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Abstract

In graph-oriented machine learning research, L1 graph is an ef-
ficient way to represent the connections of input data samples.
Its construction algorithm is based on a numerical optimiza-
tion motivated by Compressive Sensing theory. As a result, It
is a nonparametric method which is highly demanded. How-
ever, the information of data such as geometry structure and
density distribution are ignored. In this paper, we propose a
Structure Aware (SA) L1 graph to improve the data clustering
performance by capturing the manifold structure of input data.
We use a local dictionary for each datum while calculating
its sparse coefficients. SA-L1 graph not only preserves the
locality of data but also captures the geometry structure of
data. The experimental results show that our new algorithm
has better clustering performance than L1 graph.

Introduction
L1 graph was proposed by Cheng et al. (Cheng et al. 2010),
with an initial goal for Image Classification. It was presented
as an alternative graph representation of input data samples
for graph-oriented machine learning tasks. Comparing to
existing popular graph representation methods such as k-
nearest neighbor graph and ε-ball graph, the L1 graph was
a parametric free method and the user didn’t need to tune
parameters like k or ε for best learning performance. Except
for this predominant feature, experiment results also show
that L1 graph has following three advantages:(1)robustness
to noise; (2)sparsity; (3)datum-adaptive neighbors. (Cheng et
al. 2010).

Although L1 graph has so many decent advantages, we
notice that the construction algorithm of it is a pure numerical
result from L1 minimization and based on Compressed Sens-
ing theory. This numerical process brings the non-parametric
characteristic to L1 graph but ignores the intrinsic physi-
cal information of input data. Recently, researchers in ma-
chine learning area propose several new L1 graph construc-
tion methods to improve the learning performance by ex-
ploiting the input data. For example, Zhou et al. propose
k-nearest neighbor fused lasso graph by regularizing the
sparse codes(or coefficients) of k-nearest neighbors (Zhou,
Lu, and Peng 2013). Fang et al. add the auto-grouped effect
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Figure 1: Dictionary normalization of two moon dataset. The
red and blue points represent different clusters. Left: before
normalization, right: after normalization. We can see that the
neighborhood information is changed after normalization.

to L1 graph by applying two sparse regularizations: Elas-
tic net and Octagonal Shrinkage and Clustering Algorithm
for Regression (OSCAR) (Fang et al. 2015). Han et al. use
a reduced size dictionary to preserve the locality for data
clustering applications (Han et al. 2015). Yang et al. use the
Graph Laplacian regularization to improve the quality of L1

graph by exploiting the geometry structure information of
input data (Yang et al. 2014).

Another less attractive aspect of L1 graph construction al-
gorithm is the normalization of dictionary. While calculating
the sparse coefficient (or L1 minimization), it requires all dic-
tionary atoms (or data sample) to have unit length. Usually,
we use L2 normalization. This normalization process project
all atoms to unit hypersphere and eliminates the locality in-
formation of data as show by figure 1. As we can see, the
neighborhood information is changed after normalization.

In this paper, we propose a structure aware (SA) L1 graph
to continue to improve the data clustering performance. Com-
paring to the strategy of adding regularization terms, we
choose to search a local dictionary for each data sample
while calculating the sparse coefficients. Unlike the method
described in (Han et al. 2015) which use the k-nearest neigh-
bor as dictionary, we select atoms following the intrinsic
manifold structure of data. The advantage of our selection is
that it not only preserves the locality, but also captures the
geometry structure of data (figure 2). As pointed out by (Yang
et al. 2014), in many real applications, high-dimensional data
always reside on or close to an intrinsically low dimensional
manifold embedded in the high-dimensional ambient space.
This is the fundamental assumption of manifold learning and
also emphasizes the importance of utilizing manifold struc-
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Figure 2: L1 graph (Left) and SA-L1 graph (Right,K = 10)
of Two Moon dataset.

ture in learning algorithms. Our proposed algorithm has a user
specific parameter k which leads to the lost of parametric-
free characteristic. But our experiment results show that it
increases the clustering performance and reduces the running
time.

Algorithm
The basic idea of L1 graph is to find a sparse coeffi-
cient (or coding) for each data sample. Given dataset
X = [x1,x2, · · · ,xn], where xi ∈ R

m, i ∈ [1, · · · , n] is a
vector which represents a data sample. The sparse coefficient
αi ∈ R

n−1 of xi is calculated by following L1 minimization
process.

min
αi

‖αi‖1 subject to xi = Φiαi,αi ≥ 0. (1)

We put constrain αi ≥ 0 here to let coefficients
have physical meaning of similarity. In original L1

graph construction algorithm, the dictionary Φi =
[x1, · · · , xi−1, xi+1, · · · , xn]. Here, we select K atoms

Φ̂
i
= [x̂1, · · · , x̂K ] from Φi by using manifold ranking

scores (Zhou et al. 2004) (Xu et al. 2011). The algorithm
can be described as Algorithm 1.

We use the closed form solution to calculate the manifold
ranking scores for all data samples:

F = (I − αS)−1, (2)

where S is the Graph Laplacian matrix and we use Gaus-
sian Kernel here. Each column of F is the relative manifold
ranking scores of data sample xi.

Experimental Results
To evaluate the performance of our proposed algorithm, we
exam it through spectral clustering applications and com-
pare it to different graphs: Gaussian similarity (GS) graph
and L1 graph. Six UCI datasets are selected. The clustering
performance is measured by Normalized Mutual Informa-
tion(NMI) and Accuracy(AC). In our experiment setting,
we select α = 0.99 for manifold ranking, and K equals to
10%,20% and 30% percent of total number of data samples.
Our experiment results show that SA-L1 graph has better
clustering performance than L1 graph generally.
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Algorithm 1: SA-L1 graph
Input :Data samples X = [x1,x2, · · · ,xn], where

xi ∈ X;
Parameter K;

Output :Adjacency matrix W of sparse graph.

1 Calculate the manifold ranking score matrix F;
2 Normalize the data sample xi with ‖xi‖2 = 1;
3 for xi ∈ X do
4 Select top K atoms from F(i), and build Φ̂

i
;

5 Solve: min
αi

‖αi‖1, s.t. xi = Φ̂
i
αi, αi ≥ 0;

6 W(i, :) = αi;
7 end
8 return W;

Name Metric L1 Gaussian graph SA-L1 graph
K:10% K:20% K:30% K:10% K:20% K:30%

BT NMI 0.4055 0.4839 0.4749 0.5178 0.5436 0.5524 0.4702
AC 0.5283 0.5189 0.5189 0.5377 0.6604 0.6321 0.5755

Wine NMI 0.7717 0.8897 0.8897 0.8897 0.9209 0.8946 0.8043
AC 0.9326 0.9719 0.9719 0.9717 0.9775 0.9663 0.9382

Glass NMI 0.3794 0.3642 0.3763 0.2572 0.3746 0.3998 0.3715
AC 0.4486 0.5140 0.5187 0.4439 0.4486 0.4579 0.4533

Soybean NMI 0.6531 0.6509 0.7022 0.6884 0.6858 0.7096 0.7192
AC 0.4984 0.4625 0.5505 0.5212 0.5179 0.5179 0.5505

Vehicle NMI 0.1424 0.0802 0.0806 0.0814 0.1173 0.1127 0.1651
AC 0.3747 0.3664 0.3676 0.3582 0.3818 0.3818 0.3830

Image NMI 0.5658 0.5514 0.5454 0.5699 0.5034 0.5877 0.5694
AC 0.6271 0.4752 0.5286 0.5505 0.5443 0.6467 0.6133

Table 1: Clustering performance of SA-L1-graph construc-
tion algorithms. L1-graph is the baseline.
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