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Abstract This paper investigates the compressive repre-
sentation of 3D meshes and articulates a novel sparse approx-
imation method for 3D shapes based on spectral graph
wavelets. The originality of this paper is centering on the first
attempt of exploiting spectral graph wavelets in the sparse
representation for 3D shape geometry. Conventional spec-
tral mesh compression employs the eigenfunctions of mesh
Laplacian as shape bases. The Laplacian eigenbases, gener-
alizing the Fourier bases from Euclidean domain to mani-
fold, exhibit global support and are neither efficient nor pre-
cise in representing local geometry. To ameliorate, we advo-
cate an innovative approach to 3D mesh compression using
spectral graph wavelets as dictionary to encode mesh geom-
etry. In contrast to Laplacian eigenbases, the spectral graph
wavelets are locally defined at individual vertices and can bet-
ter capture local shape information in a more accurate way.
Nonetheless, the multiscale spectral graph wavelets form a
redundant dictionary as shape bases, therefore we formulate
the compression of 3D shape as a sparse approximation prob-
lem that can be readily handled by powerful algorithms such
as orthogonal matching pursuit. Various experiments demon-
strate that our method is superior to the existing spectral mesh
compression methods.
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1 Introduction and motivation

In recent years, sparse approximation techniques have
become increasingly popular in various fields of signal
processing and analysis, especially in image processing and
computer vision. Its widespread applications include data
compression, signal denoising, shape recognition, etc. Most
of the existing works are focusing mainly on the regular
domain of 2D images, while approximating/compressing sig-
nals defined over graphs or manifolds are much less inves-
tigated due to the irregularity of underlying domains. This
paper takes an initiative to explore the challenging problem
of sparse approximation of discrete 3D shapes for compres-
sive shape representation.

The fundamental idea of sparse approximation is to esti-
mate a signal as the linear combination of a very few vectors
selected from a large number of candidate vectors serving
as bases. These candidate vectors, also called atoms, consti-
tute a set called the dictionary. With a given dictionary, the
signal is encoded as the coefficients w.r.t. the selected atoms
and can be easily reconstructed because of sparsity. The ratio-
nale of sparse approximation is that most meaningful high-
dimensional signals must have some intrinsic structures or
patterns, which can be exploited for efficient representation
in a lower-dimensional subspace. Because of the versatil-
ity of acquired signals, dictionaries are typically redundant
or overcomplete, allowing great freedom and flexibility in
design to accommodate a sparse set of atoms that can better
capture the signals’ intrinsic characteristics.

Conventional Fourier analysis decomposes a signal into
mutually independent components with the multiscale and
orthogonal Fourier bases. Compression is achieved by dis-
carding certain number of high-frequency Fourier coeffi-
cients. This scheme has been transplanted to mesh compres-
sion, using the eigenbases of mesh Laplacian, i.e, the mani-
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fold harmonic basis (MHB), as the Fourier bases [7]. The key
disadvantage of Fourier compression is that the Fourier bases
are only localized in the frequency domain yet having global
support in the spatial domain, and thus are not efficient in
encoding local signal information. A popular and powerful
solution is to use wavelet bases, which are functions localized
in both location and frequency and can capture local signal
information in a more compact and efficient way.

In this paper, we propose to use the spectral graph wavelets
(SGW), pioneered by Hammond et al. [6], for mesh com-
pression. To the best of our knowledge, we believe that it is
the first attempt to exploit the SGW in sparse representation
with a unique application in 3D geometric compression. The
SGW has many attractive properties such as spatial localiza-
tion, being smooth, multiscale, and shape-aware, and being
flexible and versatile for 3D shapes of arbitrary topology
and complicated geometry, hence is well suited for encod-
ing shapes with many local details. We employ the SGW
as shape bases to construct redundant dictionary with multi-
scale wavelets centered around each vertex, and employ the
simultaneous orthogonal matching pursuit (S-OMP) algo-
rithm to find a sparse coding of the original shape geom-
etry. This paper’s primary contributions are hinging upon
the unique integration of the spectral graph wavelets (SGW)
and sparse representation and its powerful application in 3D
shape compression.

Through our extensive experiments, we wish to demon-
strate that our compression method outperforms the MHB-
based Fourier compression in terms of compression quality at
different compression ratio settings. Since our sparse shape
approximation framework is independent of any data-specific
dictionary design, other formulations of bases or dictionar-
ies, as well as other powerful sparse approximation algo-
rithms, can all be migrated into our system with very little
extra workload. Therefore, we are expecting further compu-
tational improvement in compression performance in the near
future.

2 Brief background review

2.1 Sparse approximation

Harmonic analysis techniques such as Fourier transform and
wavelet transform have achieved tremendous success in com-
pressing images, audio, and video signals. Prominent appli-
cations include the JPEG [19] and JPEG2000 [16] image
compression standards, which are based on 2D discrete
cosine transform and discrete wavelet transform, respec-
tively. The key idea of harmonic compression is to decom-
pose the original signal into a set of harmonic basis and
reduce the representation size by discarding coefficients that
correspond to much less-noticeable signal components.

While traditional harmonic analysis oftentimes uses
orthogonal basis, such as the Fourier basis, recent years have
witnessed the increasing popularity of sparse approximation
methods, which enable the utility of redundant or overcom-
plete dictionaries for signal representation. From the dictio-
nary of elementary signals, a small subset that can best cap-
ture the structure of the input signal is selected, and the input
signal is approximated by a linear combination of the selected
signals.

One of the most commonly used approaches to sparse
approximation is the greedy pursuit method. The central idea
is to iteratively refine a sparse solution in a greedy manner.
More specifically, in each iteration one or more atoms of the
dictionary are chosen and the corresponding coefficients are
modified such that the greatest improvement in approxima-
tion quality can be achieved. Representative greedy pursuit
algorithms include matching pursuit (MP) [12], orthogonal
matching pursuit (OMP) [13], and simultaneous orthogonal
matching pursuit (S-OMP) [17]. In particular, the S-OMP is
suitable for solving the simultaneous sparse approximation
problem where the input signal has multiple correlated chan-
nels and the same subset of atoms is to be used for every
channel.

2.2 Graph wavelets and mesh compression

A 3D mesh can be expressed as the connectivity information
of the mesh topology plus the 3D mesh coordinates. The mesh
connectivity defines the domain of coordinate functions and
has several efficient, lossless coding [5,15]. To compress the
mesh coordinates, traditional Fourier and wavelet compres-
sion techniques for images cannot be directly applied, since
3D meshes generally do not have a fixed regular graph struc-
ture. Consequently, there is no universally feasible Fourier
basis and the dictionary should be derived from specific
object’s graph topology. In [7], Karni and Gotsman employed
the mesh Laplacian eigenbases to encode the mesh geom-
etry, and the compression is achieved by discarding high-
frequency coefficients. Later, Karni and Gotsman extended
the spectral compression method by using fixed eigenbases
derived from a six-regular mesh to approximate the eigen-
bases of the non-regular input meshes, avoiding the cost of
Laplacian decomposition on the decoder side [8].

It is attractive to be able to define wavelet transform
directly on 3D shapes without the need of parameterization.
Various schemes of manifold wavelets have been proposed
via different approaches [1]. Diffusion wavelets, introduced
by Coifman and Maggioni [2], use diffusion as a scaling tool
to achieve multiscale analysis. Wavelet and scaling functions
are constructed by repeatedly applying a diffusion operator T
on the graph or manifold space. After applying dyadic powers
of T at each scale, a localized orthogonalization procedure is
performed to yield nested approximation spaces, and then

123



Sparse approximation of 3D shapes 753

wavelets are produced by locally orthogonalizing vectors
spanning the difference of these approximation spaces. The
derived diffusion wavelets are orthogonal, compact, and mul-
tiscale in nature, and have been employed in 3D mesh com-
pression in [11]. In [4,14], tree-based, data-adaptive wavelet
transforms are developed for high-dimensional Euclidean
data sets and weighted graphs, under the assumption that the
data have a rich geometrical structure that can be captured
by a hierarchical tree.

One particularly interesting type of graph wavelets is
the spectral graph wavelet (SGW), proposed by Hammond
et al. [6]. SGW functions are locally defined in the vicinity of
each point by their spectral representations using the Lapla-
cian basis, and the scaling is carried out in the frequency
domain. Because of its attractive and powerful properties
such as spatial localization, multiscale, and geometry aware-
ness, SGW has already been adopted as a tool for shape analy-
sis applications such as mesh segmentation [10] and shape
retrieval [10]. To the best extent of our knowledge, our cur-
rent work is the first attempt to employ the SGW in the task
of 3D mesh compression.

3 Manifold harmonic basis and spectral graph wavelet

3.1 Mesh Laplacian and manifold harmonic basis

Consider a 3D mesh represented as a graph M = (V, E)
with vertices V and edges E , where V = {v1, v2, . . . , vn}.
A vector-valued function f : V → R

c defined on V can be
represented as an n × c matrix, where the i-th row represents
the function value at vi .

The discrete Laplace operator of a mesh, or mesh Lapla-
cian, is an analog of the continuous Laplace–Beltrami oper-
ator defined on manifold surface, and is fundamental to a
vast number of geometry processing applications [20]. The
Laplace matrix of mesh M can be defined by the result of
applying it to a function f defined on V :

(Lf)i = 1

ai

∑

j∈N (i)

wi j (fi − f j ), (1)

where N (i) denotes the index set of the one-ring neighbors
of vi , and ai are the masses associated with each vertex and
wi j represents the weight of each edge.

Depending on the choice of ai and wi j , mesh Laplacian
may have many different forms and can be classified as either
combinatorial or geometric [21]. A combinatorial Laplacian
is determined solely by the connectivity of the mesh. A geo-
metric Laplacian, on the other hand, takes into account both
the topological and geometric information.

Although a geometric Laplacian affords much more pre-
cise description of the mesh geometry, it is not a feasible
choice in mesh compression applications because the geo-
metric information is unknown on the decoder side. On the
other hand, a combinatorial Laplacian can be easily recon-
structed in the decoder size since the mesh connectivity can
be efficiently encoded and transmitted independent of the
geometric coordinates. In this work, we use the graph Lapla-
cian defined as

Li j =

⎧
⎪⎨

⎪⎩

1 if j ∈ N (i),

−d(i) if i = j,

0 otherwise,

(2)

where d(i) represents the valence of vi .
The graph Laplacian is symmetric and negative semi-

definite, and by solving the eigenvalue problem Lsχk =
−λkχk we obtain the eigensystem {λk, χk}n−1

k=0, where
{λk, χk} denotes the k-th eigenvalue and eigenfunction.
According to the spectral theorem, the eigenfunctions {χk}
form an complete and orthonormal basis, called the Lapla-
cian eigenbasis, or, in the context of shape analysis, the
manifold harmonic basis (MHB) [18]. Figure 1 visualizes
the MHB on an example mesh. It is straightforward to see
that the values of MHB oscillate between negative and pos-
itive on the surface, and the larger the associated eigenval-
ues, the more frequent the oscillation becomes, similar to the
behaviors of regular Fourier basis functions in the Euclidean
domain.

3.2 Spectral mesh approximation via MHB

The MHB can be employed to define the graph Fourier
transform, also known as the manifold harmonic transform
(MHT), which converts a function between spatial domain
and frequency domain. Any f ∈ L2(M) can be expanded by
MHB as

Fig. 1 Visualization of the
Laplacian eigenfunctions
(MHB). From left to right, the
first, tenth, and twentieth
eigenfunctions are highlighted
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Fig. 2 Spectral approximation [7] of a 3D wolf model containing 4,344
vertices. a The original mesh. b Reconstruction using 100 eigenbases.
c Reconstruction using 300 eigenbases. d Reconstruction using 1,000
eigenbases

f =
n−1∑

k=0

f̂kφk =
n−1∑

k=0

〈 f, φk〉φk, (3)

in which f̂k is the k-th MHT coefficient of f .
The MHT is the theoretical foundation of the spectral mesh

compression proposed by Karni and Gotsman [7]. View-
ing the Euclidean mesh coordinates x, y and z as functions
defined on vertices, the basic idea of spectral compression is
to compute the MHT of the coordinate function and then trun-
cate out certain number of high-frequency coefficients. Take
the x-coordinate function x as an example. The original coor-
dinates can be perfectly recovered as in Eq. (3) if all n MHT
coefficients {̂x0, . . . , x̂n−1} are used. If we only retain the
first n′ < n coefficients, the reconstructed x-coordinate func-
tion x′ = ∑n′−1

k=0 x̂kφk is a low-pass-filtered version of x and
can be regarded as an acceptable approximation. The recon-
structed mesh is smooth and the overall appearance tends
to be very similar to the original mesh, since low-frequency
components, which correspond to large-scale shape informa-
tion, are prioritized to be preserved, and our visual observa-
tions tend to be more forgiving to the loss of high-frequency
information.

Figure 2 shows an example result of spectral approxima-
tion using different number of MHB.

3.3 Spectral graph wavelets

The spectral graph wavelets (SGW), as described in [6], are
expressed as bivariate kernel functions expanded on the MHB

�t(i, j) =
n−1∑

k=0

g(tλk)χk(i)χk( j), (4)

where g is the real-valued wavelet generator function and t
is the scale parameter. The generator function g modulates

the spectral wavelets in the frequency domain, and should
satisfy the admissibility condition

Cg =
∞∫

0

g2(x)

x
dx < ∞ (5)

and g(0) = 0. The i-th row of �t

ψt,i (·) =
n−1∑

k=0

g(tλk)χk(i)χk(·) (6)

is the spectral wavelet spatially localized at vi , and in the
frequency domain, localized at scale t .

In practice, the scale parameter t is discretized. The spec-
tral graph wavelets ψt,i are near orthogonal to χk for λk near
0, i.e., low-frequency eigenbasis, for any discrete scale t .
Hence, to better capture low-frequency signal information,
[6] also introduced the spectral scaling functions which have
similar constructions with SGW but act like low-pass filters

�t (i, j) =
n−1∑

k=0

h(tλk)χk(i)χk( j), (7)

in which the scaling generator function h should satisfy
h(0) > 0 and h(x) → 0|x→∞.

Suppose we compute the spectral wavelets at J different
scales {t1, t2, . . . , tJ }, the constructed SGW then comprises
(J +1)×n functions in R

n . In this paper, we adopt the same
formulation of wavelet and scaling functions used in [6] with
the generator function

g(x) =

⎧
⎪⎨

⎪⎩

x2 if x < 1

−5 + 11x − 6x2 + x3 if 1 ≤ x ≤ 2

4x−2 if x > 2.

(8)

The J scales are selected to be logarithmically equally spaced
between the minimum scale tJ = 2/λmax and the maximum
scale t1 = 40/λmax, where λmax is the upper bound of the
Laplacian eigenvalues. For the scaling function, the generator
is h(x) = γ exp(−( 20x

0.6λmax
)4), in which γ = h(0) equals the

maximum value of g.
Figure 3 visualizes multiscale spectral graph wavelets on

a 3D mesh. It may be noted that, the values of wavelets are
attenuated and oscillating on the mesh, and wavelets with a
larger scale have a wider oscillating window.

4 Mesh compression via sparse approximation

In Sect. 3.2, we have shown that the mesh coordinates
can be transformed into the frequency domain via MHT
using the Laplacian eigenbasis, and compression can be
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Fig. 3 Visualization of spectral
graph wavelets localized at the
same point but with different
scales. From left to right, the
spectral wavelets at scale 1, 3,
and 5 are highlighted

achieved by trimming out a user-specified number of high-
frequency coefficients. The main drawbacks of this naive
and simple low-pass spectral compression method are: (1) it
innately favors low-frequency information while most high-
frequency geometric details are compromised; (2) the Lapla-
cian eigenbasis, which serve as the compression dictionary,
all have global support and therefore are not efficient in
encoding local geometry.

In this paper, we propose to use SGW to construct a redun-
dant dictionary. Because of its powerful property of spatial
localization, the multiscale SGW functions are much more
efficient in representing local mesh geometry around indi-
vidual vertices than the Laplacian eigenbasis. Since the size
of SGW dictionary is much larger than the number of mesh
vertices, we employ powerful sparse approximation algo-
rithms to find a compact representation which selects the
most appropriate basis in the procedure.

4.1 Sparse approximation of mesh coordinates

For mesh M , let D be a dictionary of L2(M) containing m
normalized basis vectors. The dictionary can be written as
a n × m matrix D = (

a1 a2 . . . am
)
, where ai ∈ R

n×1.
Our aim is to approximate function y ∈ L2(M) with a lin-
ear combination of the atoms in D, expressed in the matrix
form as ŷ = Dx = ∑m

i=1 xi ai. Here, the vector x ∈ R
m is

the coefficient representation of the input signal y w.r.t. the
dictionary D.

An effective compression of the original signal y requires
the number of elementary signals that participate in the lin-
ear combination to be small and the reconstructed result ŷ
to be as close to y as possible. In principle, the number of
non-zero elements of the coefficient vector x, denoted by
the pseudo-norm ‖x‖0, should satisfy ‖x‖0 
 n to achieve
significant reduction in storage. Fixing the number of par-
ticipating atoms in the sparse approximation to be n′, the
problem to produce the optimal sparse representation x can
be formulated as:

min
x

‖y − Dx‖2
2 subject to ‖x‖0 = n′. (9)

If the input signal has c channels, denoted as a n×c matrix
Y = (y1, y2, . . . , yc), the coefficient representation should
be a m × c matrix X = (x1, . . . , xc) satisfying Y ≈ DX. We
may either treat each channel (column) of Y independently

and select different subsets of participating atoms for each
channel, or use the same subset for all the channels and min-
imize the combined approximation errors. The latter one is
called the simultaneous sparse approximation problem

min
X

‖Y − DX‖2
F

subject to

{
support(x1) = · · · = support(xc)

‖x1‖0 = · · · = ‖xc‖0 = n′,
(10)

where ‖ · ‖F is the Frobenius norm, and support(xi) denotes
the index set of non-zero elements in xi.

The vertex coordinates of a mesh can be treated as a three-
channel signal p(v) = (vx, vy, vz). Since the three coordi-
nate functions are correlated, it is preferable to formulate the
mesh compression as the simultaneous sparse approximation
problem. Determining the optimal solution to Eq. (10) is NP-
hard, but we can find approximate solutions using greedy pur-
suit algorithms such as the simultaneous orthogonal match-
ing pursuit (S-OMP) [17]. The key idea is to iteratively select
from the dictionary a new atom that has the best correlation
with the residual shape, and then project the original mesh
onto the space spanned by the selected atoms to obtain a new
approximate shape. Please refer to Algorithm 1 for details.

We may also adopt the simultaneous matching pursuit (S-
MP) algorithm, which can be viewed as a simplification of
S-OMP. The main difference from S-OMP is the omission
of the step to update all existing coefficients by orthogonal
projection. If all atoms in D are mutually orthogonal (e.g., the
Fourier dictionary), S-MP and S-OMP will produce exactly
the same result.

4.2 Dictionary design strategies

The key to effective sparse approximation is the selection
of elementary functions that form the dictionary. A nat-
ural choice is the MHB dictionary composed entirely of
Laplacian eigenbasis {χ0, χ2, . . . , χn−1}. The MHB func-
tions have global support and multiple frequencies, making
the MHB dictionary a good choice for encoding a shape when
global, periodical, and symmetric information is prioritized
to be preserved. In addition, since MHB is orthogonal basis,
we can replace orthogonal matching pursuit (OMP) with the
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Algorithm 1 S-OMP on 3D mesh coordinates.
Input:

• 3D mesh coordinates S ∈ R
n×3.

• Dictionary D = {a1, a2, . . . , am}, ai ∈ R
3.

• The number of atoms to be selected n′.
Initialization:

• The initial index set of selected atoms �0 = ∅.
• The initial residual R0 = S;
• The iteration counter t = 1.

Procedure:
(1) Find an index it of D that satisfies

it = arg max
j ∈�t−1

3∑

k=1

|〈Rt−1ek, aj〉|,

where ek denotes the k-th canonical basis vector in R
3.

(2) Set �t = �t−1
⋃{it }.

(3) Compute the coefficient matrix Ct by solving the least-square
problem
Ct = arg min

X
= ‖S − DX‖2

2

subject to support (X) = �t .

(4) Calculate the new approximation and residual:
Ŝt = DCt,

Rt = S − Ŝt.

(5) Stop if t = n′. Otherwise, increment t and go to (1).
Output:

• The index set of selected atoms �n′ .
• Final coefficient matrix Cn′ .

much faster matching pursuit (MP) and the approximation
results will be the same.

However, MHB dictionary is very inefficient in capturing
non-periodical, local details due to the global support. It is
desirable to have a dictionary with a class of functions that
have local support but are still smooth and multiscale. In
this work, we propose to use normalized multiscale SGW, as
described in Sect. 3.3, as atoms to construct the dictionary

for sparse approximation. The SGW dictionary has several
advantages:

• The SGW atoms are compact and localized at vertices,
suitable for encoding local geometric features.

• The SGW atoms can cover multiple scales, enabling the
efficient representation of both small-scale and large-scale
shape information in the vincinity of each vertex.

• The computation of SGW from MHB is straightforward,
and can be done on the decoder side provided the mesh
connectivity is known.

On the flip side, the SGW are less efficient than MHB
for encoding global shape structures. Moreover, since SGW
functions always have extreme values at their origin vertices,
a mesh reconstructed from SGW atoms may exhibit unpleas-
ant protrudes at vertices where selected SGW are centered,
which can be further ameliorated by constructing a dictio-
nary that contains both MHB and SGW. The mixed dictio-
nary potentially inherits the advantages of both waveforms,
at the cost of increased dictionary size.

The SGW or SGW+MHB dictionary are non-orthogonal
and redundant, forcing us to use costly sparse approxi-
mation methods such as S-OMP. The enlarged dictionary
also increase the storage requirements for the dictionary
themselves and for the sparse coefficient representation (see
Sect. 4.3).

Figure 4 shows an example of sparse approximation
results using three methods: (1) spectral mesh compression
via MHB, as described in Sect. 3.2; (2) S-MP with the MHB
dictionary; (3) S-OMP with the SGW dictionary. In this
example, the S-MP method produces higher-quality shape

Fig. 4 Comparison of the
approximation results of three
different approximation
methods. Top row spectral
compression by truncating
MHB coefficients. Second row
S-MP approximation with MHB
bases. Bottom row S-OMP
approximation with SGW bases.
For each method, from left to
right, the number of
participating bases are 20, 50,
and 100, respectively
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approximation than the naive low-pass spectral approxima-
tion using the same MHB dictionary. Adopting the multi-
scale SGW dictionary in place of MHB further improves the
approximation results. In particular, the SGW dictionary is
more effective in preserving local geometric features, while
MHB-based approximations have the tendency to smooth out
some body parts such as the wolf’s legs when the number of
participating bases is small.

4.3 Compression ratio and analysis

Now, we analyze the compression ratio of the simultaneous
sparse representation using a simple coding scheme. Assume
the dictionary D is known in advance on both the encoder and
decoder sides. The sparse m×3 coefficient matrix X contains
n′ non-zero rows, and can be conveniently expressed by 3n′
non-zero values and a vector of size n′ specifying the indices
of corresponding atoms. For a dictionary containing m atoms,
each index occupies �log2 m� bits, and the total cost to store
the index vector is n′�log2 m�. If the sparsity of X, namely,
the ratio of non-zero elements, is greater than 1/�log2 m�, it
would be more efficient to represent the non-zero positions
with a bit vector of size m. Assuming each signal element in
Y takes up k bits, and each coefficient in X requires k′ bits to
store, the storage size of the original 3D coordinates is then
3nk bits. The effective compression ratio is

	 = 3n′k′ + min(m, n′�log2 m�)
3nk

. (11)

Assume that the dictionary contains m = αn atoms, and
both the coordinates and coefficients are stored in single-
precision k = k′ = 32, the compression ratio is then

	 = n′

n
+ min

(
α

96
,

n′�log2 αn�
96n

)
. (12)

In comparison, the compression ratio of the coefficient trun-
cation method introduced in Sect. 3.2 is simply n′/n with
n′ coefficients, since there is no need to store the indices of
non-zeros.

From Eq. (12), we can easily see that enlarging the dic-
tionary (larger α) increases the overhead ratio for a given
mesh. In addition, when the coefficient matrix is very sparse,
the overhead ratio becomes smaller for larger meshes, since
log2αn increases slower than n.

4.4 Mesh partitioning

The most time-consuming part of S-OMP is to compute the
maximum inner product between the residual and available
atoms, which costs O(mn) in each iteration. In principle, the
required number of iterations n′ and the size of dictionary

Fig. 5 Models used in our experiments and their partitioning. a Cow
4,315 vertices. b Fandisk 6,475 vertices. c Centaur 15,768 vertices. d
Armadillo 172,974 vertices

m are linearly proportional to the mesh size n, hence the
total time complexity is O(n3), which is unacceptable for
very large meshes. In addition, all the dictionaries we use
are constructed from the eigenvectors of mesh Laplacian,
but the full Laplacian eigendecomposition of a large mesh is
very time consuming and can be numerically instable. Hence,
when the input mesh is very large, it is necessary to perform
graph partitioning and carry on the compression algorithm
on each individual sub-mesh. As suggested in [7], we use
the METIS package [9] which implements several fast graph
partitioning algorithms.

On the other hand, as mentioned in Sect. 4.3, the overhead
for storing the indices of selected atoms is smaller when the
mesh size becomes larger. Moreover, increasing the number
of sub-meshes also increases the occurrences of unpleasant
artifacts along sub-mesh boundaries. Thus, a tradeoff needs
to be made between the compression time and quality. In our
implementation, a large mesh is decomposed into a number of
patches containing approximately equal number of vertices,
with the maximum patch size set to be 1,000.

5 Experimental results

5.1 Evaluation method

To evaluate the effectiveness of lossy mesh compression
methods, we adopt the mesh comparison metric proposed
in [7] to measure the errors between the original mesh geom-
etry and approximate ones. Let M1 and M2 be two meshes
to be compared, both containing n vertices, and v1

i and v2
i
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(a) MHB, truncation (b) MHB, S-MP

(c) SGW, S-OMP (d) SGW+MHB, S-OMP

(e)
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Fig. 6 Comparison of mesh compression performance for the cow
model. a–d Show the reconstructed meshes at 20 % compression ratio
and visualize each vertex’s positional error comparing with the original
model. e Shows how the compression errors change with the compres-
sion ratio

denote the 3D coordinates of the i-th vertex in M1 and M2,
respectively. The geometric error between M1 and M2 is

‖M1 − M2‖g =
n∑

i=1

1

n

∥∥∥v1
i − v2

i

∥∥∥
2
. (13)

To better capture visual closeness such as smoothness,
[7] introduces another metric which measures the errors
after applying the geometric Laplacian to mesh coordinates,
i.e., transforming the absolute coordinates to differential
coordinates

GL(vi) = vi −
∑

j∈N (i) l−1
i j vj

∑
j∈N (i) l−1

i j

, (14)

where li j represents the edge length between vi and v j . The
differential error between M1 and M2 is then defined as

(a) MHB, truncation (b) MHB, S-OMP

(c) SGW, S-OMP (d) SGW+MHB, S-OMP
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Fig. 7 Comparison of mesh compression performance for the fandisk
model. a–d Show the reconstructed meshes at 20 % compression ratio
and visualize each vertex’s positional error comparing with the original
model. e Shows how the compression errors change with the compres-
sion ratio

‖M1 − M2‖d =
n∑

i=1

1

n

∥∥∥GL(v1
i )− GL(v2

i )

∥∥∥
2
. (15)

The final error metric is the average of geometric error and
differential error

‖M1 − M2‖ = 1

2
(‖M1 − M2‖g + ‖M1 − M2‖d). (16)

5.2 Compression performance

In all our tests, we compare the compression performance
between the classical spectral compression method based on
MHB coefficient truncation [7] and our sparse approximation
compression method employing three different dictionaries:
(1) S-MP with the MHB-only dictionary, (2) S-OMP with the
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(a) MHB, truncation (b) MHB, S-OMP

(c) SGW, S-OMP (d) SGW+MHB, S-OMP
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Fig. 8 Comparison of mesh compression performance for the centaur
model. a–d Show the reconstructed meshes at 20 % compression ratio
and visualize each vertex’s positional error comparing with the original
model. e Shows how the compression errors change with the compres-
sion ratio

SGW-only dictionary and (3) S-OMP with the SGW+MHB
dictionary.

Figure 5 shows the original meshes and their partitioning
used in our experiments, including a “cow”, a “fandisk”, a
“centaur”, and a “armadillo” model. All meshes are scaled
to have unit surface area. The evaluation results are shown in
Figs. 6, 7, 8, and 9, respectively. For each 3D mesh, we com-
pute the approximation at specified compression ratios in the
ranges between 5 and 80%. The overall compression quality
is measured by the combined geometric and differential error
(see Eq. (16)) w.r.t. the original mesh. Table 1 documents the
compression errors and timing of S-OMP with SGW+MHB
dictionaries, and compares the errors with the MHB coeffi-
cient truncation method.

(a) MHB, truncation (b) MHB, S-MP

(c) SGW, S-OMP (d) SGW+MHB, S-OMP

(e)
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Fig. 9 Comparison of mesh compression performance for the
armadillo model. a–d Show the reconstructed meshes at 15 % com-
pression ratio and visualize each vertex’s positional error. Comparing
c and d, it is obvious that the SGW+MHB dictionary produces much
smaller positional error than the SGW-only dictionary. e shows how the
compression errors change with the compression ratio

From the experimental results, we see that, with a prop-
erly chosen dictionary, simultaneous sparse approximation
can generate higher-fidelity mesh compression than the MHB
truncation method at the same compression ratio. The SGW
functions are a viable choice for efficient mesh approxima-
tion, but the performance of a SGW-only dictionary degen-
erates significantly when the required compression ratio is
small or the mesh is large, which is especially evident in
the armadillo model (Fig. 9). A dictionary combining SGW
and MHB overcomes this deficiency, and its performance
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Table 1 Statistics of compression errors and running times using the S-
OMP algorithm with SGW+MHB dictionary (on a machine with quad-
core 2.4 GHz processor and 16 GB RAM)

Model (#vertices) Ratio (%) Error Error
decrease (%)

Timing (s)

Cow (4,315) 20 1.91e–3 18.0 3.4

40 1.12e–3 27.5 10.5

Fandisk (6,475) 20 1.09e–3 11.6 7.2

40 5.74e–4 28.1 18.9

Centaur (15,768) 20 1.03e–3 20.3 19.6

40 5.89e–3 37.7 50.3

Armadillo (172,974) 20 2.26e–3 9.4 178.0

40 1.76e–3 15.7 354.5

The “Error decrease” column shows the decrease of compression error
compared with the MHB truncation method

in mesh approximation is consistently superior to the MHB
truncation method.

6 Conclusion and future work

In this paper, we have developed an algorithm for sparse
approximation of 3D shapes. We employed the SGW to
construct the redundant dictionary of shape bases, and used
simultaneous orthogonal matching pursuit to seek a sparse
representation of the input mesh. The use of spatially local-
ized wavelets makes our algorithm very suitable and power-
ful for better approximating shapes with many local and fine
geometric features. Through comprehensive experiments,
we have demonstrated the superiority of our algorithm for
approximating complex 3D objects at different compression
ratio settings towards sparse representation.

As for the immediate future work, we plan to investigate
other improved formulations of graph wavelets as basis vec-
tors to enhance the expressive power of dictionary. For exam-
ple, it is more desirable to have data-specific, anisotropic
wavelets that are adaptive to shape features such as sharp
corners and edges, which can further facilitate more efficient
and sparse representation of shape geometry. We also plan to
explore faster sparse approximation algorithms such as stage-
wise orthogonal matching pursuit (StOMP) [3] to arrive at
better time performance.
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