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This paper proposes a novel and robust multi-modal medical image fusion method, which is built upon a
novel framework comprising multi-scale image decomposition based on anisotropic heat kernel design,
scale-aware salient information extraction based on low-rank analysis, and scale-specific fusion rules.
Our framework respects multi-scale structure features, while being robust to complex noise perturbation.
First, anisotropic heat kernel is computed by constructing an image pyramid and embedding multi-level
image properties into 2D manifolds in a divide-and-conquer way, consequently, multi-scale structure-
preserving image decomposition can be accommodated. Second, to extract meaningfully scale-aware
salient information, we conduct low-rank analysis over the image layer groups obtained in the first step,
and employ the low-rank components to form the scale space of the salient features, wherein the under-
lying noise can be synchronously decoupled in a natural way. Third, to better fuse the complementary
salient information extracted from multi-modal images, we design an S-shaped weighting function to
fuse the large-scale layers, and employ the maximum selection principle to handle the small-scale layers.
Moreover, we have conducted extensive experiments on MRI and PET/SPECT images. The comprehensive
and quantitative comparisons with state-of-the-art methods demonstrate the informativeness, accuracy,
robustness, and versatility of our novel approach.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction and Motivation

The objective of data fusion is to integrate the inherent comple-
mentary information from two or more resource images into a sin-
gle one, which is more informative and suitable for human visual
perception and further processing tasks [1]. In clinical medicine,
magnetic resonance imaging (MRI) and computed tomography
(CT) mainly reveal the structural and anatomical information,
while positron emission tomography (PET) and single photon
emission computed tomography (SPECT) concentrate on the func-
tional information. Thus, multi-modal medical image fusion can
provide much more anatomical and physiological characteristics,
which has been playing a critical role in image analysis, clinical
diagnosis, and treatment planning [2].

As an out-of-the-box tool in image processing and computa-
tional vision, recent progresses of Multi-scale Image Decomposi-
tion (MID) indicate that MID has promising potential in the
improvement of image fusion quality, because it can effectively
detach the structure-sensitive information from multi-modal
images and re-integrate them to enhance informative perception
via frequency-domain representation [3,4] or intensity domain
presentation [5,6]. Meanwhile, since the design of MID kernel func-
tion has great influence on the fusion quality, to get the built-in
attractive properties such as structure-sensitive, scale-meaningful,
and shift-invariant, many anisotropic MID kernels also gain great
momentum in image fusion, including curvelet [7], contourlet
[8], non-subsampled contourlet [9], and shearlet [10].

Despite the growing success of medical image fusion, certain
challenges still exist in terms of feature processing, noise tolerance,
and complementary-information combination, etc. [2,11], because
good image fusion methods must reasonably and adaptively model
the intrinsic structure patterns embedded in data regardless of the
impact of artifacts. However, current MID-based methods can only
extract limited directional detail information, and it remains diffi-
cult to preserve the scale-aware directional structures, because its
kernel/basis functions are generic while having little relevance
with the images to be fused. Meanwhile, high-quality image fusion
should synchronously emphasize salient information, suppress
inconsequential information, and decouple artifacts/noise from
the source images. However, most of the existing methods tend
to preserve the large-scale structure information while discarding
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small-scale details, and they are usually sensitive to noise. Another
nontrivial problem is fusion rule, which largely determines
whether the fusion result could have proper contrast to clearly
reflect the complementary information of multi-modal images.
For example, the popularly-adopted Average–Maximum fusion
rule [12,13] tends to produce either globally darkened or obscured
fusion results.

To alleviate the aforementioned problems, as highlighted in
Fig. 1, we concentrate on high-quality robust multi-modal medical
image fusion by incorporating data-specific filter design and struc-
ture-preserving multi-scale image decomposition into the power-
ful scale-aware low-rank analysis model. It exploits anisotropic
heat kernel for multi-scale image decomposition, scale-aware
low-rank analysis for salient information extraction, and scale-spe-
cific rules for complementary information fusion. The intuitions
behind anisotropic heat diffusion are: diffusion is a process with
strong statistical meanings in the global scope, which can naturally
bridge the gap between the local structural attributes and their
global correlations via weighted Laplace–Beltrami operator; the
priori knowledge that depends on the image structure allows to
trigger the anisotropy property, which also gives rise to a direction
that the diffusion is propagated along. Therefore, the filter kernel
derived from anisotropic diffusion is non-linear and space-varying,
which guarantees to preserve the sharp structure in multi-scale
convolution. By using the low-rank component to indicate the sali-
ent information commonly occurring across similar-scale
smoothed images, we can simultaneously decouple the noise from
the source image, which avoids tricky processing for various kinds
of noises. Meanwhile, instead of directly using the original source
images, we construct a scale space by resorting to the extracted
low-rank structures for information fusion. Besides, given the com-
plementary information to be fused, fusion rules may have non-
trivial influence on the intensity contrast of the fusion result.
Specifically, the intensity of SPECT/PET images directly relates to
the saliency and activity of the tissue, higher intensity would indi-
cate greater activity and thus should be visually more important.
Therefore, to better preserve the proper image contrast in the fused
result, the S-shaped function is finally used to map the intensity of
SPECT/PET to the fusion weights.

Specifically, the salient contributions of this paper can be sum-
marized as:

� We formulate a data-specific multi-scale geometrical analysis
kernel for image decomposition by conducting anisotropic heat
diffusion over 2D manifold embedded in the 3D space, which
can well respect the anisotropic directional structure of the
images.
Fig. 1. The flowchart of our method. It consists of three major steps: (1) construct the d
aware salient information via low-rank decomposition, and (3) fuse data with the impr
� We propose a layer-group low-rank analysis method to extract
scale-aware salient structures, which naturally gives rise to the
robust representation of the cross-scale salient features, and
can synchronously decouple types of noise in a self-taught way.
� We design a scale-specific fusion rule to adaptively determine

the fusion weights, which affords to better integrate the com-
plementary information of multi-modal medical images.

2. Related work

2.1. Image fusion methods

Along with the increasing demands for image fusion in clinical
applications, a number of techniques have been proposed in the
last decade. James and Dasarathy introduced the existing fusion
techniques in medical imaging, and analyzed those methods’
advantages and drawbacks. For more information, please refer to
their works [2,11]. Here, we mainly discuss the substitution
method and MID-based method.

For the substitution method, the intensity-hue-saturation (IHS)
method [14] is generally applied in various data fusion applica-
tions, which can well integrate spectral and spatial features. How-
ever, it also gives rise to spectral distortions and spectral
information missing due to the arithmetic combination. In con-
trast, the generalized intensity-hue-saturation (GIHS) framework
[14] can be used to suppress such distortion, and thus affords a
better visual sense. Recently, Daneshvar and Ghassemian [15] inte-
grated the IHS technique and retina-inspired model to avoid the
weak points appearing in IHS and GIHS, hence improving the
fusion quality.

Meanwhile, the MID-based technique has also gained growing
attention, since it can effectively respect the sharp feature. The
central idea of such method can be summarized as: MID method
is used to decompose image into multi-scale representation and
form a scale space; fusion is then executed to integrate the comple-
mentary information for each scale; and the fusion result is finally
obtained by the inverse transform. The MID-based methods for
fusion are generally classified into two categories: frequency
domain based method and intensity domain based method.

As for frequency domain based method, Wang et al. [12] intro-
duced the discrete wavelet transform (DWT) into medical image
fusion, which makes the wavelet-based fusion method popular.
But the fusion result generally tends to present bad visual percep-
tion and usually involves artifacts. That is because, DWT only
extracts limited directional information. Later, several multi-scale
geometric analysis methods are proposed in succession to further
improve the visual perception, such as curvelet [16] and contourlet
ata-specific filter and conduct multi-scale image decomposition, (2) extract scale-
oved S-shaped fusion rule.
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[17]. Although such methods have obtained quite good fusion
results, they are still suffering from the lack of shift-invariant prop-
erty, and the color distortion may still occur. The Non-Subsampling
Contourlet Transform (NSCT) [9] and shearlet [18] are then pro-
posed to overcome such limitation and suppress artifacts, whose
improved versions further improve the image fusion quality [19–
23]. However, the fusion results tend to lose some small details.
The main reason is that, their kernel/basis functions are general
while having little relevance with specific images, and thus they
are hard to faithfully preserve the intrinsic directional structures
during image fusion. Therefore, it makes sense to investigate the
data-specific filter design.

Apart from frequency domain based approaches, the intensity
domain based methods also gain great momentum. For example,
Laplacian pyramid [24] is one of the simple and efficient methods
that can be applied to multi-focus image fusion [25] and multi-
spectral image fusion [26]. However, such methods tend to involve
other irrelevant information, such as artifacts and noise. Thus, Hu
and Li [5] introduced the directional bilateral filter into image
fusion, and the L0 gradient minimization method is also proposed
most recently [6]. The experimental results demonstrate that such
data-specific filter based method can make the fused image have
more detail information. Relatively speaking, bilateral filter based
method usually involves artifacts around the edge, while L0

method tends to lose small-scale details. That is because, L0

method, which is a global optimization algorithm, can only pre-
serve the salient detail. Thus, the solving of such problems needs
to design a structure sensitive filter that can strongly respect the
intrinsic directional structures.
2.2. Low-rank analysis models

Low-rank decomposition is an active research topic in matrix
completion [27] and background modeling [28,29]. Recently,
low-rank modeling has achieved great success in medical image
analysis, such as image denoising and image reconstruction, please
refer to Zhou’s work [30] for the comprehensive review. In image
denoising, Nguyen et al. [31] took a dynamic image sequence as
data matrix, and proposed a maximum a posterior (MAP) frame-
work to couple low-rank model to remove noise. By iteratively per-
forming the singular value thresholding (SVT) operation on the
data, Cand�es et al. [32] used the low-rank model to achieve more
robust results. In image reconstruction, Christodoulou et al. [33]
integrated the low-rank structure into the framework of the partial
separability model to reconstruct the cardiac image. Similarly,
there are also other low-rank modeling methods for CT and PET
image reconstruction [34,35]. Although low-rank modeling has
been widely used and achieved great success, fusion application
of low-rank modeling is only just a beginning. Most recently,
Wan et al. [36] proposed a multi-focus fusion framework based
on the low-rank modeling. The method fuses the multi-focus
images by choosing the significant features from the sparse com-
ponent. But the framework is difficult to respect scale-aware,
intrinsic anisotropic features. Thus, it motivates us to further
explore the integration of low-rank model in medical image fusion.
3. Method overview

In this paper, we respectively denote the SPECT/PET, MRI, and
the fused image as C;G, and F, while Ið�Þ is the intensity component
of image ‘‘�’’. The base and detail layers resulted from MID are
denoted by E;D. We also assume that the source images to be fused
have been perfectly co-aligned. We adopt GIHS method [14] to
handle the fusion between the gray and the color images. Since
color images are commonly regarded as the combination of three
monochrome channels called RGB, they can easily be converted
to the IHS color space based on triangular planes.

We give a brief description of the proposed algorithm in Algo-
rithm 1: Steps 1–5 generate anisotropic multi-scale image decom-
position; Steps 6–8 extract the scale-aware salient feature and
intrinsically decouple the underlying noise; and Steps 9–11 con-
duct the scale-specific fusion based on the extracted multi-scale
salient features. All the technical elements will be detailed in the
following sections one-by-one.

Algorithm 1. Multi-modal medical image fusion

input: Original images IC , IG, b, h, a, d, k, the block size.
output: Fused image F.
1: Divide image pyramid into r overlapping blocks;

FOR each block
2: Generate 3D triangular surface;
3: Compute matrices M and A;
4: Solve K and U that satisfy MU ¼ KAU;
5: Conduct multi-scale decomposition;

END
6: Group the decomposed multi-scale layers into k groups;
7: Extract salient information via group-wise

low-rank analysis;
8: Form a scale space for salient features;
9: Intra-layer fusion with the improved fusion rule;

10: Inter-layer reconstruction IF;
11: Synthesize fused image F.
4. Data-specific filter design based on anisotropic heat diffusion

To fuse much more complementary information, based on heat
diffusion theory, this section focuses on the data-specific and
anisotropic filter design and its application in MID, and describes
the implementation details step-by-step. Fig. 2 illustrates the basic
idea of the proposed data-specific filter design.

4.1. Heat kernel theory

The heat kernel [38] has achieved great success over 2D mani-
fold for geometry analysis [39,40] benefiting directly from its
inherent properties of being structure sensitive and multi-scale.
In this subsection, we briefly describe the heat kernel theory, and
address some issues yet to be solved for the application of heat ker-
nel in image space.

The heat diffusion process over the manifoldM is governed by
the heat equation:

DMuðx; tÞ ¼ � @uðx; tÞ
@t

; ð1Þ

where DM is the Laplace–Beltrami operator ofM. The generic solu-
tion of Eq.(1) is known as heat kernel hðx; y; tÞ, which can be defined
as:

hðx; y; tÞ ¼
X1
i¼0

e�ki t/iðxÞ/iðyÞ; ð2Þ

where fkig1i¼0 (0 ¼ k0 < k1 6 � � �) and f/ig
1
i¼0 are respectively the

eigenvalue of the Laplacian matrix and its corresponding eigenvec-
tor. Its matrix form can be rewritten as:

HðtÞ ¼ ðW�UÞU0: ð3Þ

Here ‘‘�’’ represents the element-wise Hadamard product,
U ¼ f/ig

1
i¼0;W ¼ fc; . . . ; cg0, and c ¼ fe�k1t; e�k2t ; . . . ; e�k1tg. It may



Fig. 2. Overview of the data-specific and anisotropic filter design with its application in MID. We first build an image pyramid and divide the images into overlapping blocks.
Then, we map the image block to manifold mesh via Delaunay triangulation [37], and compute its Laplacian matrix over the manifold mesh. Based on the spectral analysis,
the heat kernel is introduced to construct a data-specific and anisotropic filter, which is then employed to conduct MID. In Step five, please pay attention to the variance of the
proposed filter at different locations (e.g., fp1;p2g) and scales (e.g., ft1; t2g).
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be noted that, the spectral decomposition only needs to be com-
puted once for multi-scale heat diffusion. Given t, the heat kernel
can be directly computed using Eq. 3. Thus, the heat diffusion at
t þ 1 scale is independent of the heat diffusion of the adjacent t
scale.

Since Laplacian matrix encodes the structure property of the
underlying manifold, heat kernel naturally stores all of the proper-
ties that a good multi-scale image decomposition method should
have, such as being multi-scale, anisotropic-structure sensitive,
shift-invariant, Gaussian-decay, and geometry-specific. In this
paper, we want to take those advantages for the multi-scale anal-
ysis of image. However, there are several issues to be addressed:
(1) The construction of heat kernel is based on the topological
structure of 2D manifold, while 2D image consists of pixel lattice
that provides little geometrically-meaningful topology informa-
tion; and (2) Naively transplanting heat diffusion to 2D image is
not trivial due to the extremely high computational cost and stor-
age requirements caused by massive pixels. Therefore, it strongly
motivates us to design a technically-sound algorithm by exploring
the underlying manifold mesh of image in a divide-and-conquer
way. In the following subsections, we will address these issues in
details.

4.2. Manifold construction and Laplacian analysis

To respect the inherent structure in image space, we represent a
gray-scale image as a 2D manifold embedded in 3D Euclidean
space with vertex coordinate ðx; y; Iðx; yÞÞ, where x and y are the
pixel coordinates, Iðx; yÞ is its corresponding intensity value. The
corresponding manifold mesh can be created via Delaunay triangu-
lation [37]. This in fact serves as a precondition (topological struc-
ture) to define heat kernel over 2D image, which also gives rise to
the solving of the first problem described in Section 4.1. Mean-
while, we replace the third dimensional coordinate Iðx; yÞ with
bIðx; yÞ to enhance the anisotropic structures of the image and con-
trol structure-sensitive heat diffusion. Specifically, an example is
listed in Step three of Fig. 2, while the effect of parameter b will
be detailed in Section 8.1.

Based on the constructed mesh, as shown in [41], its discrete
Laplacian matrix can be defined using the cotangent scheme [42].

Denote fv igN
i¼1 as the vertex set, its discrete Laplacian matrix is

P ¼ A�1M. The mass matrix A is a diagonal matrix and Aii is propor-
tional to the area of all triangles sharing the vertex i. The stiffness
matrix M encodes the local structure of the image, which can be
defined as

Mði; jÞ ¼

P
j–imði; jÞ if i ¼ j

�mði; jÞ if v i and v j are adjacent
0 otherwise

8><>: ; ð4Þ
where mði; jÞ ¼ cotðrþij Þ þ cotðr�ij Þ, and rþij and r�ij are the two opposite
angles sharing the edge connecting the vertices i and j (shown in
Step 4 of Fig. 2). The eigenvalues and eigenvectors used in Eq. (3)
can then be obtained by solving the generalized eigensystem
MU ¼ KAU, where K ¼ fkig1i¼0.

However, it is still impractical to perform global eigen-decom-
position for image comprising several hundred of thousand of pixel
lattice. In the next subsection, we further elaborate a divide-and-
conquer strategy to solve this problem.

4.3. Divide-and-conquer computation of data-specific filter

To deal with the second problem described in Section 4.1, we
approximate the heat kernel in a local supporting area based on
the characteristics of Gaussian decay by dividing the source image
into overlapping blocks, which can greatly reduce the data scale,
and avoid conventional time-consuming global spectral decompo-
sition. Using overlapping blocks, we are able to effectively restrain
block effects when stitching each smoothed block together to
recover the smoothed image.

However, it is worth noting that the supporting areas may
span the block boundaries for larger t, as shown in Fig. 3(f),
the block effects are still inevitable in the smoothed image. A
simple way is to increase the block overlapping width. But it
gives rise to a great increase in the computational burden.
Meanwhile, it is also against our original intention of using par-
titioning strategy. To eliminate the block effects without increas-
ing the computational burden, we design an image pyramid
based divide-and-conquer strategy. By taking the heat kernel
pyramid into account, its quadtree based hierarchical structure
can intrinsically form a scale space, wherein a block correspond-
ing to the upper layer is divided into four sub-blocks in adjacent
lower layer. Therefore, the heat diffusion of one block in the
upper layer can be regarded as an effective approximation for
that of the corresponding four sub-blocks. As shown in
Fig. 3(g) and (h), the block effects can be effectively eliminated
in this way. Specifically, another asset of our pyramid model is
that it involves the local property resulted from partitioning
strategy and global property encoded in the pyramid scheme.
In order to facilitate the parallelized implementation of the pro-
posed method (to be discussed in Section 7), the height and
width of the block are both set to be an integral multiple of
16, and the overlapping width is set to be 16. Moreover, as illus-
trated in Fig. 4, we analyze the time-accuracy relationship for
various block sizes by defining a multiple-indicator embedded
average metric:

f ¼
P5

i¼1Indi
w;h=maxðIndiÞ

Timw;h=minðTimÞ ; ð5Þ



Fig. 3. Anisotropic heat diffusion and divide-and-conquer strategy based on the image pyramid. (a) The source image is divided into four overlapping blocks. The red region
denotes the overlapping area between blocks. The red point represents the anchor pixel. (b–d) Kernels of Gaussian Filter, Bilateral Filter (BF), and anisotropic heat diffusion.
Gaussian filter is isotropic. The anisotropy of BF is too local and weak and cannot entirely respect the global structure. Our kernel can well respect the global anisotropic
structure. (e) Smoothed image corresponding to smaller t. (f) For larger t, naive block division inevitably gives rise to block-edge response (highlighted by reseda box). (g) By
introducing the image pyramid, the block-edge response is eliminated. (h) Zoom-in effects. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 4. Illustration of the time-accuracy relationship analysis for various block sizes.
The relatively optimal size is 160� 160 for 256� 256 image.
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where Indi
w;h means the score of the i-th evaluation indicator with

block width w and height h; Timw;h denotes the corresponding time
cost. From Fig. 4, we can observe that the relatively optimal block
size is 160� 160 for a 256� 256 image.

4.4. Anisotropic multi-scale image decomposition

The defined heat kernel over 2D image can be regarded as a
data-specific low-pass filter. Suppose a unit heat source located
on the vertex x, the heat kernel hðx; y; tÞ intrinsically presents the
average heat amount diffused from x to y within time t. Thus, given
an image organized as a matrix I 2 RN�1, the heat kernel based
image smoothing can be given in an analytical form as:
IðtÞ ¼ HðtÞI ¼ ððW�UÞU0ÞI: ð6Þ

Here the parameter t is related to scale. A larger t means the
smoothed image contains fewer details. Meanwhile, as illustrated
in Fig. 3(d), by comparing with Gaussian filter (Fig. 3(b)) and bilat-
eral filter (Fig. 3(c)), heat diffusion is shown to better respect the
structure, and Fig. 3(e)–(g) correspondingly demonstrate the struc-
ture-preserving property of our filter when smoothing the image. It
provides strong evidence that heat diffusion based multi-scale anal-
ysis strongly relates to the intrinsic geometrical structure of the
image. Besides, directly inherited from heat kernel [38], our filter
is multi-scale, anisotropic, shift-invariant, and data-specific. As
incrementally and gradually increasing the values of t, multi-scale
smoothed images can be independently generated by convolving
the source image with the heat kernel, which will be used for
low-rank analysis further to form a scale space of salient structures
(discussed in Section 5).

5. MID-based low-rank analysis for scale-aware salient
information

To analyze the frequency-relevant structures, the most com-
mon way is to compute the difference of adjacent layers, wherein
the convolutional result with the largest scale means the base layer
and the difference of adjacent layers denotes the detail layer at dif-
ferent scales. Although this method can guarantee that the original
image itself can be perfectly reconstructed by decomposed layers,
the data in base and detail layers cannot indicate the importance of
fusion. In addition, the choice of the scale parameter requires the
user to manually tune, and if the base layer contains fewer infor-
mation, it gives rise to the loss of complementary information.
Thus, it motivates us to incorporate the data-specific multi-scale
decomposition into a low-rank analysis model to extract
scale-aware salient information. The benefits of introducing
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low-rank analysis include: (1) it makes the scale parameter t easy
to choose; and (2) the low-rank part serves as common informa-
tion across some images of a similar scale, which means the salient
(important) information could be preserved in the fused result.
We will detail the low-rank analysis model in the following
subsections.

5.1. Low-rank decomposition theory

From the point of view of matrix decomposition, given a matrix
B, it can be divided into three components: low-rank component L,
sparse component S, and noise component G. The formulation of
low-rank decomposition is defined as:

B ¼ L þ Sþ G; s:t: rankðLÞ 6 r; cardðSÞ 6 c; ð7Þ

wherein r; c are respectively the rank constraint and the cardinality
constraint.

Given an m� n dense matrix B and its r bilateral random projec-
tions (BRP) [43], its fast rank-r approximation can be obtained as:

L ¼ Y1ðAT
2Y1Þ

�1
YT

2; ð8Þ

where Y1 ¼ BA1;Y2 ¼ BT A2;A1 2 Rn�r , A2 2 Rm�r are independent
Gaussian/SRFT random matrices [44]. Eq. 8 tends to perform poorly
when the singular values of B decay slowly. By introducing the

power scheme [45], we replace B with eB ¼ ðBBTÞqB to accelerate
the low-rank approximation and thus improve the accuracy [27],

in which q is the power iteration strength. The BRP of eB is

Y1 ¼ eBA1;Y2 ¼ eBT A2. The rank approximation of eB is:

eL ¼ Y1ðAT
2Y1Þ

�1
YT

2: ð9Þ

By calculating the QR decomposition of Y1 and Y2, we can obtain the
rank approximation of B as:

L ¼ ðeLÞ 1
2qþ1 ¼ Q 1½R1ðAT

2Y1Þ
�1

RT
2�

1
2qþ1

Q T
2: ð10Þ

Then, the sparse part S of B can be calculated as:

S ¼ PXðB� LÞ; ð11Þ

where X is the nonzero subset of the first c largest entries of jB� Lj.
Therefore, a dense matrix B can be decomposed into low-rank,

sparse, and noise components, which can be efficiently and
robustly estimated by GoDec method [27]. Here, we use the low-
rank component L to indicate the salient information commonly
occurring in the image group with a similar scale, and further con-
struct a scale space of salient features.

5.2. Scale-aware salient information extraction

In principle, let Ið0Þ denotes the source image, and the
smoothed image is represented as IðtÞ at time t. As shown in Matrix
Group of Fig. 5, assuming each image pyramid level has d� k
Fig. 5. Pipeline of MID-based low-rank analysis for scale-aware features. We conduct m
multi-scale images. Then, we group the multi-scale images into k groups and extract the s
of adjacent groups to form a scale space of salient information.
smoothed images and each group comprises d smoothed images.
For each group, we suppose that there is a parameter sequence
½tk

1; t
k
2; . . . ; tk

d� with a smaller step size for the smoothed images,
where superscript k indicates the group index. Taking the original
source image into account, we can reorganize ðdþ 1Þ image vectors

to form a matrix as Bk
p ¼ ½Ipð0Þ; Ipðtk

1Þ; . . . ; Ipðtk
dÞ� for the p-th level of

pyramid. Here, in order to extract the multi-scale intrinsic low-
rank structure, we need a sufficient number of time scales to get
enough smoothed images that have higher correlation and similar
scale. Given the maximum value of scale parameter t, it will be
equally divided into d� k segments to generate the smoothed
images. Considering an enough large value of t, we can cast the
scale parameter selection as a selection problem of k and d. There-
fore, in this sense it makes the scale parameter t selection become
easy. The selection and insensitivity analysis of scale parameter t
are discussed later.

Fig. 5 describes the pipeline of salient feature extraction and
scale-space construction based on low-rank analysis. Given the

image matrix Bk
p, the low-rank decomposition is employed to

obtain the common information Lk
p of image matrix. We then

extract the first column Lk;1
p of matrix Lk

p as the salient features
of corresponding scale (the k-th group). The right column of
Fig. 6 shows the extracted low-rank component of a noise-per-
turbed image, which well captures the intrinsic salient informa-
tion of source image while automatically removing the noise.
Therefore, coinciding with the theory of low-rank analysis, our
method can effectively decouple the noise from the source image
in a ‘‘built-in’’ way. By group-wisely executing the low-rank anal-
ysis with specific rank constraint, k salient features of source

image can be obtained, denoted as fL1;1
p ; L2;1

p ; . . . ; Lk;1
p g. Since each

image group corresponds to a different similar scale, the
extracted information thus can be used to construct a scale space
for each pyramid level.

Besides, in our method, instead of directly using the original
source images, we construct a scale space by resorting to the
extracted low-rank structures, which are salient and common
occurring across similar-scale smoothed images. And we decom-
poses them into different layers by computing the difference of
adjacent-scale low-rank structures. On that basis, the salient infor-
mation could then be effectively fused into the result. Let

Di
p ¼ Li;1

p � Liþ1;1
p denotes the i-th small-scale detail layer at the p-

th pyramid level, and Ep ¼ Lk;1
p as the large-scale base layer. There-

fore, the intra-level reconstruction of the decomposed image at the
p-th pyramid level can be formulated as:

L1;1
p ¼

Xk�1

i¼1

Di
p þ Ep: ð12Þ

For the inter-level reconstruction of the pyramid, let
Dp ¼ L1;1

p � UðL1;1
pþ1Þ denotes the p-th detail level of the pyramid,
ulti-scale image decomposition (MID) based on anisotropic heat kernel to obtain
alient features from each groups via low-rank analysis, and compute the differences



Fig. 6. Illustration of low-rank analysis. Left: The clean image. Middle: Salt and pepper noise-perturbed image. Right: The extracted low-rank component well captures the
intrinsic salient information of original image while automatically removing the noise.

Table 1
Quantitative comparison for different maximum values of scale parameter t.

t PSNR MI MSSIM FSIM FSIMC

56 42.3472 3.0722 0.7747 0.9838 0.9509
58 42.3479 3.0718 0.7747 0.9838 0.9509
60 42.3505 3.0736 0.7748 0.9838 0.9510
62 42.3483 3.0716 0.7747 0.9838 0.9509
64 42.3482 3.0715 0.7747 0.9837 0.9509
66 42.3482 3.0712 0.7747 0.9837 0.9509
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where Uð�Þmeans up-sampling operation. Here, the bicubic interpo-
lation method is used to generate the high-resolution image. The
inter-level reconstruction can be formulated as:

L1;1
i ¼ ð1� aÞðDi þ UðL1;1

iþ1ÞÞ þ aL1;1
i ; ð13Þ

where i ¼ f1;2; . . . ;p� 1g;a is a constant to balance the detail and
the noise.

As for the selection of t, we measure its rationality according to
MSSIM metric, which can evaluate the salient edge-preserving
Fig. 7. Illustration of S-shaped mapping function. Top Left: Source images. The red dashe
fusion comparison. Blue line indicates the fusion weight mapped by S-shaped function
intensity is zero) at the edge region of MRI image. The Average–Maximum fusion rule te
the S-shaped fusion rule is quite similar to the original MRI data. Bottom Right: For th
Average–Maximum fusion rule still produces similar blurred result, while our result achie
legend, the reader is referred to the web version of this article.)
quality on the entire image. It is expected to have the better perfor-
mance at scale t, if MSSIM P 0:8 [46]. By extensively testing exper-
iments over the MRI, SPECT, and PET images, we empirically find
that t ¼ 60 can meet the requirement of MSSIM P 0:8. By fixing
other parameters, we show the insensitivity analysis of scale
parameter t in Table 1, wherein the changes of five metrics are
extremely small for different maximum values of parameter t. It
indicates that the low-rank analysis helps reduce the sensitivity
during the selection of parameter t, and makes the scale parameter
t easy to choose.
6. Improved frequency-specific fusion rule

Since MRI images are of high-resolution and primarily reveal
the anatomical structures, the anatomical information should be
effectively displayed for the accurate location of lesion. The
SPECT/PET images usually directly reflect the saliency and activity
of the tissue, whose fusing weights should be a monotonically
increasing function.

For large-scale image layers, the base layer weights of MRI
image are set as 2 to reduce the harmful influence of black back-
d and blue dash-dot lines indicate the input data in source images. Bottom Left: The
(h ¼ 0:15). Top Right: There is no complementary information in SPECT image (the
nds to reduce intensity and blur the edge (indicated by black color). The result from
e MRI edge regions where SPECT image contains complementary information, the
ves a better performance. (For interpretation of the references to color in this figure
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ground in SPECT/PET image; the weights for functional images are
in consistent with an S-shaped weighting function f ðxÞ, which
should start from the point ð0; 0Þ and end at the point ð1;1Þ,

f ðxÞ ¼ ax3 if x 6 h

1� bð1� hÞc if x > h

(
: ð14Þ

Here h is the threshold of the inflection point. In order to better bal-
ance the visual perception between anatomic and functional
images, we assume that the weight of inflection point is 0:5. Consid-
ering the C1 continuity constraint at the inflection point, the param-
eters a; b, and c can be obtained by

f ðh�Þ ¼ 1
2

f ðhþÞ ¼ 1
2

f 0ðh�Þ ¼ f 0ðhþÞ

8><>: )
a ¼ 1

2h3

b ¼ 1
2ð1�hÞc

c ¼ 3ð1�hÞ
h

8>><>>: : ð15Þ

Given the mapping function f ðxÞ, the weight for the large-scale layer
coefficient Epði; jÞ of SPECT/PET image is defined as:

WEp ði; jÞ ¼ f ðEpði; jÞÞ: ð16Þ

As for the small-scale detail layers, the larger coefficients should be
retained to preserve the salient details. We thus adopt the maxi-
mum selection principle to fuse the high-frequency coefficients.
Fig. 7 shows an example of S-shaped mapping function. For our S-
shaped rule, the fusion weight is shown with the blue line, wherein
relatively larger value is assigned to the higher intensity (shown in
bottom left figure of Fig. 7). The top right figure shows SPECT image
does not contain complementary information (the intensity is zero)
corresponding to the edge region of MRI image. The Average–Max-
imum fusion rule tends to reduce intensity and blur the sharp edge
(indicated by black color) while our result effectively preserves the
sharp edge (represented by cyan color). The bottom right figure
shows that the SPECT image contain the complementary informa-
tion corresponding to another edge region of MRI image. Our result
achieves the better contrast than that resulted from the Average–
Maximum rule. Thus, the S-shaped function is better to fuse the
complementary information and adaptively preserve the amplitude
of the structure. The choice of parameter h and the structure-pre-
serving capability analysis of new fusion rule will be discussed in
Sections 8.1 and 8.6.
Fig. 8. Illustration of CUDA-based Laplacian matrix computation in a block-parallel wa
Right: Laplacian matrix construction via mapping area; rowIdx; colIdx; stif to M and A.
7. CUDA-based parallel implementation

Algorithm 2. Parallel generation of multi-scale images

input: Image block B, b, and the number of the smallest
magnitude (sm) eigenvalue n.

output: Multi-scale images BðtÞ.
Pixel-level kernel for each vertex i in a block:
Step I.

for j ¼ 1 : 6
if v j and v j�1 exist

1: s1 ¼ v i � v j�1; s2 ¼ v j � v j�1;
2: Aiiþ ¼ normðcrossðs1; s2ÞÞ;
3: fac ¼ normðs1Þ � normðs2Þ;
4: mijþ ¼ 1:0=tanðacosðdotðs1; s2Þ=facÞÞ;

end
if v j and v jþ1 exist

compute Ai and mij as steps 1 � 4;
end

miiþ ¼ mij; stif ij ¼ �mij;
rowIdxij ¼ Idxi; colIdxij ¼ Idxj;

end
stif ii ¼ mii; areaii ¼ Aii;
rowIdxii ¼ Idxi; colIdxii ¼ Idxi;
5: ½U;K� ¼ eigsðM;A;n0; ‘sm0Þ;

Block-level kernel for each block:
Step II. Compute fixed component for each block:

6: C ¼ U0B;
Step III. Generate multi-scale images for i-th pixel:

for j = 1:n
7: BijðtÞþ ¼ expð�kjtÞ � /ij � Cj;

end

To alleviate the time-consuming computation, as illustrated in
Fig. 8, we implement our method via well-designed pixel-level
and block-level CUDA algorithms, which allow us to efficiently
generate Laplacian matrix and multi-scale images for each block
in a parallel way.
y. Left: image block and pixel window. Middle: algorithmic architecture on CUDA.
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7.1. Pixel-level parallelized Laplacian matrix construction

Since the pixel-wise computation involved in Laplacian matrix
construction is independent of each other, we compute Laplacian
matrix in parallel by invoking a CUDA thread for each pixel to com-
pute its entry mði; jÞ and Aii (Step I in Algorithm 2). Meanwhile,
each thread has a lower computational burden, because there are
at most six edges to be calculated (denoted by red-dotted line in
Fig. 8) for each pixel.

Considering the sparsity of stiffness matrix M, we need a 3-
tuple (rowIdx: row index, colIdx: column index, stif : data value)
to store the non-zero entries. As for diagonal matrix A, a unique
tuple (area: area value) is enough, because the row index and col-
umn index are the same as the corresponding pixel index.

For each block, our parallelized method consists of the follow-
ing steps. First, we transfer the image block containing N pixels
from CPU to GPU, and compute the Laplacian matrix using N CUDA
threads. Second, in each thread corresponding to pixel i, we extract
its eight one-ring neighboring pixels and denote the no-existing
neighbors with negative values. Third, we compute the area areaii

and the affinities stif ij between pixel i and other six pixels (refer
to Eq. 4). Finally, Laplacian matrix is constructed on GPU. For a
256� 256 image, the whole process can be finished within 0.47 s
with the help of GPU implementation, which is only 1=50 time cost
of the CPU-based serial processing (23.71 s). Then, the eigenvalues
K and eigenvectors U of each Laplacian matrix can be obtained by
solving the generalized eigen-system with Matlab function eigs.
1 http://www.med.harvard.edu/AANLIB/home.html.
7.2. Block-level parallelized multi-scale image generation

Given the eigen-decomposition of block-wise Laplacian Matrix,
it seems that we can easily design block-level CUDA kernels to gen-
erate multi-scale images in parallel. However, it is impractical to
directly compute the anisotropic heat kernel and conduct image
convolution due to the extremely-high GPU memory cost (e.g.,
HðtÞ 2 RN�N). To address this problem, we rewrite Eq. (6) as
IðtÞ ¼ ðW�UÞðU0IÞ (W 2 RN�n, U 2 RN�n), where N and n are respec-
tively the image pixel number and the eigenvector number
(n	 N). Besides, C ¼ U0I 2 Rn�1 is constant during multi-scale
convolution (Algorithm 2 Step III), which only needs to be com-
puted once for each block (Algorithm 2 Step II).

Meanwhile, we can make quantitative analysis on the memory
cost and computational burden to measure the performance
improvement of the rewritten equation. Fig. 9 compares the calcu-
lation processes and accompanying costs of space allocation and
floating-point operations (FLO) between the naive calculating
method and our practically-adopted method. Since W�U is
equally used by the two methods, we do not consider its influence
on memory cost and computational burden. For the naive calculat-
ing method, T � N2 � ð2n� 1Þ FLOs and T � N � ð2N � 1Þ FLOs are
respectively needed for the computing tasks shown in Fig. 9(a),
where T denotes the number of the multi-scale images. And
N � N additional storage cells are needed for heat kernel HðtÞ com-
putation. In our practically-adopted method (Fig. 9(b)),
n� ð2N � 1Þ FLOs are performed and n additional storage cells
are needed to compute C. And we need perform T � N � ð2n� 1Þ
times FLO to get T smoothed images in Step III. Benefiting from this
strategy, it not only can reduce about 99% storage cost but also can
greatly reduce the total operational burden (n� ð2N � 1Þ þ
T � N � ð2n� 1Þ FLOs vs. T � N � ð2N � 1Þ þ T � N2 � ð2n� 1Þ
FLOs), which guarantees us to achieve all the multi-scale images
within 0.37 s.

Therefore, as detailed in Algorithm 2, our CUDA-based multi-
scale images generation method can be summarized as follows.
Given K and U, we first compute the constant component C, and
store it for later use. And then we invoke one CUDA thread for each
image scale to conduct image convolution operation. Once all the
CUDA threads complete the calculation, we copy the multi-scale
images from GPU to host memory for further low-rank analysis.

8. Experiments and evaluation

We evaluate and validate our newly-proposed method through
various multi-modal image fusion experiments wherein the multi-
modal image benchmark contains 86 image pairs of normal brain,
144 image pairs of neoplastic disease, and 24 image pairs of degen-
erative disease. And all the experimental images are from Harvard
University site,1 which had already been registered and have a uni-
form size of 256� 256. Meanwhile, to verify and evaluate the
robustness of our fusion method, we also perturb each image with
white Gaussian, salt and pepper noise, which further provides
13,970 image pairs. For white Gaussian noise, the adopted noise
power (in dB) is f1 dB;2 dB; . . . ;40 dBg. For salt and pepper noise,
the percentages of noise-perturbed pixel are f1%;2% . . . ;15%g.

The evaluation includes comprehensive comparison with 5
state-of-the-art methods, including wavelet-based method, Lapla-
cian pyramidal-based method (LP), curvelet-based method, con-
tourlet-based method, and NSCT-based method (NSCT). To
quantitatively evaluate the fusion quality, we resort to 5 com-
monly-used indicators, including peak signal-to-noise ratio (PSNR),
mutual information (MI), mean structural similarity (MSSIM) [46],
feature similarity (FSIM) [47], and FSIM for the chrominance infor-
mation (FSIMC). Specifically, MI measures the degree of depen-
dence; MSSIM can evaluate the salient edge preserving quality
on the whole image; FSIM and FSIMC can measure the feature sim-
ilarity between the source image and the fused image [47]. The
PSNR, MI, MSSIM, FSIM, and FSIMC between the fused image F
and the referenced image R, are respectively defined as:

PS NRðF;RÞ ¼ 10� log
2552

MSEðF;RÞ

 !
; ð17Þ

MS EðF;RÞ ¼
XN

i¼0

ðFðiÞ � RðiÞÞ2; ð18Þ

MIðF;RÞ ¼
X
f2F

X
r2R

PFRðf ; rÞlog
PFRðf ; rÞ

PFðf ÞPRðrÞ

� �
; ð19Þ

where PFRðf ; rÞ is the joint distribution, PFðf Þ and PRðrÞ are the mar-
ginal probability distribution,

MS S I MðF;RÞ ¼ 1
jWj

XW
w¼1

SSIMðFw;RwÞ; ð20Þ

where W means the family of the sliding windows, jWj is the num-
ber of the sliding windows, SSIMðFw;RwÞ denotes the structural sim-
ilarity metric for the corresponding regions and is defined as:

S S I MðFw;RwÞ ¼
ð2 �wF �wR þ C1Þð2rwF rwR þ C2Þ

ð �wF
2 þ �wR

2 þ C1Þðr2
wF
þ r2

wR
þ C2Þ

� ðrwF wR þ C2Þ
ðrwF rwR þ C3Þ

: ð21Þ

where C1;C2;C3 are constants, �w and rw are respectively the mean
and the variance of the region w, rwF wR means the covariance of the
regions wF and wR,

FSIMðF;RÞ ¼
P

i2XSPCðiÞSGðiÞPCðiÞP
i2XPCðiÞ ; ð22Þ

http://www.med.harvard.edu/AANLIB/home.html


Fig. 9. Illustration and comparison of multi-scale image convolution methods. (a) The naive calculating method. Step 1: compute the anisotropic heat kernel HðtÞ; Step 2:
compute multi-scale image IðtÞ. (b) Our practically-adopted method. Step 1: compute the constant component C; Step 2: compute multi-scale image IðtÞ. It only needs
n� ð2N � 1Þ þ T � N � ð2n� 1Þ times FLO and n additional storage cells, while T � N � ð2N � 1Þ þ T � N2 � ð2n� 1Þ FLOs and N � N additional storage cells are needed in
Method (a). T denotes the number of the multi-scale images, N and n are respectively the pixel number and the eigenvector number (n	 N).
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FSIMCðF;RÞ ¼
P

i2XSPCðiÞSGðiÞ½SIðiÞSQ ðiÞ�mPCðiÞP
i2XPCðiÞ ; ð23Þ
PCðiÞ ¼ maxðPCFðiÞ; PCRðiÞÞ; ð24Þ
SPCðiÞ ¼
2PCFðiÞPCRðiÞ þ T1

PCFðiÞ2 þ PCRðiÞ2 þ T1

; ð25Þ
SGðiÞ ¼
2GFðiÞGRðiÞ þ T2

GFðiÞ2 þ GRðiÞ2 þ T2

; ð26Þ
SIðiÞ ¼
2IFðiÞIRðiÞ þ T3

IFðiÞ2 þ IRðiÞ2 þ T3

; ð27Þ
SQ ðiÞ ¼
2QFðiÞQRðiÞ þ T4

Q FðiÞ2 þ Q RðiÞ2 þ T4

: ð28Þ

It may be noted that, X denotes the entire image spatial domain, i is
the spatial coordinate, T1; T2; T3; T4 are constants, m > 0 is a balance
parameter. PC measures the significance of local structure, and G is
the gradient magnitude. I and Q are the corresponding chromatic
channels in the YIQ color space. The higher the values of PSNR,
MI, MSSIM, FSIM, and FSIMC are, the better fusion result could be
achieved.

Given the two source images C (SPECT/PET), G (MRI) and the
fused result F, the first two indicators (PSNR(F,C,G) and MI(F,C,G))
are computed by summing up their values resulted from (F; C)
and (F;G). As for the last three indicators, we respectively compute
their average values of the whole image. To guarantee an objective,
unbiased quality assessment, all the indicator’s testing algorithms
have been implemented by a third-party Objective Evaluation Cri-
teria Package.2 Meanwhile, we construct 3-level image pyramid for
all experiments of our method. And we uniformly perform 4-level
image decomposition for other methods. For the contourlet trans-
form based method, the decomposition level is set to be [2,2–4],
and the directional filter is set to be ‘pkva’ [8]. The pyramid filter
used in wavelet and contourlet methods is set to be ‘9–7’ [8]. For
2 http://www.quxiaobo.org/index_software.html.
NSCT method, the directional and pyramid filters are respectively
set to be ‘dmaxflat7’ and ‘maxflat’.

Moreover, Table 2 documents the time statistics by running the
256� 256 image on a computer with 8 GB RAM, Intel i7-3770 CPU,
3.4 GHz and NVIDIA GeForce GTX 660 Ti, wherein we detail the
time cost of our method, including Laplacian matrix computation
(Lap), eigen-decomposition (Eig-Decom), smoothing operators,
low-rank decomposition (LRD), and image fusion. It shows that
the dominating time cost of our method is mainly expended on
the Eigen-decomposition operation. Note that our method costs
about 8.34 s to complete the fusion, which is faster than NSCT-
based method (36 s).

8.1. Parameter selection

There are the parameters (b; h;a; d; k; c, and r) that may affect
the final fusion result. Here we discuss how to select these
parameters.

First, small b gives rise to isotropic heat diffusion and tends to
drastically weaken the sharp structures. Otherwise, although large
b can enhance anisotropy, it fails to effectively decouple noise from
the image. Let us pay attention to the green curve shown in Fig. 10,
the value of MI improves with the increasing of b, and approaches
the steady constant in the range ½1100; 1300�. Therefore, in the
experiments, we usually set the value of b to be in this range.

Second, the parameter h determines the amount of functional
information contained in the final fused image. For larger h, only
the most important functional information can be fused into the
final result. The red curve in Fig. 10 illustrates the influence of h.
We find that the best fusion result can be obtained when the value
of h is set to be in the range ½0:1; 0:3�.

Third, the parameter a is used to control the block-edge
response. Small a oftentimes gives rise to the obscured fusion
result with fewer details. The blue curve in Fig. 10 depicts the influ-
ence of a. It shows that higher MI can be obtained when the value
of a is greater than 0:5. Specifically, when a is around 0:9, MI
reaches a maximum.

Furthermore, we investigate the influence of the parameters k
and d. Given the maximum value of scale parameter t, the step size
is equal to t=ðk� dÞ. By taking the sum of five metrics as a function
of group number k and image number d, Fig. 11 analyzes the fusion

http://www.quxiaobo.org/index_software.html
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quality. It shows that, when d ¼ 7, the fused results achieve rela-
tively higher quantitative performance. And the best result can
be obtained when k ¼ 17 and d ¼ 7.

Meanwhile, taking Eq. 5 as an evaluation function, we analyze
the influence of the parameters c and r. r1; r2, and r3 denote the
rank constraints corresponding to the three levels of the image
pyramid. According to Fig. 12, the better fusion effect can be
achieved when r1 ¼ 1. As r1 increases, the performance gradually
deteriorates, since a larger r1 tends to bring the noise into the
low-rank component. As down-sampling goes, the noises gradually
decrease at each coarse layer of the image pyramid, and thus the
changes of r2 and r3 have a relatively small influence on the result.
From the highlighted row (indicated by deep red box), our method
performs better when c ¼ 2:1eþ 3. Therefore, considering the
whole performance, we assign c ¼ 2:1eþ 3 and r ¼ f1;2;3g as an
optimal setting. In all our following experiments, we select the
parameters according to the aforementioned analysis, unless
otherwise indicated.
Fig. 10. Illustration of statistics-based parameters’ analysis. Green curve: we set the
value of the parameter b to be in the range ½1100; 1300�. Red curve: the best fusion
result can be obtained when the value of h is in the range ½0:1; 0:3�. Blue curve: if a
equals 0:9, MI value reaches a maximum. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. The statistical analysis of selecting different group number parameter k and
smoothed image number parameter d for sharp feature extraction. It depicts the
effects resulted from different combinations of these two parameters, where the
color represents the MI value of the fusion result. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
8.2. Noise-free image fusion experiments and evaluation

Fig. 13(a) lists the MRI-SPECT fusion results from different
methods, whose quantitative evaluation is shown at the bottom-
left of Fig. 13. Comparing with other methods, it shows that our
method can integrate more functional and structural information,
and suppress the color distortion to the greatest extent, because
our data-specific filter can better respect the distinct structures
and the S-shaped weighting function can elegantly compromise
the multi-source complementary information extracted by our
low-rank analysis model. For example, in our results the anatomi-
cal brain structures from MRI (indicated by the red arrow) can be
faithfully preserved, and the functional information from SPECT
is also completely integrated (especially for the region boundaries
indicated by the green box).

In sharp contrast, wavelet, LP, and contourlet methods fail to
adaptively reduce the side effect caused by black background on
the entire images, whose results appear to be too dark and lead
to color distortion. The curvelet-based method introduces obvious
artifacts nearby the edge (shown in the green arrow). Although
NSCT-based method can produce good visual results due to its
non-subsampling nature, however, it still misses certain sharp fea-
ture (shown in the red and green boxes). In addition, Fig. 13(b) lists
another set of MRI-PET fusion results, which also demonstrates the
same advantages of our method (refer to the regions illustrated by
the magenta box). It should be noted that, curvelet-based method
tends to produce halo artifacts nearby the edges (indicated by the
magenta arrow). Moreover, based on the quantitative evaluation
shown at the bottom-right of Fig. 13, all the five indicators again
prove that our method outperforms other methods.

Meanwhile, to verify the generic advantages of our method,
Table 3 further lists the quantitative comparison of average fusion
quality (with five indicators: PSNR, MI, MSSIM, FSIM, and FSIMC)
Table 2
Time performance (in seconds). The image size is 256� 256, and the block size is 160� 1
block, while the second one is the total number of the blocks in the image pyramid.

Method (s) Wavelet LP Curvelet Contourlet NSCT

Fig. 13(a) 0.03 0.02 3.98 2.34 37.25
Fig. 13(b) 0.04 0.03 2.79 1.92 36.02
Fig. 14(a) 0.05 0.03 2.50 1.75 36.08
Fig. 14(b) 0.03 0.02 2.54 1.67 36.71
Fig. 17(a) and (b) 0.03 0.02 2.49 1.69 35.87
Fig. 19(a) and (b) 0.03 0.02 2.44 1.64 36.02
Average 0.035 0.023 2.79 1.835 36.325
over 254-pair noise-free image fusion results. From Table 3, we
can observe that our method fully outperforms the competing
methods for all quality indicators. Therefore, it proves that our
60. In the Eig-Decom column, the first value is the eigen-decomposition cost for one

Ours

Lap Eig-Decom Smoothing LRD Fusion Sum

0.48 1:04� 6 0.38 0.70 0.09 7.90
0.46 1:00� 6 0.39 0.69 0.08 7.65
0.48 1:11� 6 0.37 0.70 0.09 8.32
0.47 1:02� 6 0.36 0.71 0.09 7.79
0.48 1:41� 6 0.38 0.68 0.10 10.10
0.46 1:12� 6 0.36 0.69 0.09 8.33
0.472 1:05� 6 0.373 0.695 0.09 8.34



Fig. 12. Illustration of r and c of low-rank analysis. ri denotes the rank constraint in the i-th level of image pyramid. The color from red to blue indicates the performance from
better to worse. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. The fusion results and their comparison/evaluation over noise-free images. (a) MRI/SPECT image fusion. (b) MRI/PET image fusion, b ¼ 1300; h ¼ 0:2. (c) The
quantitative evaluation, the left column is for (a) and the right column is for (b).
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method can re-integrate much more anatomical and physiological
information into the fused image to guarantee better visual
perception.

8.3. Noise-perturbed image fusion experiments and evaluation

We perform three more sets of experiments on noise-perturbed
images to verify the robustness of our method. Fig. 14 lists the
Gaussian noise-perturbed fusion results from different methods.
Table 3
Quantitative comparison of average fusion quality over all 254-pair noise-free images.
Bold values indicates the maximum value of each column.

Method PSNR MI MSSIM FSIM FSIMC

Wavelet 38.47 1.66 0.76 0.981 0.922
LP 38.48 1.70 0.74 0.984 0.921
Contourlet 41.84 1.94 0.73 0.947 0.881
Curvelet 38.48 1.61 0.68 0.923 0.875
NSCT 41.82 2.18 0.80 0.988 0.922
Ours 45.06 2.58 0.82 0.990 0.956
hline

Fig. 14. The image fusion results and quantitative evaluation on white Gaussian noise-
column is for (a) and the right column is for (b).

Fig. 15. The fusion results of our method on multi-
In Fig. 14(a)–(b), the source images are respectively perturbed with
5 dB and 25 dB white Gaussian noise. By comparison, it is obvious
that other five methods are more sensitive to noise, which seri-
ously decrease the visual quality. In sharp contrast, our method
can effectively decouple the noise while simultaneously extracting
most of the structural and functional details from the source
images. Meanwhile, we also document the quantitative evaluation
results in Fig. 14(c), which indicates that our method performs far
better than most of the state-of-the-art methods in the overall
fusion quality. Besides, Fig. 15 shows other eight fusion results
from our method for the images with multiple noise levels. The
fusion results have proper contrast while preserving the intrinsic
structures when noise level is below 30 dB, which demonstrates
that our method can effective suppress the noise blow 30 dB. In
fact, the noise compression of our method mainly benefits from
low-rank analysis. Unlike the traditional methods, before con-
structing a scale space, we first conduct low-rank analysis on
multi-scale image groups constructed by the smoothed images
and source image, and use the low-rank component to indicate
the salient information commonly occurring in the image group.
So that, we can simultaneously decouples the noise from the
perturbed images (5 dB (a) and 25 dB (b)). (c) The quantitative evaluation, the left

level white Gaussian noise-perturbed images.
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source image. Therefore, our method performs better on the noise-
perturbed cases.

Moreover, to more objectively evaluate the robustness of the six
methods, we measure their average performances according to five
indicators (PSNR, MI, MSSIM, FSIM, and FSIMC) by taking into
account the fusion results under different noise levels, wherein
all the methods involved in the comparison are implemented by
the authors themselves. Let us examine the statistic curves corre-
sponding to the five quality indicators shown in Fig. 16, when
increasing the noise level, the performances of other methods
deteriorate rapidly, but the increasing noise has little negative
influence on the performance of our method. In particular,
Fig. 16(d) and (e) indicate that our method can preserve the intrin-
Fig. 16. Quantitative evaluation of average fusion quality on all the white Gaussian no
levels f1 dB;2 dB; . . . ;40 dBg.

Fig. 17. The fusion results and quantitative evaluation on salt and pepper noise-pertur
quantitative evaluation, the left column is for (a) and the right column is for (b).

Fig. 18. Quantitative evaluation of average fusion quality on salt and pepper noise-pertur
the horizontal axis.
sic features even better when the noise level is up to 30 dB, which
demonstrates the superiority of our method in robustness. Thus,
our method fully outperforms such state-of-the-art methods at
all the testing noise levels.

As for salt and pepper noise-perturbed images, Fig. 17 lists the
fusion results when 6% and 10% pixels are perturbed by noise. The
quantitative evaluation is documented in Fig. 17(c). We can notice
that the competing methods are sensitive to noise and the perfor-
mance degrades drastically for the noisy cases. In contrast, our
method not only suppresses the salt and pepper noise but also
fuses the complementary information well. The quantitative eval-
uation (Fig. 17(c)) also demonstrates that our method provides the
best fusion quality. Similar to Fig. 16, Fig. 18 depicts the statistical
ise-perturbed images, wherein the horizontal coordinates represent adopted noise

bed images, wherein 6% (a) and 10% (b) pixels are respectively perturbed. (c) The

bed images, wherein the percentages of noise-perturbed pixel are represented along



Fig. 19. The fusion results and quantitative evaluation for the noise-perturbed images of mixed-types (30 dB white Gaussian noise, 6% salt and pepper noise). (a) The fusion
result of salt and pepper noise-perturbed MRI image and white Gaussian noise-perturbed PET image. (b) The fusion result of white Gaussian noise-perturbed MRI image and
salt and pepper noise-perturbed PET image. (c) The quantitative evaluation, the left column is for (a) and the right column is for (b).

Fig. 20. CT/SPECT image fusion results and quantitative evaluation. (a) The fusion results of different methods on noise-free images. (b) The fusion results of different
methods on 20 dB white Gaussian noise-perturbed images. (c) The quantitative evaluation for (a) and (b). (d) The quantitative evaluation for different methods on multi-level
Gaussian noise-perturbed images.
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curve of the average quality for fifteen noise levels which all indi-
cate the robustness of our method in concert.

Meanwhile, to more comprehensively verify the robustness of
our method, we test our method using different types of noise-per-
turbed images, wherein different-modality source images to be
fused have different noise types. Fig. 19 presents the fusion results
where one image has 30 dB white Gaussian noise and 6% pixels of
another image is perturbed by salt and pepper noise. From the
zoom-in effects shown in Fig. 19(a)–(b), it is obvious that the
fusion results from other five methods have exhibited more noise,
Fig. 21. MRI-T1 and MRI-T2 image fusion results. (a) The fusion results of different meth
Gaussian noise-perturbed images.

Fig. 22. Structure-preserving capability analysis of the fused result. (a) The principle of o
smoothed versions are reorganized to form a matrix B, and low-rank analysis is used to
component and noise component. (b) In order to improve the visual effect, Sþ N and diff
rank component (L) preserves the salient structure in MRI source image, and ‘‘S + N
complementary information from SPECT source image. The amplitude difference, whose
the salient information. Bottom row: the similar conclusions can be drawn for SPECT so
which seriously decrease the visual quality. The quantitative eval-
uation (Fig. 19(c)) also indicates that our method gives rise to the
better fusion quality, and thus our method is more robust to the
noise mixture.

8.4. Other experiments and evaluation on versatility

To test the versatility of our method, we also conduct extensive
fusion experiments on CT/SPECT and MRI-T1/MRI-T2 image pairs.
Fig. 20(a) compares the CT/SPECT fusion results from different
ods on noise-free images. (b) The fusion results of different methods on 25 dB white

ur analysis method. The fused result, the source image together with its multi-scale
decompose the fused result into ‘‘L + N + S’’. L: low-rank component, Sþ N: sparse

erence images are normalized when performing visualization. Middle row: the low-
’’ retains the residuals of the extracted MRI salient information and the fused

maximum value is 0.04, indicates that the proposed method can effectively preserve
urce image, wherein the maximum amplitude difference is 0:01.
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methods. Fig. 20(b) shows the fusion results of 20 dB Gaussian
noise-perturbed CT/SPECT image pairs. And the corresponding
quantitative evaluation for Fig. 20(a)–(b) are respectively docu-
mented in Fig. 20(c), which indicates that our method outperforms
the state-of-the-art methods in overall fusion quality. The average
quantitative evaluation for 40 noise levels (Fig. 20(d)) demon-
strates that our method possesses the better noise robustness than
other methods. Similarly, Fig. 21(a) compares the MRI-T1/MRI-T2
fusion results from different methods, and Fig. 21(b) shows the
fusion results of 25 dB Gaussian noise-perturbed MRI-T1/MRI-T2
image pairs. Comparing with other methods, our method can pro-
duce better fusion results, which has proper contrast and much
more complementary information. Thus, our method can well
accommodate multi-modal medical image fusion.
8.5. Evaluation for structure and salient information preservation

To verify the salient information-preserving capability of our
method, we conduct sharp structure comparison between the
fused image and source images in Fig. 22. Fig. 22(a) illustrates
the principle of our low-rank salient structure abstraction based
comparison analysis. Here, the fused result, one of the source
images together with its multi-scale smoothed versions are reorga-
nized to form a matrix B. Given the fused result, low-rank decom-
position is employed to extract its involved common salient
structure (L) with respect to current source image. The entire pro-
cess will be executed twice, and the first one is for MRI source
image and the second one is for SPECT source image. The first col-
umn of Fig. 22(b) shows the extracted three parts. It can be seen
that the L component embedded in the fused image is very similar
to its corresponding source image. And the Sþ N component dem-
onstrates the residual non-salient information from the current
source image and the fused complementary information from the
Fig. 23. Evaluation for scale-specific fusion rules. (a) Multi-modal source images. (b) Fu
specific fusion rule.
other source image. Meanwhile, we also present the differences
between the source image and the L component of the fused result
in the right column of Fig. 22(b), wherein the maximum differences
for MRI and SPECT are 0:04 and 0:01, respectively. It may be noted
that, the illustrated difference is normalized to improve the visual
effect. However, since the fusion operator necessarily impacts the
sharpness of some salient edges where the complementary infor-
mation is fused, it should also be noted that our method cannot
guarantee to invariably preserve the amplitude of all the struc-
tures, and the difference in Fig. 22(b) clearly demonstrates this
fact.
8.6. Evaluation for scale-specific fusion rule

To investigate the effects of our scale-specific rule, Fig. 23
respectively list the results obtained with the average–maximum
rule and our rule, where we compare our result with NSCT-based
method because it can achieve relatively better performance.
Fig. 23(b) shows the results of our method and NSCT-based method
when both of them adopt average–maximum rule. Comparing with
the source images, we find that the results in Fig. 23(b) miss some
anatomical information and appear too obscure. Fig. 23(c) shows
the results of our method and NSCT-based method when using
our scale-specific rule. Here it demonstrates that our fusion rule
gives rise to larger MI both for our method and NSCT-based
method, which means our rule can make an effective tradeoff
when fusing the complementary information. Specially, by make
comparison between the zoom-in effects in Fig. 23(b) and (c), it
is obvious that our scale-specific fusion rule can maintain more
proper contrast than average–maximum rule. Besides, even if
using the same fusion rule, our results in Fig. 23(b) and (c) both
have larger MI than those of NSCT-based method. Moreover, the
NSCT-based method produces obvious errors (indicated with red
sion results with Average–Maximum fusion rule. (c) Fusion results with our scale-
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arrows) due to the limitations caused by its non-data-specific ker-
nel, which also certifies the superiorities of our overall framework.
9. Conclusion and discussion

In this paper, we have developed a novel and comprehensive
framework to address a suite of research challenges in multi-
modal medical image fusion. The proposed technical solutions
emphasize the physics-based data-specific multi-scale geometrical
analysis to enable directional, structure-preserving image decom-
position. Meanwhile, our method also focuses on the scale-aware
salient information extraction from complementary multi-source
images. In addition, our method offers an improved scale-specific
fusion rule to adaptively optimize the contrast of fusion image,
which can further improve the fusion quality. Extensive experi-
ments on various medical images, together with their quantitative
comparison with existing state-of-the-art fusion methods, have
demonstrated the superior performance of our method. More
importantly, the critical technical components of our method,
including anisotropic heat diffusion over 2D manifold, multi-scale
image decomposition, low-rank analysis model and reconstruction,
divide-and-conquer algorithmic strategy, and CUDA parallel com-
putation, can also contribute to other physics-based image pro-
cessing applications (either individually or collectively).

However, our method still has some limitations that must be
addressed. First, although our method is relatively robust, it may
also fail to effectively handle the image containing massive noise.
This is because the anisotropy of our method is solely determined
by the local-structure encoded Laplacian matrix, which relies on
the pixel intensity. Second, as documented in Table 1, although
our method has shown high-quality performance, it is still time-
consuming in principle. Specifically, when the dimension of image
increases, the required computational load will increase rapidly.
Third, our method cannot be directly used for sparse MR image
fusion, because its valuable information may be presented as
noise-like artifacts, while the noise tends to be compressed in
our method. However, this problem may be solved by transforming
the MR image from color space to certain high-dimensional feature
space and then conducting fusion with our central framework.
Thus, our ongoing research efforts are centered around these topics
and their continuing improvement. Moreover, exploring new com-
puter vision applications enabled by such techniques are also
equally important and deserve more research endeavors.
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