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Abstract Empirical Mode Decomposition (EMD) has
proved to be an effective and powerful analytical tool for
non-stationary time series and starts to exhibit its modeling
potential for 3D geometry analysis. Yet, existing EMD-based
geometry processing algorithms only concentrate on multi-
scale data decomposition by way of computing intrinsic
mode functions. More in-depth analytical properties, such
as Hilbert spectra, are hard to study for 3D surface signals
due to the lack of theoretical and algorithmic tools. This has
hindered much more broader penetration of EMD-centric
algorithms into various new applications on 3D surface. To
tackle this challenge, in this paper we propose a novel and
efficient EMD and Hilbert spectra computational scheme for
3D geometry processing and analysis. At the core of our
scheme is the strategy of dimensionality reduction via space-
filling curve. This strategy transforms the problem of 3D
geometry analysis to 1D time series processing, leading to
twomajor advantages. First, the envelope computation is car-
ried out for 1D signal by cubic spline interpolation, which is
much faster than existing envelope computation directly over
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3D surface. Second, it enables us to calculate Hilbert spectra
directly on 3D surface. We could take advantages of Hilbert
spectra that contain a wealth of unexploited properties and
utilize them as a viable indicator to guide our EMD-based 3D
surface processing. Furthermore, to preserve sharp features,
we develop a divide-and-conquer scheme of EMD by explic-
itly separating the feature signals from non-feature signals.
Extensive experiments have been carried out to demonstrate
that our new EMD and Hilbert spectra based method is both
fast and powerful for 3D surface processing and analysis.

Keywords Empirical mode decomposition ·
Hilbert spectra · Space-filling curve · Surface processing

1 Introduction

Empirical mode decomposition (EMD) has been gradu-
ally gaining popularity with increasing interest ever since
its inception into signal processing by Huang et al. [13].
EMD is initially designed for 1D signal processing and has
proved to be a powerful tool for non-stationary and non-
linear time series. Drastically different from conventional
signal processing technologies (e.g., Fourier and wavelet
analysis), which project a signal onto the pre-specified basis
functions, EMD decomposes a signal to a sum of intrin-
sic mode functions (IMFs) and a monotonic residue. Such
IMFs are empirical in nature, and are signal-dependent and
data-adaptive. Directly benefitting from these adaptive basis
functions, EMD is thoroughly data-driven and performs well
for non-linear and non-stationary signal analysis.

There have been a plethora of EMD-based methods in 1D
signal [6,13,15,16], and 2D image processing [2,23,33],
yet EMD algorithms on manifold for 3D geometry analysis
and processing are rare and their overall growth is still in their
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Fig. 1 Pipeline of EMDandHilbert spectra computation for 3D geom-
etry processing and analysis. a Input model. bOne type of space-filling
curve (Hamiltonian cycle) traversing the model. c Geometry signal
based on the mean curvature. d EMD with the obtained IMFs and

residue. e Hilbert spectral analysis on IMFs, where instantaneous fre-
quencies (IFQs) and Instantaneous amplitudes (IAMs) are computed.
f Different filter designs for IFQs. g Modified signals and geometric
reconstruction

infancy, full potential of EMD for manifold are not realized.
Until now, fewer work on EMD for 3D surface has been
reported [12,18,26]. One main challenge of extending the
original EMD to 3D surface is how to calculate the envelopes
of the data in an effectiveway. The existing envelope comput-
ing algorithms directly generalize the 1D EMD to surfaces
and work well for small-sized models. Nonetheless, exist-
ing algorithms remain to be extremely time-consuming for
large-sized models.

Besides suffering from being ineffective for the existing
methods, the Hilbert spectra can not be directly computed
on 3D surface due to the lack of theoretical and algorithmic
tools. This limitation also prevents more broader propaga-
tion of EMD-centric algorithms into many urgently-needed
applications over 3D surface. To resolve these problems,
we propose an efficient EMD and Hilbert spectra compu-
tational scheme for 3D surface analysis and processing via
space-filling curve, inspired by the idea of dimensional-
ity reduction [8,20]. This strategy transforms the problem
of EMD-centric 3D surface processing into 1D time series
processing. It is fully taking advantage of original 1D EMD
and greatly improves the computational performance. The
pipeline of EMD and Hilbert spectra analysis1 is shown in

1 The process of EMD and Hilbert spectra analysis is called Hilbert-
Huang transform (HHT) in the literature.

Fig. 1. Moreover, to overcome the feature-blurring effects
of EMD and preserve potential sharp features in 3D sur-
face, we develop a divide-and-conquer scheme of EMD by
explicitly separating the feature signals from non-feature
signals.

The key contributions of our work can be summarized as
follows:

– The problem of EMD-centric 3D surface processing is
converted to 1D EMD signal processing by adopting the
dimensionality reduction via space-filling curve. Fully
taking advantage of 1D original EMD, the proposed
EMD-centric 3D surface analysis and processing algo-
rithm is significantly accelerated.

– Different fromexistingEMD-basedworks on 3D surface,
which only focus on multi-scale data decomposition, we
are capable of computing the Hilbert spectra, and more
properties of Hilbert spectra are exploited for 3D surface
analysis and processing.

– By distinguishing the features from non-features and
arranging them into several feature segments, we develop
a divide-and-conquer EMD decomposition scheme,
which explicitly preserves the global/local feature struc-
tures in a piecewise manner and overcomes the feature-
blurring effects of traditional EMD.
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2 Related work

We now briefly review the related work of EMD, signal
processing on 3D surface, and space-filling curves.

Empirical mode decomposition. In 1998, Huang et al. [13]
proposed an EMD method for 1D signal processing and
analysis, which is data-driven and especially for non-linear
and non-stationary signals. It uses a sifting process to gener-
ate IMFs,which represent different scale oscillatorymodes of
the given signal. Thismethod overcomes the limitation of tra-
ditional time-frequency analysis methods (e.g., Fourier and
wavelet analysis) that depend on the pre-defined basis func-
tions and has been applied to various 1D signal processing.

EMD has also been extended directly to analyze high-
dimensional signals [8,20,31]. The critical step of this
extension is the interpolation fromextremumat each iteration
in high-dimension, which makes the EMD process compli-
cated and time-consuming. In order to improve the efficiency,
Gao et al. [8] and Ren et al. [20] adopted space-filling curve
to flatten 3D data into 1D data to reduce the computational
cost in flow field simulation. These algorithms are typically
applied on 2D or 3D regular grids. However, unlike the regu-
lar domains in Euclidean space, 3D surfaces are irregular,
curved, and possibly have any complex structures, which
will give rise to more challenges for fast EMD computa-
tion.

Signal processing on 3D surface. Fourier transform is
a classical signal processing and analysis tool and can be
directly adapted onto manifold. It can represent shape as
superposition of Laplace-Beltrami eigenfunctions analogous
to sines and cosines of the Fourier transform in the Euclid-
ean space. This characteristic is first used by Taubin [24]
to develop a signal processing framework for mesh fair-
ing.

Different from Fourier transform, wavelet transform is a
more powerful tool for signal processing because of its local-
ity in both time/space and frequency domains. At present,
subdivision wavelets [10], spherical wavelets [21], diffusion
wavelets [5,11,28] and graph wavelets [36] have been pro-
posed for 3D surface, which can benefit various applications,
e.g., mesh compression, visualization, and retrieval.

As a novel fully adaptive and data-driven time frequency
analysis method, EMD has gained great success in 1D
and 2D data processing. Motivated by such success, it has
also been used for 3D surface processing [12,18,26]. The
earlier method [18] based on 2D interpolation and mesh
parameterizations technology prevents its further applica-
tion to topologically more complex surface. An alternative
based on bi-harmonic interpolation [12,26] is extremely
time-consuming for large-sized models. To overcome these
limitations, we present an efficient EMD and Hilbert spec-
tra computation for 3D surface analysis and processing via
space-filling curve.

Space-filling curve on 3D surface. Space-filling curve is
a continuous curve passing through every point of the unit
square, which is first discovered by Peano [17]. In literatures,
different types of space-filling curve have been proposed,
such as Z-curve, Hilbert curve, Gosper curve, and Koch
curve. Most of the space-filling curve generation algorithms
are applied on 2D or 3D regular grids, fewer algorithms are
proposed for generating space-filling curve on irregular and
complex 3Dsurfaces [19].However, themethodof [19] heav-
ily relies on mesh parametrization and treats each patch’s
curve independently without connecting them to form one
complete curve.

Without restoring to mesh parametrization, another com-
pact connectivity representation (called Hamiltonian cycle)
on 3D surface can be viewed as a new space-filling curve. To
generate the Hamiltonian cycle on 3D surface, Taubin [25]
showed that Hamiltonian cycle can be always generated from
the connected manifold quadrilateral mesh without bound-
ary. Following this observation, Ergun et al. [1] first converted
the triangular mesh into quadrilateral mesh, then generated
the Hamiltonian cycle by adopting Taubin’s algorithm [25].
It is cumbersome to convert the triangular mesh to quadri-
lateral mesh, which not only changes the original geometry
structure, but also is time-consuming. In this paper, an effec-
tive yet approximate Hamiltonian cycle generation algorithm
proposedbyGurung et al. [9] is adopted,which can fullymeet
our requirements.

3 Hamiltonian cycle and 1D EMD

In this section, we will describe Hamiltonian cycle genera-
tion, the processes of EMD and Hilbert transform.

3.1 Hamiltonian cycle on 3D surface

Given a 3D surface S, which can be discretized into a trian-
gular mesh M = (V,F). V denotes the set of vertices with
geometry coordinates vi = (xi , yi , zi ) ∈ R3, i = 1, . . . , n,
and f j = (v j1, v j2, v j3), j = 1, . . . ,m is a primitive array
containing the indices of vertices for defining triangle faces.
In graph theory, the problem of Hamiltonian cycle is to find
a cycle passing through every vertex exactly once on a given
graph. For triangular mesh, Hamiltonian cycle is a closed
curve visiting vertices of the mesh once and only once and
has been widely used in triangular mesh processing, such as
model rendering [3], mesh compression [34], shape sculp-
ture [1]. For generating Hamiltonian cycle on 3D surface,
a greedy RING-EXPANDER algorithm [9] is adopted here,
which is simple and linear in time and space. Figure 2 shows
an example about the generated Hamiltonian cycle on a tri-
angular mesh.
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Fig. 2 An example about the generated Hamiltonian cycle. a Hamil-
tonian cycle is shown in blue line with the starting and ending points
marked in blue and red colors, respectively. b The mesh is color-coded
from blue to red in ring order

Hamiltonian cycle contains more than 99.99% of the ver-
tices [9] and leaves fewer isolated vertices unvisited. The
values of these isolated vertices can be easily interpolated
by the values of its one-ring neighbors. Therefore, for con-
venience, we assume that there are no isolated vertices in
following process.

3.2 1D EMD for signal processing

Hamiltonian cycle converts the problemof 3Dsignal process-
ing into 1D signal processing, which can be effectively dealt
with by 1D EMD. The central idea of EMD is to decompose
a signal by a sifting process into several IMFs and a residue,
which represent the fine-scale details and a trend of signal.
A signal to be a IMF should satisfies the two following con-
ditions [13]:

– First, in the whole data set, the number of extreme and
the number of zero crossing must equal or differ at most
by one;

– Second, at any point, the mean value of the envelope
defined by the local maxima and the envelope defined by
the local minima is zero.

Specifically, for a given signal G(t), t ∈ R1, the process
of EMD is summarized in Algorithm 1. Through the EMD
algorithm, the input signal G can be represented by

G =
K∑

k=1

hk + rK , (1)

where hk are IMFs of G and rK is the residue.
Stopping criteria of sifting process. To guarantee a sig-

nal could be decomposed into meaningful IMFs, a criterion
needs to be set to stop the sifting processing, which can be
achieved by restricting the size of the standard deviation

SD =
n∑

t=1

|si−1(t) − si (t)|2
|si−1(t)|2

, (2)

Algorithm 1 EMD Algorithm on 1D Signal
Input: 1D orignal signal G(t)
Output: IMFs hk , k = 1, . . . , K and a residue rK
Initialization: Set the first index of IMFs k = 1 and initial residue

r0 = G;
1: repeat
2: s0 = rk−1, i = 1;
3: for each i do
4: Find all local minima and local maxima of si−1;
5: Built the lower envelope LEi−1 and upper envelope UEi−1

by interpolating all local minima and maxima using cube
spline, respectively;

6: Compute the mean envelope MEi−1 of si−1 by MEi−1 =
(LEi−1 + UEi−1)/2;

7: si = si−1 − MEi−1;
8: if si satisfies the stopping criterion then
9: Get the k − th IMF hk = si and the k − th residue rk =

rk−1 − hk ;
10: k = k + 1;
11: break;
12: else
13: i = i + 1;
14: end if
15: end for
16: until The residue is a constant or monotonic function

where si−1 and si are two consecutive sifting functions in
one iteration. The smaller the value is, the more IMFs we
will get. In this paper, the default value of SD is 0.1.

Stopping criteria of EMD. Different from previous algo-
rithms [12,26], we expect a signal can be fully decomposed,
which will give us more flexibility to manipulate the sig-
nal. So, the maximum number of IMFs is not limited. On
the other hand, due to the large size of the mesh or signal,
there will be so many generated IMFs. In order to explore a
tradeoff between the efficiency of the algorithm and the com-
plete signal decomposition, the whole EMD will be stopped
if either the number of maximum or minimum of the residue
are smaller than a presetting value, and this pre-defined value
is set to be 15 in all our experiments.

3.3 Hilbert transform and Hilbert spectra

After decomposing a signal into a number of IMFs and a
residue, theHilbert transform can be applied to each IMF and
the instantaneous frequency as well as instantaneous ampli-
tude can be calculated.

For any given signal q(t), t ∈ R1, the Hilbert transform
is defined as

Q(t) = 1

π
P

∫ +∞

−∞
q(t

′
)

t − t ′
dt

′
, (3)

where P indicates theCauchyprincipal value [13]. Following
the definition, q(t) andQ(t) comprise the complex conjugate
pair and form an analytic signal, I(t),
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I(t) = q(t) + iQ(t) = a(t)eiθ(t), (4)

where i is the imaginary unit, θ(t) and a(t) are the instan-
taneous phase and instantaneous amplitude, which are com-
puted by

a(t) =
√
q2(t) + Q2(t), (5)

and

θ(t) = arctan

(
Q(t)

q(t)

)
. (6)

Furthermore, based on the instantaneous phase, the instan-
taneous frequency can be defined as

ω = dθ(t)

dt
, (7)

once the Hilbert transform has been applied to each IMF, the
signal G(t) can be expressed by

G(t) = Re

(
K∑

i=1

ai (t) exp

(
i
∫ +∞

−∞
ωi (t)dt

))
+ rK , (8)

where Re is the operator of real-part operator. The steps of
Hilbert spectra computation on 3D surface are presented in
Algorithm 2 and the computed Hilbert spectra of Igea are
shown in Fig. 1e.

Algorithm 2Hilbert Spectra Computation on 3D Surface
Input: All IMFs hk , k = 1, · · · , K
Output: Hilbert spectra (including the instantaneous amplitude,

phase, and frequency)
1: for each k do
2: Compute the Hilbert transform of hk by Eq. 3;
3: Compute the amplitude of hk by Eq. 5;
4: Compute the phase of hk by Eq. 6;
5: Compute the instantaneous frequency of hk by Eq. 7;
6: end for

4 Signal processing guided by Hilbert spectra

In this section, we will first define a signal on the input model
and then develop an adaptive signal processing framework
guided by Hilbert spectra.

4.1 Signal definition and reconstruction

To effectively deal with 3D surface based on EMD and
Hilbert spectra, signal should be careful defined first. In this
paper, the signal G(vi ) of mean curvatures used in [12] is
adopted,which is rotation-invariant, translation-invariant and

facilitates the computation of multi-scale features of surface.
The signalG(vi ) is defined on vertices of 3D surface and can
be transformed into 1D signalG(t) according to the order of
vertex appearing in Hamiltonian cycle.

Surface reconstruction. To reconstruct the new mesh with
vertex positions Ṽ from the modified signal G̃, we adopt
a mesh reconstruction algorithm under Laplacian frame-
work by minimizing the energy with constraint of original
vertex

‖LṼ − diag(G̃)N‖2 + λ2
n∑

i=1

‖ṽi − vi‖2, (9)

where λ is a weight of original vertex position, the default
value is 0.01. diag(G̃) returns a square diagonal matrix with
the elements of vector G̃ on themain diagonal.N is the vertex
normal matrix and L is the Laplacian matrix with elements
of

Li j =
⎧
⎨

⎩

∑
j∈N (i) wi j , if i = j

−wi j , if j ∈ N (i)
0, otherwise

, (10)

where N (i) is the vertex set of the 1-ring neighbors of vi .wi j

is weight defined by wi j = (cot αi j + cot βi j )/2Ai . cot αi j

and cot βi j are the angles opposite to the edge (i, j) and Ai

is the Voronoi area of vertex vi .
Rewrite the energy of Eq. 9 into a linear system

[
L

λIn×n

]
Ṽ =

[
diag(G̃)N

λV

]
, (11)

which can be efficiently solved in the least-squares sensewith
ATAṼ = ATb by Cholesky factorization.

4.2 Hilbert spectra-based surface processing

The computed instantaneous frequency explicitly gives the
frequency distribution of multi-scale IMFs and enables us
to filter the specified frequency of signal directly. Therefore,
Hilbert spectra-based signal processing framework is defined
as

G̃(t) = Re

(
K∑
i=1

ãi (t) · exp(i
+∞∫
−∞

ωi (t)dt)

)
+ rK

=
K∑
i=1

ãi (t) · cos(θ(t)) + rK , (12)

where ãi (t) is the modified instantaneous amplitude by
filtering the specific frequency signal.

Frequency distribution of the Hygeia model is shown in
Fig. 3, which provides more intuitive information for signal
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Fig. 3 Distribution of frequencies of Hygeia model, which is shown
in Fig. 1

filtering. Therefore, different filters can be applied on instan-
taneous frequency ωi (t), such as the low-pass, high-pass,
band-pass and band-stop filters, to arrive at various results,
which can be illustrated from the reconstructed signals and
results shown in Fig. 1g.

After performing filters on ωi (t), the modified instanta-
neous amplitude ãi (t) can be obtained by

ãi (t) = ϕ(ωi (t)) · ai (t), (13)

and the final modified signal is further expressed by

G̃(t) =
K∑

i=1

ϕ(ωi (t)) · ai (t) · cos(θ(t)) + rK , (14)

Hilbert spectra transforms the problemof 3Dsurface process-
ing from the spatial domain to frequency domain, which is
much more straightforward than previous EMD-based sur-
face processing methods, and the instantaneous frequency
affords intuitive clue to guide the signal processing.

4.3 Feature-preserved surface smoothing

In the literature, there are many algorithms are proposed
to preserve features during surface smoothing [7,14,22,27].

However, the original EMD is not feature-aware, it could not
preserve sharp features during the processing. To overcome
this limitation, we propose an effective divide-and-conquer
scheme, in which the feature vertices are treated separately
from non-feature vertices.

At the beginning, the sharp features should be extracted
first. In this work, a feature detection algorithm based on
neighbor supporting [29] is adopted. The detected feature
vertices are typically not isolated and can be further linked
into several feature lines, and result in different feature sig-
nals. Figure 4c, d shows the extracted feature vertices in red
color and the connected feature lines in distinct colors.

Then, these feature signals are processed independently
using the proposed algorithm in the above section. For feature
processing, there are two cases requiring special treatments.
First, if there are corners detected from themodel, the signals
of these corners are averaged among the same type of corners.
Second, if the length of a feature line is smaller than the pre-
defined number of extremes reserved in the residue, the EMD
would not be operated. These short feature signals should be
processed in a reasonable manner. For instance, the Laplace
smoothing or Bilateral filtering can be applied on these short
signals if smoothing or denoising are needed.

To separate the feature signal from original signal, in
each iteration of sifting process, the indices of features
are always removed from the indices of the detected local
extremum. Then the envelops are computed by interpolating
the remaining local extremum. That is, the feature signals do
not participate in non-feature signals decomposition and the
influence between them can be reduced as much as possible.
After separating and decomposing the feature signals and
non-feature signals by 1D EMD, they will be processed indi-
vidually to obtain the new signals by our proposed Hilbert
spectra based method. Finally, the modified feature signals
and the non-feature signals are re-combined to reconstruct
the new model.

Figure 4b, e shows the original signal and the processed
signal of a noisy cube, respectively. From the result, we can
see that after performing our algorithm, the sharp feature sig-
nals are shown in clear way with the noisy signals effectively

Fig. 4 The outline of feature-preserved surface processing. a Original
noisy cube model corrupted by 5% Gaussian noise of average lengthes
of mesh edges. b Input signal defined by the mean curvature. cDetected

sharp features shown in red color. d Connected feature lines shown in
different colors. eOutput signal after our denoising algorithm. f Recon-
structed model from processed signal
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Fig. 5 Filtering results of a Bimba model. From left to right are results of smoothing to enhancing

Fig. 6 Smoothing and enhancing results of Buddhamodel. aOriginal model. b Smoothing result by low-pass filter. cEnhancing result by high-pass
filter

filtered. The advantage of our algorithm can also be veri-
fied from the reconstructed result of Fig. 4f, where the sharp
feature edges and corners are well preserved.

5 Experimental results

We now document our EMD and Hilbert spectra computa-
tion based method for 3D surface processing, which includes
surface smoothing, detail enhancing, and feature-preserved
denoising.

Surface smoothing and details enhancing. Figure 5 shows
a series of results from smoothing to enhancing. The left one
is reconstructed from the residue, which is much smoother
and merely reveals the general outline of the model. As more
high-frequency parts are added, the detail features of the
model are becoming more and more clear until the recon-
struction result approximates the originalmodel. The last one
is the enhancing result and the enhancements can be clearly
observed from the hair and nose regions.

Benefitting from the dimensionality reduction, our algo-
rithm can also be used to handle the large-sized model with
complex geometry details. In Fig. 6, the results of Buddha
model with 700, 000+ vertices are shown, in which local
regions of the hand are zoomed to illustrate the details of
smoothing and enhancing filters.

The flexibility of our scheme based on Hilbert spectra is
further verified in Fig. 7, in which the texture features of golf
ball can be easily separated and enhanced to generate versa-
tile new models by applying different filters. This modeling
advantage also benefits from the fact that our EMD is imple-
mented on 1D signal via dimensionality reduction, which
enables us to calculate Hilbert spectra directly on 3D surface.
Hilbert spectra providemore information andmoreflexibility
than IMFs to be able to generate various new models.

Feature-preserved surface denoising. Our proposed algo-
rithm can also be used for surface denoising, especially for
feature-preserved surface denoising.

Figure 8 shows a denoising result of Torus model. There
are no features that can be extracted from the model due to
smoothness. Therefore, the denoising result can be directly
obtained by filtering the high-frequency part without involv-
ing feature separations. From Fig. 8b–d, we can see that the
noises are effectively removed by our proposed method as
well as themethod of bilateral filtering [7] and theNon-Local
means based method [32].

For sharp-feature-preserved denoising, we compare our
algorithm with the bilateral filtering [7], two-step smooth-
ing [4], original EMDon 3D surface [26] and the EMD-based
method with feature constraints [12]. From Fig. 9, we can
see that the original EMD could not preserve features and
two-step smoothing [4] produces curved edges. With the
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(a) (b) (c) (d) (e) (f)

Fig. 7 Various results of a golf ball after applying different filtering. a–fResults of high-pass, band-pass, band-stop enhancing filters with increasing
enhancing weights, respectively

(a) (b)

(c) (d)

Fig. 8 Denoising result of Torus. a Noisy model corrupted by 10%
Gaussian noise of average lengthes of mesh edges. bResults of bilateral
filtering [7] after being performed five times with parameters σc = 0.4l
and σs = 0.15l, where l is the average length of mesh edges. c Result
of Non-Local means based method [32] with η1 = 3l, η2 = 1.3l and
η3 = 1.0l, respectively. d Denoising result obtained by our algorithm

feature constraints, the sharp features are well preserved in
results of our method as well as the method of [12]. Yet, the
method of [12] applies EMD on 3D surface directly, while

our algorithm is implemented on 1D signal, which is much
faster.

In Fig. 10, the well-known Fandisk model is further used
to illustrate the effectiveness of our algorithm. The model
is seriously smoothed by the original EMD. The bilateral
filtering [7] can preserve the sharp features well except some
weak features on the top fan region. Figure 10d is the result
obtained using the method of [12], which can preserve sharp
features, but there are still some artifacts occurring on smooth
regions. In contrast, with the explicitly feature lines being
extracted and the Hilbert spectra guided filtering scheme,
our method obtains more satisfactory denoising results with
sharp features being fully preserved (see Fig. 10e).

Parameters and timing. In our algorithm, all important
parameters are discussed in corresponding sections, such as
the stopping criteria of sifting and EMD process, original
vertex-constraining weights in surface reconstruction. These
parameters are tested in a large number of datasets using
default values, which usually lead to satisfactory results.

We have tested our method on numerous models with
various sizes. The timings are reported in Table 1, and the
implementation is done in MATLAB on a desktop with Inter
Core(TM) i7-3770 CPU @3.40GHz 3.90 GHz and 8.0 GB
RAM. To obtain the same number of IMFs, our EMD on 1D
signal and the entire algorithm are both faster than the EMD
on 3D surface, which can be evidently seen from Table 1. For
the small-sized Fandisk model in Fig. 10, our 1D EMD is 7
times faster than 3D EMD on surface, while for the large-

(a) (b) (c) (d) (e)

Fig. 9 Feature-preserved denoising results of cube model. a Noisy
cube corrupted by 10% Gaussian noise of average lengthes of mesh
edges. b Result of original EMD [26] using the 3-th residue. c Result of
two-step smoothing [4] obtained by MeshLab with 2 smoothing steps,

feature angle threshold 60◦, 20 normal smoothing steps and 20 vertex
fitting steps. dResult of the method [12] using the 3-th residue. eResult
of our method
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(a) (b) (c) (d) (e)

Fig. 10 Feature-preserved denoising result of Fandisk model. a The
noisy model corrupted by 5% Gaussian noise of average lengthes of
mesh edges. b Result of original EMD on 3D surface [26] using the
3-th residue. c Results of bilateral filtering [7] after being performed

three times with parameters σc = 0.4l and σs = 0.05l, respectively.
d Reconstructed result using the 3-th residue of the method [12].
e Result of our method

Table 1 Run times (in s)

Figs. #V #I MF #IV 3D-EMD Total 1D-EMD

Fig. 9 6146 12 3 2.63 0.39 1.56

Fig. 10 6475 11 3 2.96 0.42 2.17

Fig. 5 74, 764 13 5 28.14 2.82 4.50

Fig. 7 122, 882 13 3 101.20 4.59 7.13

Fig. 1 134, 345 10 5 96.97 0.74 1.13

Fig. 6 719, 560 15 5 697.89 33.92 60.93

#V: number of vertices. #IMF: number of IMFs. #IV: number of isolated
vertices. 3D-EMD: time of EMD directly applied on the signal of 3D
surface. 1D-EMD: time of EMD on the 1D signal after dimensionality
reduction. Total: total time of our method

sized Hygeia model in Fig. 1, the speedup is more than 100
times.

Discussion During Hamiltonian cycle construction, the
input triangular mesh should be a connected manifold with-
out boundaries. The reason is that there is no opposite corner
for one corner of the face with boundary in the Corner Table
data structure, which is used in the process of Hamiltonian
cycle generation [9]. Therefore, if the inputmesh has holes or
boundaries, it needs to be converted to a closed manifold by
any hole-filling algorithms [30,35] or simply building a fan
of dummy triangles by connecting the added dummy vertices
with boundary vertices.

Limitations. In feature-preserved surface processing, the
sharp features should be extracted first. If the models are
contaminated by heavy noises, it is difficult to extract the
features completely, whichwill give rise to to-be-blurred fea-
tures. Another limitation is that the original topology of the
mesh connectivity can not be fully preserved in Hamiltonian
cycle, which may further result in artefact or feature blurring
in case of sharp features not being detected completely. In
the near future, we plan to overcome the above limitations
by extracting more valuable information from Hilbert spec-
tra to achieve the feature-preserved surface processing in a
more automatic manner without human intervention. More
broader applications shall be explored based on Hilbert spec-

tra analysis, such as mesh segmentation, shape retrieval, and
shape correspondence.

6 Conclusion

In this paper, we have presented a novel EMD and Hilbert
spectra computation scheme for 3D geometry analysis and
processing via space-filling curve. Based on the exciting idea
of dimensionality reduction, the problem of 3D EMD based
surface processing is converted to 1D EMD signal process-
ing, which leads to two salient advantages of our algorithm.
First, this conversion enables us to calculate Hilbert spectra
directly on 3D surface. The newly-obtained Hilbert spectra
contain much more quantitative and meaningful informa-
tion than what IMFs could offer, which can be immediately
employed to guide surface processing in amore steerable and
precise way to generate versatile results. Second, the high
computational cost of EMD on 3D surface processing is sig-
nificantly reduced by resorting to the dimensionality reduc-
tion via Hamiltonian cycle, which can be easily generated on
irregular, curved, and complex 3D surfaces. In addition, to
overcome the feature blurring limitation of the original EMD
and preserve sharp features during 3D surface processing, we
have proposed an effective divide-and-conquer EMDdecom-
position scheme aided by available sharp feature detection
techniques. These advantages make our proposed EMD and
Hilbert spectra computation based algorithm simple, hence
easy to implement on 3D surfaces directly, which have been
effectively verified by a large number of experiments.
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