-image correspondences, the RGB image SR
problem is formulated as an effective regularization function by
incorporating the normalized bilateral total variation regularizer,
and it is efficiently solved by a first-order primal-dual algorithm.
The depth image SR estimate can be obtained by minimizing a
nonlocal regression-based energy, which integrates the structural
cues of the super-resolved RGB image in a detail-preserving
fashion. Essentially, our unified optimization framework uses the
RGB image and depth image as a priori knowledge that the SR
process uses for better accuracy. Our extensive experiments on
public RGB-D benchmarks and real data and our quantitative
comparison with several state-of-the-art methods demonstrate the
superiority of our method in terms of accuracy, versatility, and
reliability of details and sharp feature preservation.

Index Terms— Super-resolution, depth image recovery, RGB-D
image, nonlocal regression, normalized bilateral total variation.

I. INTRODUCTION AND MOTIVATION

CURRENTLY, the super-resolution (SR) technique is
considered a second-generation technique for image

restoration. It plays a vital role in image refining for
downstream image- or geometry-related applications, such as
visualization and 3D printing. Unlike traditional restoration
techniques, SR aims to produce high-resolution (HR) results
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using the intrinsic information within a single image or
a sequence of images, and it solves the ill-posed inverse
problem caused by several types of degradation (e.g., noise,
blur, and LR) [1], [2].

Existing techniques are unable to produce convincing SR
results for RGB-D images. For the SR of RGB images,
the interpolation-based methods are simple but tend to
introduce staircase artifacts and overly blurred edges. The
reconstruction-based approaches require multiple observations
and resort to registration transformation [3], [4] for their
correspondences. However, the obtained correspondences
are often inaccurate due to the limited resolution of the
observations. Learning-based techniques [8], [36], [37] use
the high-frequency information from a training set of HR/LR
image pairs, and the selection of the training set and the
parameters used for tuning (e.g., number of HR/LR image
pairs) are difficult to determine but crucial for the results. For
SR of a depth image, existing color-guided methods [11]–[13]
require HR RGB guidance, which is not possible for popular
devices such as Microsoft Kinect (whose resolution is fixed at
640×480 for RGB-D images). We list the existing challenges
for high-quality image SR here:

Firstly, to leverage redundant information, SR approaches
based on single images are suitable for small magnification
factors but deteriorate quickly as the magnification factor
increases. This is because the limited information provided
by a single image is not a sufficiently powerful basis for
image restoration. Thus, researchers endeavor to use image
sequences/external datasets to refine the super-resolved
texture details. Such methods take multi-observed images
into account, but the registration problem is tough, and there
is insufficient 3D redundant information, which limits the
accuracy. Hence, we propose a smarter way to leverage
multi-observed redundant information to streamline the
mapping between LR images and HR results.

Secondly, current methods can be roughly classified into two
categories for the prior knowledge exploration: those based
on a statistic prior (e.g., gradient profile [6]), and those that
use an empirical distribution (e.g., heavy tailed distribution,
sparse distribution, total variation.). The static prior can be
quickly obtained from the input image and is data-specific,
but it is sensitive to noise because of the explicit dependence
on pixel value. An empirical distribution can be obtained from
natural images and is more universal, but it allows for only
slight adjustments in images from different observations, and
it introduces blurring and edge artifacts. Therefore, a more
effective global prior is needed to improve SR outcomes.
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Fig. 1. The pipeline of our RGB-D image super-resolution algorithm, which iteratively estimates HR RGB and depth images. RGB image SR: Steps 1-3: the
preprocessing steps to establish the mapping matrices between the LR RGB images and the estimated HR image (Section III-B and III-C), of which, step1
initializes the depth image with the same size as the SR depth result; step2 constructs the point cloud by back-projecting the RGB image with the corresponding
depth image; and step3 constructs the mapping matrix between shifting viewpoints using the pin-hole model. Step 4: RGB image SR based on the normalized
bilateral total variation (NBTV) (Section IV-B and Section IV-D.1); Depth image SR: Step 5: select channel based on the variance to adaptively acquire local
structure support; Step 6: construct nonlocal regression matrix using depth-color pair (Section IV-C); Step 7: recover color-guided depth image based on
nonlocal regression (Section IV-D.2), which is then used to initialize the depth in the next iteration. In step 3 and step 6, the grids are used to index the rows
and columns of the matrix. The colors represent non-zero values in the matrix.

Thirdly, concerning the complementary cue formulation
of RGB-D image pairs, SR’s prospects have improved
greatly with the rapid deployment of portable RGB-D
capture devices. SR-related research has reached a new
phase wherein researchers are simultaneously pursuing super-
resolved texture images and depth images because both types
of images are indispensable for 3D reconstruction applications
that demand high accuracy. Although LR color-depth pair
approaches [17], [18] solve the SR problem for RGB-D images
by exploring mutual information and incorporating segmen-
tation data to avoid over-smoothed boundaries [14], [15],
the accuracy is dependent on the quality of the high-level
feature extraction. Additionally, it remains difficult to rig-
orously formulate the underlying complementary color-depth
correlations to boost SR performance on RGB-D images.

To combat the aforementioned problems, we use the
correlation of depth-color pairs in 3D to effectively guide
the SR of an RGB-D image, as highlighted in Fig. 1. Given
multi-observed RGB-D images, we first back-project the
RGB image to form 3D point clouds using the corresponding
depth image, and establish the mapping matrices between the
LR RGB images and the estimated HR image (Steps 1-3).
We also define a novel image prior (Normalized Bilateral Total
Variation) to prevent the ringing artifacts and the over-blurring
problem of TV-based methods (Step 4). Afterwards, the color-
guided nonlocal regression is used to enhance the stability and
accuracy of HR depth image estimation (Step 7). The adaptive
RGB-channel selection strategy helps further enhance the
sharpness of the edges (Steps 5-6). In this way, RGB image SR
and depth recovery can be elegantly integrated into a unified
framework to ensure robustness and accuracy. Specifically,
the salient contributions of this paper can be summarized as
follows:

• We propose a unified optimization framework to simul-
taneously estimate the super-resolved RGB and depth
images by exploiting the geometrical-structure correla-
tions of multi-observed LR depth-color pairs, which helps
boost accuracy.

• We formulate an effective image regularization prior
(normalized bilateral total variation) to super-solve the
RGB image. The method respects sharp edges and pre-
serves details well, and it can be efficiently solved via a
first-order primal-dual optimization algorithm.

• We design an adaptive nonlocal regression function to
estimate the HR depth image in an RGB-guided way,
which can be naturally integrated into the optimization
function to guarantee depth-color consistency and select
for stable and accurate structure details.

Note that in previous studies, the input image configuration
can be classified into two categories: multiple RGB images +
single depth map, and multiple RGB images + multiple depth
maps. In the first case, the RGB and depth images boost each
other’s reconstruction accuracy. Multiple RGB images also
provide more redundant information to guarantee a satisfactory
RGB SR result. Representative RGB-D super-resolution
approaches have been reported previously [19], [20], and our
method also falls into this category. In the second case, multi-
ple RGB and depth images are adopted to enhance the spatial
and temporal consistency. Several existing methods [15], [16]
incorporate multiple depth maps SR by employing the
corresponding color images to guide the propagation of the
local structures. However, for RGB image SR, incorporating
multiple depth maps received much less attentions.

II. RELATED WORK

We briefly review previous works related to three central
themes of this paper.

A. RGB Image Super-Resolution

RGB image SR includes a wide spectrum of methods.
Interpolation-based method is the simplest and fastest, such as
the bicubic method. However, those methods usually give rise
to blurred results. Learning-based approach is also important.
For example, Yang et al. [7], [21] took the LR/HR pairs as
a training set to learn LR and HR dictionaries. By taking
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into account the similarities between the training set and the
test set and sharing the sparse reconstruction coefficients,
the fine details can be recreated in the HR image. However,
the sparse coding requires extensive computation time to find
a set of satisfying sparse coefficients. To reduce the time cost,
Yang and Yang [23] split the feature space into numerous
subspaces and learned a set of linear regression functions to
infer the details in an HR image. Zhu et al. [22] proposed
the concept of a deformable patch, with which the dictionary
becomes more compressive and can cover more patterns than
previous approaches. Dong et al. [24] used convolutional
neural networks to learn an end-to-end mapping between the
LR and HR patches. Timofte et al. [9] introduced a neighbor-
embedding method into dictionary learning to pre-compute the
projection matrix for each atom; they then mapped the LR
patches to HR space using the obtained projection matrix.
Dai et al. [10] learned a collection of regressors to guar-
antee the minimal super-resolved error for the training set.
By searching for a similar patch in the training set, the testing
patch can adaptively leverage the most appropriate regres-
sor to produce the HR patch. The learning-based methods,
however, commonly have to address two main questions: how
many training examples are sufficient for the generic images,
and how many subspaces are best for dictionary/regressor
training?.

Unlike learning-based methods that use an external dataset,
reconstruction-based methods directly employ the prior to
constrain the image SR; they rely on details such as total
variation (TV) regularization [5]. Aly and Dubois [25]
presented a theoretical analysis of TV in the frequency domain.
Farsiu et al. [26] proposed the bilateral TV prior (BTV)
and formulated the super-resolution problem as an L1-norm
minimization problem using the BTV prior to enhance the
robustness. Mitzel et al. [27] used TV regularization to
reconstruct the high-resolution image with optic flow for the
estimation of the motion field. Unger et al. [28] extended
the work of Mitzel et al. and introduced the Huber norm, a
replacement for the TV prior, to preserve the sharp edges.
However, TV-based methods also have some well-recognized
disadvantages: staircase artifacts may appear around the edge
regions; some small-scale details tend to be lost; and it cannot
perfectly preserve the sharp edges. To overcome these diffi-
culties, many researchers have proposed improved methods,
such as bilateral TV [26], beyond digital TV (BDTV) [29],
higher degree total variation [30], and locally digital bilateral
TV [31]. These works all rely on a similar idea of higher
degree derivatives to improve the contour regularity and
reduce artifacts. Moreover, Shan et al. [32] used the heavy-
tailed distribution of the natural image gradients to constrain
the unique solution. In this paper, we propose normalized
bilateral TV by integrating bilateral filter and normalized
sparsity measure, which is simple and robust and can better
respect the sharpness and consistency of the edges and details.

B. Color-Guided Depth Super-Resolution

Color-guided depth SR can take advantage of the fact that
the additional color information can provide complementary

clues for depth SR. One way to implement this idea is to
resort to context-specific filters. For example, Yang et al. [33]
used bilateral filtering to produce a soft color segmentation,
and then used the quadratic polynomial interpolation to refine
the HR depth image estimation. Liu et al. [12] proposed a
joint filter using the geodesic distances for depth SR, which
introduces some artifacts in the regions with rich textures.
Li et al. [34] proposed a Bayesian approach by combining the
geometrical structures of the color image. Park et al. [14], [15]
proposed a more complex framework using the local and
nonlocal regularization terms. Despite using high level fea-
tures, it tends to introduce jag artifacts around the edges.
In sharp contrast, this paper involves using only low level
information (intensity) to constrain the depth recovery model.
Ferstl et al. [11] formulated a generalized second order TV
as the regularization term, and guided the depth SR with
an anisotropic kernel calculated from the corresponding HR
color image. Nevertheless, the generated edge is blurred in
large magnification case. Yang et al. [13] introduced a local
autoregressive model by taking into account both the depth
and color information to adaptively calculate the pixelwise
weights. However, this method fails to maintain the sharp
edges because the average of RGB channels should affect the
structure awareness. In contrast, this paper uses a nonlocal
regression strategy with an adaptive channel selection scheme,
which should work better than a local autoregressive model.

C. Super-Resolution by 3D Reconstruction

Some works have pointed out the relationship between 3D
reconstruction and SR. For example, Mudenagudi et al. [17]
formulated the image SR problem using a MRF-MAP
framework with the help of a calibrated 3D geometry, and
solved it via graph cut optimization. However, their method
has little contribution to depth map SR. Silva et al. [18]
proposed a real-time SR method by improving the 3D recon-
struction pipeline, wherein the spatial-resolution of depth is
increased by exploiting the coincidence of color and depth
edges. However, their framework ignores color image SR.
Bhavsar and Rajagopalan [19] integrated the color image
SR and HR depth recovery in a unified framework to correct
and improve each other’s accuracy. The graph cut and iterative
conditional model are used to estimate RGB and depth images
in each iteration. Recently, Lee and Lee [20] also proposed
to simultaneously super-resolve RGB and depth images; they
used the Huber norm as a regularization term to force the
solution to be unique. Unlike these previous studies [19], [20],
we define a more elegant energy function with different priors
to intrinsically guide the correspondence construction and
to replace simultaneous HR RGB-D image estimation with
sequential SR.

III. PREPROCESSING OF MULTI-OBSERVED

RGB-D IMAGES

Given the reference RGB-D image I0, we begin with an
assumption that the images captured from multiple viewpoints
are roughly located on the same plane. Therefore, for the LR
images (denoted by Iv (v = 0, · · · , ν)) and the HR result I,
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TABLE I

LIST OF THE KEY MATHEMATICAL SYMBOLS USED IN THIS PAPER

a mapping can be established based on the imaging principle
when the calibrated camera parameters are given.

To make our mathematical formulations clear, Table I
summarizes the key symbols used in the following sections.
Here, normal-case letters denote scalars, and bold upper-case
letters denote matrices.

A. Camera Parameter Estimation

Before conducting RGB-D image super-resolution, we
need to use the camera localization algorithm to estimate
camera parameters. We use the multi-observed RGB-D
image sequence to provide enough feature information.
Then, we resort to feature-based MonoSLAM for camera
localization [35]; this is a real-time algorithm used to recover
the 3D trajectory of a monocular camera. Based on the
estimated camera parameters, we build a mapping matrix
under with the same viewpoint or with shifting viewpoints,
which are detailed in the following sections.

B. LR-HR Image Mapping Under the Same Viewpoint

The well-known pin-hole model uses the internal parameter
A ∈ R

3×3 (including the principal point c and focal length f ),
rotation matrix R ∈ R

3×3 and translation matrix t ∈ R
3×1

of the camera to describe the imaging process. Under the
reference viewpoint 0, the corresponding HR RGB-D images
can be captured with the same extrinsic parameters R0 and t0

and a different internal matrix A0
H . As shown in Fig. 2, for a

given magnification factor β, cH and fH of the corresponding
HR camera are, respectively defined as c0

H = βc0 and
f 0
H = β f 0. Please refer to a previous study [34] for more

details. The mapping matrix M0 ∈ R
N×β2 N can be determined

by the internal parameters A0 and A0
H . Therefore, matrix M0

should satisfy M0I = I0, which is a down-sampling operator.

C. Image Mapping Between Shifting Viewpoints

Given the camera parameters, the mapping matrix between
shifting viewpoints is more complex. Here, the extrinsic
and internal parameters under other viewpoints are different.

Fig. 2. Illustration of the pin-hole imaging model. For the same viewpoint,
the relationship of intrinsic parameters between HR imaging and LR imaging
directly depends on the magnification factor.

For a point I(ı, j) of HR image obtained under the reference
viewpoint 0, the coordinate of I(ı, j ) in 3D space is
(ı, j, 1)T [11]. Given its associated inverse depth value dıj ,
we can backproject it into 3D space via

p(ı, j) = (R0)−1(
(A0

H )−1I(ı, j)

dıj
− t0) = 1

dıj
(A0

H )−1I(ı, j),

(1)

where R0 is an identity matrix, t0 is a zero vector for the
viewpoint 0. And p(ı, j)’s projection to the adjacent shifting
viewpoint (with Av , Rv and tv ) can be formulated as

Iv (ı ′, j ′) = ω(
1

dıj
AvRv (A0

H )−1I(ı, j) + Av tv ), (2)

where ω((κ, ι, o)T ) = (κ/o, ι/o)T is the dehomogenization
function. Therefore, given the pixel position (ı, j)T in HR
image, we can calculate its associated pixel coordinates
(ı ′, j ′)T under the adjacent viewpoint v. The mapping matrix
Mv ∈ R

N×β2 N thus can be defined by Eq. 2, which transforms
the image I to its adjacent viewpoint image Iv . This process
helps avoid the explicit registration among multi-view images
by taking into account the depth image of 3D scene.

IV. SR OPTIMIZATION FRAMEWORK FOR RGB-D IMAGES

This section describes our optimization framework used
for multi-observed RGB-D image SR. Our framework uses
the geometrical-structure correlation of depth-color pair to
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improve the robustness and accuracy of SR processing. The
technical elements are detailed in the following subsections.

A. Objective Function Definition

To leverage the correlation between depth-color pair, we
integrate RGB image SR and depth recovery into a unified
framework that guarantees the accuracy and robustness of
both. The underlying motivation is that depth information can
improve the correspondence accuracy between LR observa-
tions and HR results, and the color information can boost
the depth recovery accuracy for high-magnification cases. The
objective optimization function is formulated as

argmin
I,D

Ed(I) + Ed(D) + λ1 EN B(I) + λ2 EN L (D). (3)

Here, I and D denote the estimated HR color and depth images,
respectively. Ed(I) and Ed(D) are fidelity terms that make
the super-resolved RGB-D image consistent with the multi-
view LR observations. EN B (I) is the normalized bilateral total
variation regularization term defined over the super-resolved
RGB image, and EN L (D) is the nonlocal regression term
defined over the recovered depth image. λ1 and λ2 are the
weight parameters that are used to balance the fidelity term and
the regularization term. The fidelity terms are formulated as

Ed(I) =
ν∑

v=0

‖MvBI − Iv‖2
2, (4)

Ed(D) = ‖M0D − D0‖2
2, (5)

where Iv represents the captured RGB image at the
v-th viewpoint. Mv is the mapping matrix. I0 and D0 are the
reference RGB-D images obtained from the 0-th viewpoint.
B is the convolution matrix of the blur kernel.

B. Regularization Prior Formulation for RGB Image SR

The regularization term EN B (I) has to preserve the sharp
edges well and remove artifacts. The widely used regular-
ization term is TV regularization (formulated as ‖∇I‖1) [5],
whose L1 norm can be regarded as a sparsity metric on
the gradient domain. Although the TV model has achieved
great success, there is still room for further improvement
in maintaining the clarity of important geometric structures
(edges and details). Here we define a new prior, which we call
the normalized bilateral TV (NBTV). This prior can effectively
maintain the sharpness and consistency of true edges and
details. NBTV intrinsically couples the bilateral filter with a
normalized sparsity metric, which is formulated as

EN B (I) =
∑γ

m=1‖
(m)�(I, m)‖1∑γ
m=1‖
(m)�(I, m)‖2

, m = 1, · · · , γ , (6)

where 
(m) = μm is the spatial weight (μ = 0.7). �(I, m)
generalizes the BDTV by exploring a larger neighborhood
during reconstruction. It has four generalized discrete filters,
which are formulated as

∇x1,m = [
m︷ ︸︸ ︷

0, · · · , 0,−1,

m−1︷ ︸︸ ︷
0, · · · , 0, 1],∇y1,m = ∇T

x1,m,

∇x2,m = [1,

m−1︷ ︸︸ ︷
0, · · · , 0,−1,

m︷ ︸︸ ︷
0, · · · , 0],∇y2,m = ∇T

x2,m . (7)

Fig. 3. A comparison of priors. The y-axis represents the relative cost, which
measures the possibility of generating a test image using the prior. The relative
cost is defined as the ratio of the cost (L1 norm of the prior) of the test image
to that of the original image. The lower the relative cost is, the easier it is
to generate the testing image based on the prior. The x-axis represents the
size of the blur kernel. A negative size corresponds to a sharpened image,
and a positive size corresponds to a smoothed image. Existing TV priors tend
to generate blurred results. In contrast, the NBTV prior (red curve) performs
better; its cost for the original image is lowest. This demonstrates that the
NBTV prior can be consistent with the original image.

�(I, m) = [∇x1,m,∇y1,m,∇x2,m,∇y2,m
]T ⊗ I is defined as

the convolution of I with Eq. 7 as kernel. It reduces to the
original BDTV model when m = 1. The spatial weight func-
tion 
(m) weakens the influence of the distant neighborhoods
and can be regarded as the spatial kernel. �(I, m) increases
the penalty for the pixels that have high inconsistency with
respect to the true structures, and it is used as the range kernel.∑γ

m=1‖
(m)�(I, m)‖2 is used to normalize the bilateral TV
term

∑γ
m=1‖
(m)�(I, m)‖1. Therefore, the proposed regu-

larization term is named Normalized Bilateral TV. It should
be noted that we empirically set γ = 2. Fig. 3 presents a
comparison between NBTV and existing TV priors, which
indicates that our prior has better performance in maintaining
sharp edges.

The newly proposed Normalized Bilateral TV (NBTV) has
the form L1

L2
, and it can be regarded as a normalized version

of BTV function (L1). The BTV prior typically penalizes the
high frequency bands in image reconstruction. Thus, the BTV
regularization term generally tends to produce a blurry result
for image super-resolution because the blur operator attenuates
the high-frequency bands and gives rise to a lower BTV norm.
This situation has been studied [45], and Fig. 3 also illustrates
such a case. Nevertheless, benefiting from the fact that NBTV
is equivalent to the BTV norm rescaled by their total energy
(L2 norm), the blur can be effectively controlled. Given a
blurry result, although blur can decrease both the BTV norm
and its total energy (L2 norm), it is vital that the latter is
reduced faster. Thus, the value of L1

L2
function will be increased

for a blurry result, which had been demonstrated in Fig. 3. For
the noise and sharpened cases, as shown in Fig. 3, we can see
that NBTV increases the L1/L2 value. Therefore, the prior of
NBTV can be consistent with the original image for the three
cases, and it generates a result with better visual quality.

C. Nonlocal Regression Function for Depth Image SR

First, the depth image generally has a high amount of self-
similarity (e.g., flat regions), which encourages us to further
introduce the regression model to improve the performance
of depth image recovery. Nonetheless, the local self-similarity
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may not provide enough information for faithful depth
reconstruction. Ringing and jag artifacts often appear around
the edges of the recovered depth image. Note that the depth
map mainly contains smooth regions separated by the edges
and structures corresponding to the depth discontinuities.
Numerous nonlocal self-similarities can also be found in the
depth image, which can enhance the accuracy of the con-
structed depth within a larger neighborhood. Considering the
computationally demands of L1 regularization term, we can
formulate the depth image SR as a problem of squares regres-
sion. Thus, we further introduce a nonlocal regression (NLR)
regularization term into the optimization framework.

To further improve the quality of the recovered depth,
we use the cues in HR RGB image to guide the whole
reconstruction process. Then, the color-guided NLR model is
incorporated into the optimization function. We use a pixel-
wise strategy to define newly proposed NLR model, which
can achieve better reconstruction quality than the patch-wise
model. Please refer to a previous study [13] for more details.
Therefore, our color-guided NLR model can be formulated as

EN L (D) = ‖D − WD‖2
2 = ‖(1 − W)D‖2

2. (8)

Here, 1 is the identity matrix, and W ∈ R
β2 N×β2 N is the

regression coefficient matrix. The regression coefficient wi j is
defined as

wi j = 1

Si
wD̂

i j w
I
i j , (9)

where Si is the normalization factor. D̂ is the up-sampled depth
image via Bicubic interpolation of D0. The color term wI

i j
is introduced to take advantage of the correlations embedded
in the depth-color pair. Due to the co-occurrence of edges
in the RGB-D pair, the color term can help avoid depth
discontinuities. The depth term wD̂

i j is incorporated to prevent
the NLR model from recovering incorrect depths due to depth-
color inconsistency: different-colored pixels could have the
same depth, and pixels with similar color could be at different
depth levels.

The depth term wD̂
i j can be computed by using the Gaussian

function on the initial depth D̂:

wD̂
i j = ex p(− (D̂i − D̂ j )

2

2σ 2
1

), (10)

where D̂i is a scalar, denoting the depth value at pixel i . The
standard deviation σ1 is used to control the similarity of depth.
The definition of the color term wI

i j also uses the Gaussian
function to calculate the weight. However, we calculate it over
a pixel window rather than a single pixel. Based on the pixel
window, we introduce the bilateral kernel to weight the dis-
tances between local patches. Using the structural awareness
of the bilateral kernel, we can use the structure information in
the local patch to produce more candidate patches and form a
more well-determined nonlocal regression model.

The bilateral kernel can be calculated over three RGB
channels, as described previously [13]. As shown on the
right side of Fig. 4, this approach generally cannot pro-
duce satisfactory results with sharp edges. The blurred edges

Fig. 4. Illustration of channel selection. Left: the bilateral filter kernels
defined over each RGB channel. “var” denotes the variance of the curves of
the single channels, “Position” indexes the pixel location, and “Weight” means
the similarity between the adjacent pixel and the anchor pixel (red point).
Channel “b” achieves the highest variance, and its weight curve (indicated
by blue color) decreases rapidly for the pixels on the edge, which shows that
channel “b” is more structure-aware. Thus, the larger-variance channel has
better structural awareness. Right: The depth recovery effects for two sets of
data. The columns from left to right are as follows: the ground truth (GT),
the results of an adaptive auto-regressive method (AAR14), and our results.
Compared to the average method used by AAR14 [13], our channel selection
achieves better recovery.

appear in the results of the adaptive auto-regressive model
method (AAR14) [13]. That is because the average operator on
three channels may impair structural awareness. We propose
selecting the channel so that edges preserved in one channel
can be used to recover sharp edges in the depth image. Our
strategy is based on the assumption that the larger-variance
channel has better structure-awareness (see the left figure
of Fig. 4). Therefore, the color term is formulated as

wI
i j = ex p(−‖Fi � (Ci − C j )‖2

2

2σ 2
2

), C = max
C∈r,g,b

(varC). (11)

Here, “�” represents the element-wise Hadamard product,
Ci denotes the extracted patch centred at pixel i according
to the selected channel, “var” is the variance of the patch for
each channel, and σ2 is the standard deviation of the structures,
which controls the decay rate. The operator Fi is a bilateral
filter kernel of the extracted patch Ci , which is defined as

Fi j = ex p(− (i − j)2

2σ 2
3

)ex p(− (ci − c j )
2

2σ 2
4

), j ∈ patch, (12)

where ci denotes the intensity at pixel i , σ3 and σ4 are
the spatial and range parameters of the bilateral filter kernel
to control the edge response. The benefit of introducing a
local structure kernel Fi ∈ R

q×q is that it produces more
candidate patches, which makes it possible to form a more
well-determined NLR model. q is the width of the extracted
patch. For explanations, please refer to Fig. 5.

For any pixel j in a sufficiently large search window around
pixel i , we calculate its similarity wi j to i . A pixel j is chosen
as the similar pixel to i if wi j ≥ 0.98 or wi j is within the first
15 pixels. Thus, the matrix W can be defined as

Wi j =
{

wi j if pixel j is similar to pixel i

0 otherwise.
(13)

D. Implementation of Optimization Algorithm

Note that the initialization of matrices Mv and W mainly
depends on the unknown variables D and I, respectively.
Because Eq. 3 is non-convex, we can use the alternating
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Fig. 5. Illustration of color-guided NLR model. (a) The depth similarity
distribution for anchor point 1 calculated by Eq. 10. (b) The color similarity
calculated by Eq. 11. (c) The final similarity calculated by Eq. 9. (d) The
candidate pixels (2-8) selected by NLR model. The bilateral kernel of the
patch 1 is shown at the corner. (e) Close-up effects. Pixel 2 is selected for
only the patch-based method. The shape-based local regression model [13] can
produce candidate pixels 2, 3, and 4. In contrast, the proposed shaped-based
NLR model can choose the nonlocal pixels 5, 6, 7, and 8 while generating
the candidate pixels 2, 3, and 4. Thus, our method produces more candidate
pixels than other competing methods, and it shows better performance for
depth SR.

minimization (AM) algorithm, which fixes one set of vari-
ables while updating another set of variables. If the objective
function is slightly modified, it can also be optimized via
Proximal Alternating Linearized Minimization [39], and the
similar results would be obtained. Here, we encode the RGB
and Depth images as a column vector, and we denote the RGB
and Depth images as I and D, respectively.

1) Updating HR RGB Image Estimate: We can fix D with D̂
in Eq. 3, and iteratively estimate the HR RGB image I by
solving the following I-problem optimization function:

argmin
I

Ed(I) + λ1 EN B (I)

=
ν∑

v=0

‖MvBI − Iv‖2
2 + λ1

∑γ
m=1‖
(m)�(I, m)‖1∑γ
m=1‖
(m)�(I, m)‖2

, (14)

where B ∈ R
β2 N×β2 N is the matrix form of the blur ker-

nel. Eq. 14 is also non-convex due to the normalized term∑γ
m=1‖
(m)�(I,m)‖1∑γ
m=1‖
(m)�(I,m)‖2

. When
∑γ

m=1‖
(m)�(I, m)‖2 is fixed, the

sub-problem becomes a convex l1-regularized problem:

argmin
I

ν∑

v=0

‖MvBI − Iv‖2
2 + λ

γ∑

m=1

‖
(m)�(I, m)‖1. (15)

When D̂ ∈ R
β2 N×1 is fixed, the matrix Mv ∈ R

N×β2 N can
be initialized, and Iv ∈ R

N×1. We use the first-order primal-
dual algorithm [38] to solve the general inverse problem, and
we re-weight the parameter λ = λ1/

∑γ
m=1‖
(m)�(I, m)‖2.

Eq. 15 can be rewritten as

argmin
I

∥∥∥∥∥∥∥∥∥

⎡

⎢⎢⎢⎣

M0B
M1B

...
MνB

⎤

⎥⎥⎥⎦ I −

⎡

⎢⎢⎢⎣

I0

I1

...
Iν

⎤

⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥

2

2

+

∥∥∥∥∥∥∥∥∥

⎡

⎢⎢⎢⎣

λμ1Hx1,1

λμ1Hy1,1
...

λμγ Hy2,γ

⎤

⎥⎥⎥⎦ I

∥∥∥∥∥∥∥∥∥
1

= argmin
I

‖LI − J‖2
2 + ‖SI‖1, (16)

where L ∈ R
(ν+1)N×β2 N , J ∈ R

(ν+1)N×1, Hx1,1 ∈ R
β2 N×β2 N

is the convolution matrix of the discrete filter ∇x1,1, and

Algorithm 1 First-Order Primal-Dual Algorithm

analogous cases for other convolution matrices follow similar
pattern (e.g., Hy1,1, Hy2,m), S ∈ R

(ν+1)β2 N×β2 N . Thus, Eq. 16
is rewritten as

Iopt = argmin
I

Q(I) + P(SI), (17)

where P(Z) = ‖SI‖1, Z = SI, Q(I) = ‖LI − J‖2
2.

Zopt = argmaxZ −(Q(−SZ) + P(Z)) is the dual prob-
lem of Eq. 17, where  denotes the convex conjugate,
Z ∈ R

(ν+1)β2 N×1. Algorithm 1 is used to solve the above
problem, where θ is the square root of the largest eigenvalue
of the symmetric matrix ST S. We can use power iteration to
obtain its value. Please refer to a previous study [38] for more
details. The resolvent operator of Q is defined as

I = (1 + τ∂ P)−1(Ĩ) = argmin
I

‖I − Ĩ‖2
2

2τ
+ Q(I), (18)

where I is the estimated HR RGB result, and Ĩ is formulated
in Eq. 20. By calculating the derivative of Eq. 18 with respect
to I and setting the result to be 0, we obtain (2τLT L + 1)I =
2τLT J + Ĩ. This is a squared matrix system, which can
be solved by the Jacobi iterative method. Considering the
computational cost, instead of using n-step iteration, we use
1-step iteration to approximate In in Algorithm 1, which has
little effect on the final quality of image I.

Similarly, the solution of Z is given by

Z = (1 + α∂ Q)−1(Z̃) ⇐⇒ Zi = Z̃i

max(1, |Z̃i |)
, (19)

where Zi and Z̃i denote the values of pixel i in Z and Z̃,
respectively. Z̃ is formulated in Eq. 20.

2) Updating the HR Depth Image Estimate: Next, we fix the
updated HR RGB image I to further update the depth image
D by solving the following energy function:

argmin
D

Ed(D) + λ2 EN L (D)

= argmin
D

‖M0D − D0‖2
2 + λ2‖(1 − W)D‖2

2. (21)

Here, Eq. 21 is convex. By calculating the derivative of Eq. 21
with respect to D and setting the result to be 0, we can compute
the global minimum by solving the following squared matrix
system:

((M0)T M0 + λ2(1 − W)T (1 − W))D = (M0)T D0, (22)
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Algorithm 2 RGB-D Image Super-Resolution

where the coefficient matrix ((M0)T M0+λ2(1−W)T (1−W))
is symmetric, positive definite and sparse. Eq. 22 can be
efficiently solved by the Preconditioned Conjugate Gradients
method (PCG) within a few iterations. Here, we use the Matlab
function pcg to solve Eq. 22. Algorithm 2 documents the
details of our RGB-D image SR.

E. Analysis of Computational Complexity

Here, we analyse the computational complexity of three
ingredients (Preprocessing, RGB upsampling (Pre.), and
Depth super-resolution). First, in the Pre. part, the mapping
matrix M0 does not need any computational burden because
it is a down-sampling operator under the same viewpoint. For
the shifting viewpoints, 120 floating-point operations (FLO)
are needed for the computing of Iv (ı ′, j ′). Thus, we need
to perform 120νβ2 N FLOs to construct all the mapping
matrices Mv , where β denotes the magnification factor,
ν and N are the numbers of viewpoints and pixels in
the LR image, respectively. The computational complexity
is O(N) in the Pre. step. In the RGB upsampling step,
we first construct the matrix L by computing MvB. Here,
M and B are sparse matrices, and β2 N2 FLOs are needed
for MvB computation. Thus, it is necessary to construct L
to perform β2 N2(ν + 1) FLO operations. Similarity, matrices
Z, Z̃, and Ĩ must be computed to perform 2 ∗ 8β2 N FLOs,
2 ∗ 8β2 N + (ν + 1)β2 N FLOs, and 2 ∗ 8β2 N + β2 N FLOs,
respectively. Here, the number 8 means eight discrete filters
when γ = 2. Moreover, in the 1-step iteration of the Jacobi
iterative method, we need to perform (ν + 1)2 N2 FLOs and
(ν + 1)N FLOs to compute matrix LT L and LT J. Therefore,
the computational complexity is O(N2) in the RGB SR step.
For depth super-resolution, β2 N2 FLOs, 15β4N2 FLOs, and
N FLOs, respectively, are needed for computing (M0)T M0,
(1 − W)T (1 − W), and (M0)T D0. Here, the number 15 is
the number of candidate pixels in the nonlocal regression
model. Therefore, the computational complexity is O(N2) for

TABLE II

TIME PERFORMANCE (IN MINUTES) WITH 4X
FOR DIFFERENT SIZE OF IMAGE

constructing the squared matrix system. Table II documents
the time statistics by running image on a computer with
24 GB RAM and an Intel i7-3770 3.4 GHz CPU. We list
the time required for our method, including Pre., RGB SR,
and Depth SR. Time spent on RGB SR includes the costs
of computing L, Z, and I. Depth SR includes the time for
constructing the squared matrix system (Con.), and for PCG
method.

V. EXPERIMENTS AND EVALUATIONS

We quantitatively evaluate and validate our algorithm on
the Middlebury datasets [40], NYU datasets [41], and data
reported by Yang et al. [13]. We use PSNR and the root
mean squared error (RMSE) as ground truth based quality
indicators, and use JPEG2000 compression (JP2K) [42], a blur
metric (ReBlur) [43], and a blind/referenceless image spatial
quality evaluator (BRISQUE) [44] as no-reference quality
indicators. For JP2K and PSNR, higher values mean better
quality, but lower values are better for ReBlur, BRISQUE,
and RMSE.

Based on well-designed experiments, we compare our
method with six state-of-the-art methods, including the
bicubic method, Shan’s method (Shan08) [32], Yang’s
method (Yang10) [7], the anchored neighborhood regres-
sion method (ANR13) [9], the super-resolution convolutional
neural network method (SCRNN14) [24], and the jointly
optimized regressors method (JOR15) [10]. These methods can
provide only RGB image super-resolution; no depth images
are involved. For the learning-based methods, because the
released patch database is trained for 4× upsampling, we
mainly present the comparison experiment with a magnifica-
tion factor of 4. Specifically, for the experiments on color-
guided depth super-resolution, we compare our method with
four state-of-the-art methods, including joint geodesic filter-
ing (JGF13) [12], total generalized variation (TGV13) [11],
edge-weighted NLM-regularization (Edge14) [15], and the
adaptive auto-regressive model method (AAR14) [13].
We present the results for 16× upsampling. In our experi-
ments, the blur function B is used as the Gaussian kernel of
size 11 with standard deviation 1.4.

This section is organized as follows. First, we detail the
parameter selection in Section V-A. Section V-B shows RGB
super-resolution evaluations based on comparisons, including
1) the comparison of RGB up-sampling; 2) the robustness
evaluation over Gaussian noise case; 3) the visual quality
evaluation of our method for high-magnification factor;
4) the performance analysis on a synthetic dataset; and 5) the
analysis of the proposed prior (NBTV). We also evaluate the
color-guided depth image super-resolution in Section V-C,
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Fig. 6. The statistic curves of PSNR and RMSE with respect to the parameters λ1, λ2, σ1, σ2, σ3, σ4, and the number of iterations.

including: 1) the visual quality comparison of depth image
super-resolution; 2) the comparison over the non-aligned
case; 3) the robustness evaluation over ToF-like noise and
Kinect-like noise cases.

A. Parameter Selection

To obtain the optimum parameters, we constructed a test
dataset. First, we sample 50 image patches of size 20×20 from
the Middlebury Dataset. We select only image patches with
variance ranked within the first 10, and we remove patches
with small variances, which tend to reduce the effectiveness
of the parameter. For each patch, we evaluate the parameters
using PSNR and RMSE for each test value. Then, for each
test value, the average values of PSNR and RMSE for all test
patches are used to construct the curves. To evaluate the effects
of the involved parameters on the stability and accuracy, we
first initialize these parameters as λ1 = 1e−5, λ2 = 1e−3,
σ1 = 8, σ2 = 9, σ3 = 3, σ4 = 0.1. Then, we perform RGB-D
SR 4X by varying a parameter while keeping other parameters
being fixed. When one parameter reaches the optimum value,
we update the initial value of the parameter, and then evaluate
other parameters. Here, we briefly discuss how to determine
these parameters.

λ1 and λ2: In RGB image SR, a very small λ1 may indeed
increase the instability of our method, which gives rise to
lower PSNR value. As shown in Fig. 6, increasing the value
of λ1 yields a better result, and when λ1 ∈ [3e−5, 1.2e−4], our
method achieves better values of PSNR and RMSE. Therefore,
we empirically set λ1 = 3e−5. For depth image SR, in Eq. 22,
(M0)T M0 +λ2(1−W)T (1−W) is equal to (1−W)T (1−W)
for very large λ2, and it is equal to (M0)T M0 for very
small λ2, which will lead to a high condition number and
increase the instability of our framework. We also find that
λ2 ∈ [2e−3, 1e−2] can produce satisfactory results according
to the curves in Fig. 6. Therefore, we set λ2 = 5e−3.

σ1 and σ2: In the depth term, σ1 controls the importance of
two neighboring different depth values. As shown in Fig. 6,
PSNR has a peak at σ1 = 1.7, and for the values larger
than 1.7, there is a slight decrease. For the smaller σ1, the
depth weight plays a much more dominant role than the color
term in Eq. 9. It may even make the color term completely
ineffective, and it relies on only the depth term. We can see that
the result reaches a steady state when σ1 = 10. Therefore, we
set σ1 = 10. Being similar to σ1, σ2 in the color term controls

Fig. 7. Convergence analysis. Top row: the exactly aligned case.
Bottom row: the non-aligned case. Left: Input RGB and Depth images.
Middle: RMSE curves of RGB results for two cases. Right: RMSE curves
of Depth SR results. Three representative super-resolved RGB and Depth
results are presented for comparison and analysis, which are generated in 1,
3, 18 iterations.

the sharpness clue of the depth edge in the corresponding HR
color information. As shown in Fig. 6, when σ2 ∈ [6.7, 15], a
better PSNR can be achieved. Therefore, we set σ2 = 6.7.

σ3 and σ4: These two parameters in Eq. 12 control the shape
and size of the patch kernel, and they effect the selection of
candidate nonlocal patches. In Fig. 6, the PSNR and RMSE
curves are quite stable when σ3 is varied. Therefore, we set
σ3 = 3. Parameter σ4 controls the structure awareness and
the supporting region of similarity. For a very small σ4, the
local structural kernel Fi tends to assign zero to most of the
pixels. In extreme cases, the patch will degenerate to a single
pixel. For a large σ4, Fi will assign equal weights to pixels
within the patch, and the structure kernel will degenerate to a
mean kernel. The two cases above can easily lead to instability.
In Fig. 6, the PSNR and RMSE curves have distinctive
minimum around σ4 = 0.08. Therefore, we set σ4 = 0.08.

Number of Iterations: We analyse the relationship between
the quantitative evaluation indicators and the number of iter-
ations used in the first-order primal-dual algorithm. Fig. 6
presents the experimental curves. Note that RMSE drops
rapidly for the first few iterations. As the number of iterations
increases to 100, the curves reach a steady state. Therefore,
we set the number of iterations to 100.

Convergence Analysis: We analyse the convergence of our
algorithm for two cases in Fig. 7. One case provides exact
alignment between the RGB-D pairs (top row), and the other
is non-aligned (bottom row). For the exactly aligned case,
after 1 iteration, our method can generate an acceptable RGB
and depth SR result. With increasing iterations, the RMSE
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Fig. 8. Comparison of RGB image super-resolution results (4×) for the Moebius, Laundry, Book images (from left to right) from Middlebury datasets.
(a) Our result; (b-f) The results from other methods. For the purpose of visual inspection, the regions highlighted with yellow rectangles are enlarged.

TABLE III

QUANTITATIVE EVALUATION OF MULTI-OBSERVED IMAGE SR RESULTS (4×) OVER THREE TESTING IMAGES. BOLD TEXT INDICATES THE BEST VALUE

values of RGB and Depth decrease gradually. As the iteration
number increases to 18, the curves reach a steady state for both
RGB and Depth SR. For the non-aligned case, the offset is 4
pixels between the RGB-D pairs. Note that after 3 iterations,
our algorithm can effectively correct the offset. Then, the
super-resolved depth image can further improve the accuracy
of the constructed mapping matrix Mv . Our algorithm can
achieve convergence for non-aligned case within 20 iterations.
Therefore, we set the number of iterations to 18.

In all of our experiments, we set the parameters according
to the aforementioned analysis, unless otherwise indicated.

B. RGB Image Super-Resolution Evaluations

To demonstrate the high performance of our method through
visual inspection and quantitative evaluation, we conducted
SR experiments using two types of datasets: the originally-
provided multi-viewpoints RGB-D images, and the down-
sampled multi-observed RGB-D empirically obtained images.
For the first case, we select four RGB images and a depth
image from the Middlebury dataset [40] and NYU dataset [41]
as the input images. For Li’s empirical data [13], we select one
RGB-D pair as the input images. To verify and evaluate the
robustness of our algorithm, we also perturb the RGB images
with Gaussian noise. For the second case, we generate the
four LR images by convoluting the HR image with a Gaussian
kernel and then down-sampling the smoothed images. Here,
the sampling interval is in accordance with the magnification
factor, and the offset between the multi-observation images is
set to be half of the magnification factor. The depth informa-
tion has been taken into account by our algorithm, however,
the other competing methods all ignored such information.

In this section, we will evaluate the RGB SR, while the depth
map SR evaluation will be detailed in Section V-C.

1) Comparison for RGB Upsampling: For the experiments
on the first type of dataset, Fig. 8 presents the SR results. From
the zoom-in effects, the edges are blurred for Shan08 [32]
and Yang10 [7]. This indicates that the gradient distribution
prior (Shan08) cannot preserve edges very well, and the
dictionary pair learned by Yang10 is not suitable for all testing
images. Despite performing better than Yang10, the methods
(ANR13 [9], SCRNN14 [24], and JOR15 [10]) still faces with
some problems: the generated edges are not sharp enough (see
the zoom-in effects of Moebius and Laundry) and some details
are missing (see the enlarged effects of Book). There is an
inherent defect in learning-based methods because of the lower
similarity between the training set and testing set. In contrast,
our method can reproduce sharp edges and achieve the best
visual quality. Benefiting from the NBTV prior and the multi-
observation data, our method can not only better maintain the
sharpness of the edges but also reconstruct the small details,
which gives rise to better visual perception. Moreover, the
JP2K, Reblur, and BRISQUE values documented in Table III
demonstrate that our method outperforms all other competing
methods. Therefore, our method can produce more satisfactory
HR results with sharper edges.

We also performed experiments using the NYU dataset [41]
to verify the versatility of our method. The upsampling
results (4×) are shown in Fig. 9. We observe that bicu-
bic and Yang08 [7] tend to smooth out the sharp edges.
As shown in Fig. 9 (c-e), ANR13 [9], SCRNN14 [24], and
JOR15 [10] fail to preserve the small details (such as the
rich textures of a table). In contrast, our algorithm produces
the best results (Fig. 9 (f)); it preserves the sharp edges and
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Fig. 9. Comparison of RGB image super-resolution results (4×) for the NYU data. (a) Bicubic, (b) Yang10 [7], (c) ANR13 [9], (d) SCRNN14 [24],
(e) JOR15 [10], (f) our method. JP2K/ReBlur/BRISQUE values are presented by red letter.

Fig. 10. Comparison of RGB image super-resolution results (4×) under one viewpoint on the NYU data (top row) and Li’s empirical data (bottom row).
(a) Bicubic, (b) Yang10 [7], (c) ANR13 [9], (d) SCRNN14 [24], (e) JOR15 [10], (f) our method.

effectively recovers the textures. Our method also achieves the
best JP2K/ReBlur/BRISQUE values of the competing algo-
rithms. Therefore, our method is better at preserving structure
(guided by the newly proposed prior, NBTV), and recovers
small details better (based on the multi-image information
extraction).

To guarantee fairness, Fig. 10 shows the SR results under
one viewpoint for the NYU data and Li’s empirical dataset.
Based on the zoom-in effects of the NYU data, we can see
that all the competing methods produce severely blurred edges.
In contrast, our algorithm produces better SR results with
sharper edges, and it outperforms all competing methods.
This demonstrates that the proposed prior, NBTV, can better
maintain the sharpness of the edges. Meanwhile, from the
super-resolved results of Li’s empirical data, we can see that
bicubic, Yang10 [7], ANR13 [9], and SCRNN14 [24] intro-
duce staircase artifacts around the edges. Although JOR15 [10]
has much better performance than those methods, it still
produces some staircase artifacts. Benefiting from the NBTV
prior, our method effectively suppresses the staircase artifacts
and produces better results with sharper edges.

Fig. 11 shows a comparison between single image and
multi-image cases to provide further insight into the effective-
ness of the multi-image strategy. As shown in Fig. 11 (a), the
proposed prior, NBTV, can effectively eliminate the staircase
artifacts introduced by the original TV prior. However, the
reconstructed edges are still not sharp, and some small details
are smoothed (highlighted with yellow arrow). Introducing
multiple images into the optimization function helps resolve
these problems. Based on the zoom-in effects in Fig. 11 (b),

Fig. 11. Comparison of RGB super-resolution results (4×) under one
viewpoint (a) and four viewpoints (b).

we can see that the sharpness of edges can be effectively
improved, and the small details are recovered. Therefore, the
super-resolved results obtained by the multi-image method can
guarantee better visual perception. This is because multiple
images can provide enough redundant information for faithful
RGB reconstruction, and the constraints of multiple images
can guarantee that the objective optimization function will
achieve better reconstruction.

2) Robustness Verification: We perturbed RGB images with
15d B Gaussian noise, and Fig. 12 shows the RGB SR results
obtained using different methods. The input RGB-D pairs were
from the Middlebury dataset, NYU dataset, and Li’s empirical
data. Based on the enlarged effects in Fig. 12, we can see
that the bicubic method tends to introduce color distortion
around the edges that are affected by noise. Yang10 [7] and
AAR13 [9] present the smoothed results, which suppress the
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Fig. 12. Comparison of Gaussian noise-perturbed RGB super-resolution results (4×) for the Moebius image (top row), the NYU data (middle row),
and Li’s empirical data (bottom row). (a) Bicubic, (b) Yang10 [7], (c) ANR13 [9], (d) SCRNN14 [24], (e) JOR15 [10], (f) our method.

Fig. 13. Our RGB image SR results under three magnification factors on
two image patches cropped from images Book and Moebius.

TABLE IV

QUANTITATIVE EVALUATION FOR DIFFERENT MAGNIFICATION FACTORS

(8×, 16×, 20×) FOR THE Book AND Moebius IMAGES

noise due to the inherent denoising of the learning-based
method. SCRNN14 [24] and JOR15 [10] provide comparable
results, with sharper edges due to the joint optimization
strategy. Some artifacts are introduced in flat areas, even
though the noise is effectively removed. In sharp contrast,
benefiting from the constraint capacity of the NBTV prior
and the redundant information contained in multiple images,
our method is indeed capable of producing sharp edges and
suppressing the noise.

3) High Magnification Results: Fig. 13 demonstrates the
visual quality of our results under three magnification factors
(8×, 16×, 20×), and the corresponding quality indicators
are listed in Table IV. For the 8× and 16× cases, our
method can generate desirable results with sharp edges and
sufficient details. However, for the 20× case, close inspection
shows that the edges are blurred, and ringing artifacts and

staircase artifacts are introduced around the edges. This
demonstrates that our method is reliable for RGB-D SR when
the magnification factor is less than 16×.

4) Experiments Over the Synthetic Dataset (Second-Type
Dataset): We present the SR results in Fig. 14, and list
PSNR and RMSE values in Table V. Based on the zoom-
in effects, we see that the bicubic method and Shan08 [32]
fail to reconstruct satisfactory edges; they miss most of the
image details due to a lack of well-defined structure awareness.
The Yang10 [7] method generates many blurred edges and
introduces artifacts around the edges. Additionally, based on
the zoom-in effects on the right side of Fig. 14, ANR13 [9],
SCRNN14 [24], and JOR15 [10] have eliminated the artifacts
around the edges. However, blurring occurs (see the hair of
the doll and the red edge of the bowling pin) because the
ambiguity of correspondence between HR and LR patches is
an inherent problem in learning-based methods. This leads
to blurring at the edges and shape distortion, especially for
thin edges (the crack between the rocks). Benefiting from the
NBTV prior and multi-observation data, our method produces
results more consistent with the empirical observations around
the edges for all images. Meanwhile, the PSNR and RMSE
statistics listed in Table V show that our method outperforms
the competing methods. This proves that NBTV can effectively
reconstruct sharp edges and eliminate the artifacts.

To verify the generic advantages of our method, Fig. 15
(a-b) present the statistic curves corresponding to the two
indicators over Middlebury dataset. Fig. 15 (c-d) shows the
average values of PSNR and RMSE. As shown in Fig. 15,
the performance improves significantly when our method is
used, indicating that an NBTV-based multi-image method can
indeed help improve the accuracy of the super-resolved results,
and it outperforms other competing methods.

5) Prior Analysis: To investigate the effects of our newly
proposed prior, three images were used for evaluations.
Table VI lists the PSNR and RMSE values for different
priors. Fig. 16 presents the results generated by the TV, BTV,
and NBTV on the Cone image. We find that the TV-based
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Fig. 14. Visual quality comparison for RGB image super-resolution (4×) on Middlebury datasets. The testing images from left to right are Poster, Art, Cone,
Dolls, Bowling, and Rock. (a) Bicubic, (b) Shan08 [32], (c) Yang10 [7], (d) ANR13 [9], (e) SCRNN14 [24], (f) JOR15 [10], (g) Our method. The regions
highlighted with yellow rectangles are enlarged for better visual inspection.

TABLE V

QUANTITATIVE EVALUATION OF RGB IMAGE SR RESULTS (4×) ON SIX IMAGES. THE BEST VALUE IS HIGHLIGHTED IN BOLD

Fig. 15. Quantitative evaluation of RGB super-resolution quality for the
Middlebury dataset. (a) PSNR curve, (b) RMSE curve, (c) Average value of
PSNR, (d) Average value of RMSE.

Fig. 16. Visual quality comparison of color image super-resolution (4×)
with different priors. (a) Ground truth, (b) TV, (c) BTV, (d) NBTV. For better
visual inspection, regions highlighted with yellow rectangles are enlarged.

method (Fig. 16(b)) tends to blur the edges and remove small
details. That is an inherent defect for TV-based methods. Using
higher-degree derivatives to exploit the local structure of the
high-resolution image, the BTV-based method (Fig. 16(c))

TABLE VI

QUANTITATIVE EVALUATION OF DIFFERENT-PRIOR RESULTS (4×) FOR

THREE IMAGES. THE BEST VALUE IS HIGHLIGHTED IN BOLD

can achieve better visual quality than the TV-based method.
However, it is difficult to preserve the small details. In contrast,
our NBTV prior is a normalized version of the BTV prior; it
can better respect the sharpness and consistency of the edges
and details. Specifically, the result (Fig. 16(d)) indicates that
our method can achieve high visual quality, particularly around
the edges. Table VI proves that our prior fully outperforms the
competing priors according to two qualitative indicators.

C. Color-Guided Depth Image Super-Resolution Evaluations

1) Comparison for Depth Upsampling: We conducted more
color-guided depth up-sampling experiments to verify the
effectiveness of our nonlocal regression strategy. Three images
(Book, Dolls, Laundry) were used for evaluations. Table VII
lists the statistical values of the depth SR results (16×) for
each RGB-D pair. Fig. 17 presents 16× depth results for
Dolls and Laundry. As shown in Table VII, our method
achieves the best PSNR and RMSE values, indicating that
our method is effective for high magnification factors. For
visual comparison, TGV13 introduces annoying artifacts in
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Fig. 17. Visual quality comparison of color-guided depth image super-resolution (16×) for two images (Dolls and Laundry). (a) Ground truth, the colored
patches are the corresponding high-resolution ones used to guide depth up-sampling, (b) JGF13 [12], (c) TGV13 [11], (d) Edge14 [15], (e) AAR14 [13],
(f) Our method. For better visual inspection, regions highlighted with yellow rectangles are enlarged, and the corresponding error maps are presented.

TABLE VII

QUANTITATIVE EVALUATION OF COLOR-GUIDED DEPTH SR RESULTS

(16×). BOLD TEXT INDICATES THE BEST VALUE

most regions where the corresponding RGB image has rich
textures (e.g., cloth and the plastic crate of Laundry high-
lighted with arrows). AAR14 fails to preserve tiny structures,
and some fine structures are not recovered, such as the plastic
crate of Laundry (highlighted with arrow). JGF13 introduces
some artifacts around the edges, and TGV13 produces an
over-smoothed edge. AAR14 and Edge14 also encountered
smoothing problems for high magnification factors (16×)
because of the average strategy used in the kernel of the
color term. In contrast, our method retains the sharpness of
the edges. According to close-up inspection and error maps,
our method produces promising results with better geometrical
structures; the reconstructed edges are much sharper than
all other competing methods. Thus, the introduced channel
selection in Eq. 11 can better distinguish the local geometrical
structures, and our nonlocal regression can leverage more
effective candidate pixels.

Fig. 18 presents 4× depth results for NYU data. Here,
the input HR RGB images are generated by our algorithm.
At low magnification, all methods can generate good visual
quality in flat areas. However, most of the methods encounter
difficulties in reconstructing sharp edges. In comparison, our
method outperforms the competing methods, which can better
recover structures along depth discontinuities. The sharper
edges can be found in the zoom-in effects. Specifically,
the JP2K/ReBlur/BRISQUE values indicate that our method
performs far better than most of the state-of-the-art methods
in terms of overall quality.

2) Visual Quality Evaluation for the Non-Aligned Case:
Fig. 19 compares depth upsampling experiment results for
Li’s empirical data. Here, the input RGB and depth pair is
non-aligned. According to the zoom-in effects, the bicubic,
JGF13, and AAR14 introduce staircase artifacts around the

Fig. 18. Comparison of depth super-resolution results (4×) for NYU
data. The high-resolution RGB image is our SR result. (a) Bicubic,
(b) JGF13 [12], (c) TGV13 [11], (d) Edge14 [15], (e) AAR14 [13], (f) Our
method. JP2K/ReBlur/BRISQUE values are presented by red letter.

discontinuity regions (such as edges) because the offset results
in a mismatch between the texture details in the color image
and depth structure. TGV13 tends to produce fuzzy edges.
In contrast, our method achieves better visual quality around
the edges, which means that the channel selection based
nonlocal regression function is better at maintaining structural
consistency between RGB and depth images.

3) Robustness Evaluation: Here, we simulate ToF-like noise
by perturbing the original images with 15 dB Gaussian noise
and downsampling the polluted images at 8-upsampling rates.
Fig. 20 shows 8× upsampled depth results for ToF-like noise-
perturbed RGB-D pairs for the Art and Reindeer images.
We observe that both the bicubic method and JGF13 are
more sensitive to noise in the upsampling because they lack
a denoising capability, which seriously decreases the visual
quality. TGV13 produces over-smoothed edges even though it
suppressing the noise. AAR14 can produce good visual results,
but it fails to preserve the sharpness of edges and small details.
By comparison, it is obvious that our method can not only
suppress ToF-like noise but also preserve the sharpness of
edges, indicating the robustness of our method. For the depth
discontinuities and flat regions, Kinect-like noises are respec-
tively simulated with structurally-missing data and randomly-
missing data. Fig. 21 presents the depth recovery results for
Kinect-like noise cases in the NYU data and Li’s empirical
data. According to the comparison, AAR14 is very likely to
introduce annoying staircase artifacts around the edges, and it
also gives rise to blurred edges. However, our method performs
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Fig. 19. Comparison of depth super-resolution results from a resolution of 200 × 200 to one of 640 × 480 for Li’s empirical data. Here, RGB-Depth pair is
non-aligned. (a) RGB-D pair, (b) Bicubic, (c) JGF13 [12], (d) TGV13 [11], (e) AAR14 [13], (f) our method.

Fig. 20. Comparison of ToF-like noise-perturbed depth super-resolution
results (8×) for the Art and Reindeer images. (a) Bicubic, (b) JGF13 [12],
(c) TGV13 [11], (d) AAR14 [13], (e) Our method.

Fig. 21. Comparison of Kinect-like noise-perturbed depth recovery using
Li’s empirical data (top) and the NYU data (bottom). (a-b) the input RGB and
Kinect-like noise perturbed depth images, (c) AAR14 [13], (d) Our method.

well in recovering and preserving the discontinuities in depth
images. This demonstrates the robustness and versatility of our
adaptive nonlocal regression model.

VI. DISCUSSION AND CONCLUSION

In this paper, we have systematically described a novel opti-
mization framework to address a suite of research challenges in
RGB-D image SR. Our technical solutions intrinsically lever-
age the depth-color correlations to effectively guide the SR
process, improve accuracy and increase structural awareness.
Specifically, we defined a normalized bilateral TV to regularize
the RGB image SR, and we developed a nonlocal regression
model to increase the stability of depth image estimation
by coupling a channel selection strategy with a context-
specific local filter kernel. We also explored the mapping
of multi-view images based on the pin-hole imaging model.
Extensive experiments on several public datasets, together with

comprehensive quantitative evaluations, have demonstrated the
superior performance of our method.

However, our method still has some limitations that should
be addressed in our upcoming studies. First, the method
is relatively time-consuming. As larger images are used,
the computational cost will increase rapidly. Moreover, our
method cannot effectively accommodate multi-observed
images captured from arbitrary viewpoints because it requires
a complicated and robust RGBD registration in the 3D scene.
Our algorithm can still encounter difficulties for the effective
handling of the occlusion problem, which may be solved by
incorporating the idea of photo-consistency [17]. Additionally,
it is equally important and deserves more research to develop
a more general model for spatio-temporal RGB-D video SR.
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