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Abstract—Spectral Embedding is one of the most effective
dimension reduction algorithms in data mining. However, its
computation complexity has to be mitigated in order to apply
it for real-world large scale data analysis. Many researches have
been focusing on developing approximate spectral embeddings
which are more efficient, but meanwhile far less effective. This
paper proposes Diverse Power Iteration Embeddings (DPIE),
which not only retains the similar efficiency of power iteration
methods but also produces a series of diverse and more effective
embedding vectors. We test this novel method by applying it
to various data mining applications (e.g. clustering, anomaly
detection and feature selection) and evaluating their performance
improvements. The experimental results show our proposed DPIE
is more effective than popular spectral approximation methods,
and obtains the similar quality of classic spectral embedding
derived from eigen-decompositions. Moreover it is extremely fast
on big data applications. For example in terms of clustering result,
DPIE achieves as good as 95% of classic spectral clustering on
the complex datasets but 4000+ times faster in limited memory
environment.

I. INTRODUCTION

Spectral Embedding is one of the methods to calculate low
dimensional embeddings. It was used in clustering [19] [10] at
first but later applied to many other data mining applications
such as anomaly detection [8] [9] and feature selection [1].
Spectral Embedding uses a spectral decomposition of the
graph Laplacian[17]. The generated graph can be considered
as a discrete approximation of the low dimensional manifold
embedded in the original high dimensional data space. Mini-
mizing a cost function based on the graph ensures neighboring
data points that are close to each other on the manifold to be
still mapped to neighboring ones in the low dimensional space,
i.e. preserving local distances/neighborhood.

Although Spectral Embedding gained an increasing popu-
larity in recent years, its associated high complexity in both
time O(n3) and space O(n2) prevents it from practical utiliza-
tion in many real-world applications. For instance, we cannot
do spectral clustering directly on popular RCV1 benchmark
dataset due to its large data size of nearly 200, 000 documents.
Given a dataset with n data points, spectral methods create
an n × n affinity matrix and apply eigen-decomposition on
the subsequent Laplacian normalized matrix with the time
complexity of O(n3) in general.

To overcome these limitations, several methods are pro-
posed such as [13] [26] [11]. Among them, Power Iteration

Clustering (PIC) [13] is one of the most promising candi-
dates due to its speed, small memory requirements and yet
effectiveness in obtaining clustering results for datasets with
small number of clusters. However, PIC cannot handle well
those datasets with a large number of clusters, even with the
new PIC-k (with k power iteration vectors) method [12]. In
addition, it is also an impediment to apply this type of power
iteration embedding in many other data mining applications,
such as feature selection and anomaly detection.

This paper proposes Diverse Power Iteration Embeddings
(DPIE) which overcomes the limitations of PIC/PIC-k and
applies it in a broad scope of spectral analysis. Moreover, it
requires a far less amount of time and space, which is similar
to PIC-k. Our contributions in DPIE are as follows:

(1) We proposed a novel power-iteration-based method that
aims to find diverse and yet informative low dimensional
embeddings, which is different from the single or similar
embedding vectors from previous PIC methods.

(2) In theory, our proposed DPIE has the same or similar
representational power of low dimensional projection with
classic spectral embeddings, so that it can be applicable to
various spectral analysis.

(3) Our proposed DPIE, compared with the existing spectral
embedding approximations, achieves a similar or even
lower time and space computational complexity, but a
more desired quality.

(4) We systematically evaluated DPIE along with several
closely-related algorithms on a number of important ap-
plications. The results confirmed that our new algorithm
significantly outperformed other existing algorithms in
terms of effectiveness and efficiency.

II. SPECTRAL EMBEDDINGS CONSTRUCTION

Spectral embedding construction already gained its pop-
ularity in the last decade because of its ability to reveal
embedded data structure. It has a strong connection with a
graph cut, i.e., it uses eigenspace to solve a relaxed form
of a normalized graph partitioning problem [19]. Its second
desirable aspect is that it can capture the nonlinear structure
of data with the help of nonlinear kernel, which is difficult for
k-means or other linear clustering algorithms.

Spectral embedding construction as shown in Algorithm 1,
starts with local information encoded in a weighted graph that
is constructed from input data with a certain similarity kernel,
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Algorithm 1: SpectralEmbeddingConstruction(X , c)

Input: X ∈ Rn×m where n is #instances and m is
#features, and c is #low-dimensions.

Output: Spectral embeddings Y ∈ Rn×c.
1 Construct the affinity matrix W ∈ Rn×n of X;
2 Compute the diagonal matrix D ∈ Rn×n where
D(i, i) =

∑n
j=1W (i, j) and D(i, j) = 0 if i �= j ;

3 Construct a graph Laplacian L using Lnn = D −W ,

Lrw = I −D−1W or Lsym = I −D−1/2WD−1/2 ;
4 Extract the first c nontrivial eigenvectors Ψ of L,
Ψ = {ψ1, ψ2, . . . , ψc} ;

5 Re-normalize the rows of Ψ ∈ Rn×c into

Yi(j) = ψi(j)/(
∑

l ψi(l)
2)1/2 ;

and selects embedding vectors from the global eigenvectors of
the corresponding (normalized) affinity matrix.

Although it demonstrated its effectiveness in clustering
[19], feature selection [1], and anomaly detection [8], it is
infeasible for large-scale data analysis due to its time and
space complexities. The space requirement for constructing
affinity matrix (Step 1) is O(n2), and the computing time
for eigen-decomposition in Step 4 is O(n3). A mechanism is
needed to approximate Algorithm 1 with less time and space
requirements while retaining similar effectiveness.

III. POWER ITERATION EMBEDDINGS AND ITS

LIMITATIONS

A. Power Iteration Embeddings

To address the complexity of classic spectral embedding
construction, Lin et.al [13] proposed power iteration clustering
(PIC), which finds a one dimensional data embedding using
truncated power iteration on a Laplacian normalized affinity
matrix. PIC is based on a simple iterative method called power
iteration, which we will briefly introduce here.

According to [17], the c smallest eigenvectors of graph
Laplacian Lrw happen to be the c largest eigenvectors of
random walk normalized affinity matrix Wrw = D−1W . For
our notational convenience, we will use W for Wrw in the
rest of our paper. Let W ∈ Rn×n and recall that if ψ is
an eigenvector for W with eigenvalue λ, then Wψ = λψ.
Therefore in general, there is W tψ = λtψ for any t. This
observation is the very foundation of the power iteration
method.

Suppose Ψ = {ψ1, ψ2, . . . , ψn}, the set of unit eigenvec-
tors of W , forms a basis in Rn×n, and has corresponding
real eigenvalues Λ = {λ1, λ2, . . . , λn}. We assume that the
first c eigenvectors carry informative signals and the rest
eigenvectors are noise [17]. From the spectral theorem, for the
properly normalized affinity matrix W such as random walk
normalization, there are eigenvalues as follows:

1 = λ1 > λ2 > . . . > λc � λc+1 > . . . > λn. (1)

Note that power iteration embeddings assume 1) there is at
least a large enough eigen-gap between c and c + 1 and 2)
λ2 ∼ λ3 ∼ . . . ∼ λc. Now let v(0) ∈ Rn be a randomly

generated vector, since Ψ is a basis of Rn×n, we have:

v(0) = a1ψ1 + a2ψ2 + . . .+ anψn, (2)

where ai is the weight of i-th eigenvector. Then, the power
iteration will be:

vt =W tv(0) = a1λ
t
1ψ1 + a2λ

t
2ψ2 + . . .+ anλ

t
nψn

= a1ψ1 + λt2

(
n∑

i=2

ai(
λi
λ2

)tψ2

)
.

(3)

The power iteration will finally converge to a1ψ1 which
is useless because it is a constant vector. However, if the
number of iteration t is cleverly set from being too large as
shown in [13], W tv(0) is a linear combination of the first c
informative eigenvectors, while all the other eigenvectors are
gone away due to the eigen-gap. In other word, the whole
process should be controlled very well in order to remove

the terms of ψc+1 . . . ψn with diminishing rate (λc+1

λ2
)t, but

still keep the rate of (λc

λ2
)t big enough. Fortunately, if the

power iteration reaches the eigen-gap, then the convergence
rate will be relatively slow because the similar values from
λ2 to λc. PIC defines the velocity at t as δt = |vt − vt−1|
and acceleration at t as ε = ||δt − δt−1||max as a measure
of the convergence rate and stop power iterations if ε is
very small to do early stopping. Figure 1 shows the effect of
different number of power iterations and t = 20 shows a pretty
good clustering embedding. Lin and Cohen [13] proposed

Algorithm 2: PowerIterationEmbedding(X)

Input: X ∈ Rn×m where n is #instances and m is
#features.

Output: Power iteration embedding vt ∈ Rn×1.
1 Construct the affinity matrix W ∈ Rn×n of X;
2 Perform positive random normalization W ← D−1W ;
3 Initialize v0 ∈ Rn×1 ;
4 Repeat

5 vt+1 ← Wvt

‖Wvt‖1 ;

6 δt+1 ← |vt+1 − vt| ;
7 t← t+ 1 ;
8 until ‖ δt − δt+1 ‖max� 0 ;

the described procedure as Power Iteration Embedding (PIE)
algorithm, also shown in Algorithm 2.

B. The Limitations of PIE

Although it showed a pretty good embedding in Figure 1, it
is not good enough to handle large c clusters or different spec-
tral applications. If the dataset has a relatively large number
of clusters, it is quite difficult to discriminate clusters with a
single PIE. The obvious reason is that if c is sufficiently large,
the number of required eigenvectors increases. But in PIE,
the first few (or even one) nontrivial eigenvectors dominate
the whole vector. For instance, Figure 2 showed ten selected
clusters from 20Newsgroups (see Section VII-A) violates two
PIE assumptions; the biggest eigen-gap is between λ2 and
λ3 and the second biggest is between λ3 and λ4, which also
violates similar eigenvalues before c eigenvectors. So, the PIE
is quite similar to ψ2, which is not good enough to distinguish
the ten clusters. But the ten eigenvectors together reveal more
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Fig. 1. Single power iteration embedding (the embedding vt∗ provided by [13] or Equation 3) for 2D dataset in Figure 1(a) with three clusters, of which each
cluster is represented with a different color. In Figure 1(b), 1(c), 1(d) and 1(e), the value of each component of vt∗ is plotted against its index. We can see that
although vt∗ eventually converges to a uniform vector (Figure 1(e) when t = 200), the intermediate vectors (eg. vt∗ when t = 20) reveal the manifold embedding
of the dataset. This example shows that PIE could be an efficient alternative to eigenvectors from traditional eigen-decomposition.

information such as the blue cluster from ψ3, the pink cluster
from ψ6, etc.

Different random starting vectors v0 may reveal different
degrees of impact on top c eigenvectors due to different ai
in Equation 2. Suppose ψk (k > 2 and λ2 > λk) is a very
informative eigenvector and there happens to be ak � a2.
By attentively controlling the number of iteration we may
have a2λ

t
2 � akλ

t
k � ak+1λ

t
k+1, which means that vt holds

essential information from ψk without concealing by the first
few ψi. So by increasing the number of initial vectors to
generate multiple PIE or PIE-k (k = 	log(c)
 according to
[12]), the quality of the generated embedding vectors has
potential to improve to a certain degree. For instance, the PIE-
k of Figure 2 share the similar general trends with the second
eigenvector but it reveals slightly different distributions.

But there is still a crucial and unsolved problem: the first
few eigenvectors still overshadow the other less important but
indispensable eigenvectors. Under this circumstance, these first
few eigenvectors are still dominant in the result vector vt. We
can easily see this from Equation 3 as well : each vtk is still
dominated by the first few ψ1, ψ2, . . . because of λt1 � λt2 �
. . . � λtn. Therefore, for large c clustering problems or the
other spectral applications such as spectral feature selection or
anomaly detection, PIE and PIE-k are not practical, which we
can also verify in Section VII.

IV. DIVERSE POWER ITERATION EMBEDDINGS

As analyzed in the last session, the fundamental problem
in PIE/PIE-k is the essential influences by the first few
eigenvectors in each converged embedding vector. To deal with
this problem, we propose Diverse Power Iteration Embeddings
(DPIE) Ψ′ = ψ′1, ψ

′
2, . . . , ψ

′
n. We design DPIE to be a

collection of informative and yet divergent embedding vectors
where each ψ′k reveals the corresponding eigenvector ψk more
considerably than any other eigenvector. To achieve this goal,
all the previous eigenvectors Ψ1:k−1 = [ψ1, ψ2, . . . , ψk−1]
must be removed from ψ′k, which is the major difference
between our DPIE and PIE/PIE-k.

In our DPIE, the first nontrivial embedding vector ψ′2
would be quite similar to PIE but the subsequent DPIEs will
be different in the sense that we take out all the already-
found DPIEs from the current one. Let v0i denotes the i-th
starting random seed vector and vti = W tv0i , and the power
iteration was stopped at t-th iteration, we compute ψ′k from

Algorithm 3: DPIE(X , e, E, T , εi, η)

Input: X ∈ Rn×m where n is #instances and m is
#features, e is the maximum #DPIE, E is
#random seed vectors (E > e), T is the
maximum #iterations, εi defines the
acceleration threshold for the i-th random seed,
and η is the normalized residual threshold.

Output: Diverse Power iteration embeddings Ψ′.
1 Construct the affinity matrix of X;
2 Perform positive random walk normalization on the

affinity matrix and denote as W ;
3 Initialize v0 = [v02 | v03 | . . . | v0E ] ∈ Rn×E ,
Ψ′ = {1 ∈ Rn×1} ;

4 For each v0i (i = 1, 2, . . . , E)
5 Repeat

6 vt+1 ← Wvt

‖Wvt‖1 ;

7 δt+1 ← |vt+1 − vt| ;
8 t← t+ 1 ;
9 until (‖ δt − δt+1 ‖max≤ εi) or (t ≥ T ) ;

10 Solve equation f∗ = argminf = ‖vti −Ψ′1:k−1f‖ ;
11 rti ← vti −Ψ′f∗ ;

12 If
‖rti‖1
‖vt

i‖1 > η

13 ψ′i ← rti
‖rti‖1 ;

14 Insert ψ′i into Ψ′ ;
15 If size of Ψ′ equals to e
16 Break ;
17 End;
18 End ;
19 End ;
20 Remove 1 from Ψ′;

the normalized linear fitting residue of the already-found k−1
DPIEs:

ψ′k =
vti −Ψ′1:k−1f

∗

‖ vti −Ψ′1:k−1f
∗ ‖1 , (4)

where f∗ ∈ R(k−1)×1 is the weight coefficient vector of those
already-found DPIEs, and is derived from solving the linear
equation argminf = ‖vti−Ψ′1:k−1f‖. In other words, we treat
the (unnormalized) ψ′k as residue or regression error, which is
obtained by subtracting the effects of the already-found DPIEs
from vti . After normalization ψ′k becomes the next found DPIE.

However, if we apply the same stopping criteria as that used
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Fig. 2. Different low dimensional embeddings of 20NG-10 dataset, which consists of 10 cluster subsets from 20Newgroups dataset (Section VII-A). Eigenvectors
ψ (Figure 2(b) to 2(j)) are sorted by eigenvalues in descending order (Figure 2(a)). PIE (Figure 2(k)) and PIE-k (Figure 2(l) to 2(o)) are quite similar to ψ2 in
Figure 2(b). Relatively DPIEs (Figure 2(p) to 2(t)) reveal more diverse yet informative signals than PIE and PIE-k.

in PIE or PIE-k, we cannot discover good quality of DPIE.
The primary reason is that PIE stopping criteria will suppress
the rest of eigenvector signals except the first few because
(λk/λ2)

t  1 if t is as large as the PIE stopping criteria.
To avoid this problem, we need to increase the acceleration
threshold ε of PIE as we find more DPIEs. So, our new
stopping criteria for DPIE is as follows:

εi = i ∗ 	log(c)
 ∗ ε/n, (5)

where ε is a tuning parameter and we used 10−6 by default
as in [13] [14].

When ε is too small; or the random seed is similar to one
of what we have used; or vti can be well represented by the
existing DPIEs, DPIE cannot find any new PIE. In that case,
we check the normalized residual (line 12 in Algorithm 3):

ϑ =
‖ vtk −Ψ′1:k−1f

∗ ‖1
‖ vtk ‖1

. (6)

If ϑ is smaller than a certain threshold, we do not add such
PIEs. In practice, we used 	log(c)
∗η/n as our threshold and
η = 10−6 by default. For notational convenience, we denote
the normalized residual threshold as η from now on.

In terms of stabilities, if ε is too large which means we
do very early stopping, then we might not be able to find
good eigenvector approximations because PIE is a mixture of
interesting and noisy eigenvectors. Relatively, the small ε is
not a big problem because the normalized residual threshold
η can detect the duplicated information and it is just a little
bit slower. However, if ε becomes too small then it will lead
to over-convergent. In case of η, it is easy to tune because η
has the direct meaning of how much new information is added
through the new candidate PIE and it is not relevant to eigen-
gaps of specific dataset. We present the DPIE stability results
in regards to ε and η in Experiment Section VII-E.

On the other hand, the power of DPIE can be also interpret-
ed by diffusion theorem. Note that Ψ1:k−1 has been removed
from ψ′k, so the explicit formula of ψ′k is:

ψ′k = bkλ
t
kψk + bk+1λ

t
k+1ψk+1 + . . .+ bnλ

t
nψn, (7)

where bi is the weight coefficient. Considering the 1-norm
distance between x and y on ψ′k there is:

Dt
k(x, y) = |ψ′k(x)− ψ′k(y)| =

n∑
i=k

biλ
t
i|ψi(x)− ψi(y)|. (8)
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It is actually the same as the diffusion process [3], where ψ′k(x)
is the diffusion coordinate of x after t steps/time diffusion
process, with all the directions of ψi (i ≥ k) taken into
account. So Dt

k(x, y) is a family of 1-norm diffusion distances
between x and y with Markov diffusion process in time t. It
reflects the connectivity in the graph of the data: Dt

k(x, y) will
be small if there are a large number of short paths connecting
x and y, and large enough walking time t. In other words,
there is a large transition probability from x to y [3]. In this
sense, t plays the role of a scaling parameter. Therefore DPIE
has a potential to be more stable to the noise perturbation.

The whole procedure for DPIE is defined in Algorithm 3.
Note that 1) we add one vector 1 from line 3 and take it out
from the final results to simulate the first eigenvector ψ1 which
is a constant vector and it plays a role of intercept in line 10 in
Algorithm 3, and 2) we start v0 with v02 instead of v01 due to the
same reason. We can see the final DPIEs are quite instructive
yet different from each other in Figure 2. But like PIE/PIE-k,
DPIE is mainly relying on matrix vector multiplication and
enjoys the same speed-up and scalability, and it can be easily
implemented as distributed matrix vector computation (Section
V). Since the most time consuming part (from line 5 to line
9) does not depend on the other DPIE computations, we can
further parallelize Algorithm 3.

In the rest of this section, we provide a simple proof of
why DPIE can obtain Ψ′ (Equation 7), of which each ψ′k
has dominant eigenvector ψk while removing the previous
eigenvectors Ψ1:k−1.

Proposition 1: Assume that t is sufficient large and clear
eigengap exists between every two successive eigenvalues, the
linear equation solver (Step 10 to 11 in Algorithm 3) can
remove the eigencomponents Ψ1:k−1 in order to construct
DPIE.

Proof: Let us assume the first nontrivial DPIE ψ′2 is found,
and the constant eigencomponent (ψ1) has been removed from
ψ′2 and vt3. We now prove we can get ψ′3 from vt3:

vt3 = a2λ
t
2ψ2 + a3λ

t
3ψ3 + . . .+ anλ

t
nψn,

ψ′2 = b2λ
T
2 ψ2 + b3λ

T
3 ψ3 + . . .+ bnλ

T
nψn,

(9)

where T = t+Δt with Δt ≥ 1 (since we use earlier stopping
by controlling εi when i increases ). We assume argminf‖vt3−
ψ′2 × f‖ = f2 and all λj ≤ t/(t+Δt) with j ≥ 1, there is:

(
1

λ
)Δt >

1

λ
≥ t+Δt

t
, (10)

therefore:

λt−1

λT−1
>
T

t
⇒ d(λt − λT )

dλ
= tλt−1 − TλT−1 > 0. (11)

Since t is sufficiently large, the ratio between aj and bj can
be ignored. Equation 11 means that λt − λT becomes larger
when λ is larger. Therefore to minimize the least square ‖vt3−
ψ′2×f‖2, there should be f∗ = f2 ∼ λt2/λ

T
2 , which means the

first nontrivial eigenvector ψ2 is removed from the residue:

vt3 − ψ′2 × f2 =
n∑

j=2

(λtj − λTj
λt2
λT2

)ψj =

n∑
j=3

(λtj − λTj
λt2
λT2

)ψj ,

(12)

in which ψ3 is the dominant vector. For all j ≥ 3, we assume
λ2/λj ≥ (t+Δt)/t, there is:

(
λ2
λj

)Δt >
t+Δt

t
⇒

d(λtj − λTj λt
2

λT
2
)

dλj
> 0. (13)

which also leads to the removal of ψ3 on the following ψ′.
Similarly the other eigencomponents can be removed from the
coming DPIEs. The above Proposition did not guarantee the
eigenvectors if the eigengap is not big between every two suc-
cessive eigenvalues. However, DPIE procedure guarantees to
find diverse PIEs, which are good enough as an approximated
eigenvector solution for our proposed applications.

V. EFFICIENT KERNEL COMPUTATION AND COMPLEXITY

ANALYSIS

DPIE provides a scalable and effective alternative to spec-
tral embedding construction, but it still requires the construc-
tion of normalized affinity matrix W (line 1 and 2 in Algorithm
3), which is a huge space cost. This section first describes how
to avoid the overhead for storing the affinity matrix by using
exact cosine similarity or an approximated Gaussian kernel,
and then analyzes the time and space complexity of the whole
algorithm.

A. Cosine Similarity

A popular similarity kernel for text dataset is the cosine
angle between two vectors, which is defined as:

W(COS)(i, j) =
X(i)·X(j)

‖ X(i) ‖2· ‖ X(j) ‖2 . (14)

X is usually tf − idf weighted sparse matrix and the two
norm normalizations in the denominator term enable us to
fairly compare documents with different length.

We apply implicit manifold [14] which is represented with
a series of sparse matrix multiplications. As described in [14],
for the denominator term an additional diagonal matrix Nii =
1/
√
X(i)X(i)T is computed and the affinity matrix A and

degree matrix D can be calculated with:

A = N ∗X ∗XT ∗N,
D = N ∗X ∗XT ∗N ∗ 1,

(15)

where 1 is a constant vector of all 1’s. To remove the diagonal
on A, we use a modified equation D = NXXTN1 − 1.
Therefore we can represent random walk power iteration as:

Wvt = D−1 ∗ (N ∗ (X ∗ (XT ∗ (N ∗ vt)))− vt). (16)

Since vt is a n× 1 vector, and D and N are diagonal matrix
which can be stored in a sparse format, Equation 16 is a
lot more efficient to implement and at the same time keeps
the same output as the conventional implementation. It is
also worth to mention that in anomaly detection application
we use bi-normalization instead of one-side random walk
normalization to make the anomalies more salient:

Wvt = D−1 ∗(N ∗(X ∗(XT ∗(N ∗(D−1 ∗vt))))−D−1 ∗vt).
(17)
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TABLE I. NOTATIONS USED IN THE COMPLEXITY ANALYSIS.

Notations Meanings

1 n the number of instances
2 m the number of features
3 d the number of samples
4 T maximum power iterations in DPIE
5 e maximum number of DPIEs
6 κ condition number of data eigensystem

B. Gaussian Kernel Approximation

One of the most commonly used similarity measurements
is the Gaussian kernel:

W(GAU)(i, j) = exp(
− ‖ X(i)−X(j) ‖2

2σ2
), (18)

where σ controls the width of neighborhood [17].

Gaussian kernel is a little bit more complicated than
Cosine similarity since it is not a linear construction. In our
implementation we approximate it in a space-efficient way by
using random Fourier bases [20] [12] shown as follows:

1) Draw d i.i.d. samples 
(1), . . . , 
(d) from p(
 ∼
1
σ2N (0, 1)) where p(∗) is fast Fourier transform;

2) Draw d i,i,d. samples (offsets) b(1), . . . , b(d) from uni-
form distribution on [0, 2π];

3) Compute R where R(i, j) =
√
2/d[cos(
(j)Tx(i)+ b)];

4) Use Equation 16 or 17 by replacing X with R.

This approximation can be interpreted as a random projection
with Gaussian basis. It projects each point onto a random
direction and passes it through a sinusoidal function with σ as
bandwidth, and then slides the function by a random amount
(offset) [12]. According to the analysis in [20], as the number
of samples d increases, the error of this random Fourier bases
approximation goes to zero.

C. Analysis of Complexity

Space Complexity. Cosine similarity compresses every
intermediate result in a vector form O(n), while the Gaussian
kernel approximation is based on sampling matrix of which
size is O(nd). Therefore, the space complexity is at most
O(nm), which is only as the size of original dataset X , which
is much smaller than O(n2) in general.

Time Complexity. Since a matrix vector multiplication
requires O(nm), the process from line 5 to line 9 in Algorithm
3 takes O(nmT ), while the operation of solving linear systems
takes O(ne

√
κ) when using conjugated gradient method (κ =

λ∗1/λ
∗
2 is the condition number of Ψ′ where λ∗1 and λ∗2 are the

first and second eigenvalue of Ψ′) [22]. Note that these time
complexities are much smaller than O(n3).

VI. DISCUSSION

This section justifies the utility of our proposed DPIE by
briefly discussing the theoretical distinctions and connections
with a few existing methods, which also lays a solid foundation
for DPIE’s attractive properties for practical use.

Instance-sampling based Methods. Researches like [27]
[2] [21] hold a subset of original instances and extend the
clustering result to the whole dataset. Other researches like [4]
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Fig. 3. MatrixSketching [11] clustering results (recorded in NMI) on 20NG-
10 dataset, which is a subset of 20Newsgroups with 10 clusters. We ran the
algorithm 20 times and every time we shuffled the input order randomly.
Obviously the results are NOT stable against different input order, and a lot
worse than our DPIE result (NMI = 0.4373).

generate a sparser version of matrix by sampling which can
be stored more efficiently and multiplied faster. Alternatively
the similarity matrix can also be sampled, which is known as
the Nyström method [5]. These methods, although reduce the
computation cost, are quite sensitive to the sampling quality
[27]. Therefore the embedding quality deteriorates with poor
sampling. On the contrary, our proposed DPIE does not rely
on any sampling strategy.

Random-projection based Methods. Yan et.al. proposed
a general framework [28] for fast approximate spectral clus-
tering. It leverages random projection tree to produce a set of
reduced representatives and uses them as centroids to cluster
all the instances. Gittens et.al. [7] used randomized sketching
to approximate the eigenvectors. Their qualities rely on the
subspace embedding techniques which result from random
projections. However the generated embeddings, because of
the indeterministic process, could contain a lot of noisy signals
and fail to provide desirable result. In spite of the fact that our
DPIE also has random seed vectors as initial status, the seed
vectors eventually converge to certain patterns of eigenvector
combination during power iteration.

Frequent-direction based Methods. Recent researches
drew on the similarity between matrix sketching and the
item frequency estimation problems, and proposed frequent-
direction based methods [11] [6] with two major contributions:
1) because it is one-pass streaming algorithm, it can be imple-
mented in space and time efficiently, and 2) it approximates
the truncated Singular Value Decompositions (SVD). These
methods are claimed to be deterministic since they have
no sampling or any randomized components. However, their
quality is highly related to the input order. For instance, we
evaluated the matrix sketching quality of [11] on 20NG-10
dataset 20 times and each time we randomly shuffled the
order of input, and performed K-means clustering on the final
sketched matrix (evaluated by NMI [24]). Figure 3 shows its
poor results and the instability recorded in NMI across the
20 randomly shuffled experiments. On the other hand, our
proposed DPIE is constructed with close connections with
random walk process. Thereby, DPIE is more stable against
perturbation or noisy features.

Power Iteration based Methods. Power iteration clus-
tering [13] computes a linear combination of the important
eigenvectors. It is extremely simple and elegant, and efficient in
practice and this is why our work shares the same foundation.
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Different from the sampling methods and random projection
methods, PIC in theory does not modify the original data
distribution thus there is no lost information. However the
major drawback it suffers is that it tends to return only the
first few (or even only one) eigenvectors, which are not enough
to represent the datasets with multiple classes or patterns. Al-
though an advanced version, PIE-k, has been proposed later in
[12] with multiple output vectors, it does not solve the signal-
overlapping problem. Recently deflation-based power iteration
method was proposed [26]. It applies Schur complement defla-
tion to remove the previously found pseudo-eigenvectors from
the current matrix, so that it computes multiple orthogonal
vectors without redundancy. However, strict orthogonality is
also a “double-edged sword” since it requires more iterations to
extract certain eigenvectors with smaller eigengaps, therefore
deflation-based methods take more time to converge compared
with PIE-based methods. On the other hand, our DPIE also
intends to eliminate the previously found embedding vectors
from the next one. But it does not require the embeddings to be
orthogonal to each other: each embedding is a different linear
combination of eigenvectors. DPIE has similar representation
power as real eigenvectors but takes much less iterations than
the deflation PIC, resulted in faster computational speed.

VII. EXPERIMENTS

The low rank embeddings can be used on many data
mining applications. We evaluate the quality of the generated
embedding vectors through three different application areas:
clustering, anomaly detection, and feature selection. For a fair
comparison, we constrain each test within a single thread to
measure the actual running time. But we want to emphasize
that all the algorithms, especially our DPIE, can be implement-
ed and run in a parallel environment.

• Clustering. We perform K-means on the generated
low-rank embeddings and evaluate the clustering result
with NMI (Normalized Mutual Information [24]).

• Anomaly Detection. We approximately compute Heat
Kernel Signature (HKS) [25] [8] score using the gener-
ated low-rank embeddings and evaluate the score with
AUC (Area under Receiver Operating Characteristics
Curve [18]) which is commonly used to evaluate
anomaly detectors and is cut-off independent [16].

• Feature Selection. We apply Multi-Cluster Feature
Selection (MCFS) [1] with the low-rank embeddings
as input to extract feature subset. Although it would
be the best to evaluate results based on ground truth of
feature importance, it is difficult to find such ground
truth. Therefore we evaluate with NMI by applying
K-means clustering on the selected feature space.

A. Datasets, Baselines and Parameters.

Datasets. All datasets used in the experiments are summa-
rized in Table II. To demonstrate the quality of the generated
embedding on clustering, we evaluate our algorithm on three
text datasets : 20Newsgroups, Reuters21578 and RCV1, and
two image datasets USPS and MNIST. Both of the USPS and
MNIST datasets are 10 classes of handwritten digits. Reuter-
s21578 and USPS are unbalanced datasets with quite different

TABLE II. STATISTICS OF DATASETS (INCLUDING NUMBER OF

INSTANCES, FEATURES, CLUSTERS OR ANOMALIES).

Dataset # ins. # fea. # clu.

1 20Newsgroups 18846 26214 20
2 Reuters21578 8293 18933 65
3 RCV1 193844 47236 103
4 USPS 9298 256 10
5 MNIST 70000 784 10

Dataset # ins. # fea. # ano.

6 20NG-10-11 4991 26214 100
7 Reuters21578AD 6261 18933 493
8 RCV1AD 7803 29992 200
9 magic04 19020 10 6688

10 satellite 6435 36 2036

size of clusters. For feature selection evaluation, we focus
on two datasets: 20Newsgroups and Reuters21578. In case of
anomaly detection, we choose three text datasets and two
scientific datasets. 20NG-10-11 is a subset of 20Newsgroups,
which consists of all the samples from 6 computer-related clus-
ters (from “comp.graphics” to “comp.windows.x” and treated
as regular samples) and 100 randomly-selected samples from
“talk.religion.misc” (anomalous samples). Reuters21578AD is
a subset of Reuters21578 which is composed of the first two
largest categories as regular documents and the smallest 45
categories as anomalous documents. RCV1AD is a subset of
RCV1 which is made up of four categories “C15”, “ECAT”,
“GCAT”, and “MCAT” and we selected 200 “C15” category
documents as anomalies and the rest of three categories as reg-
ular documents. Satellite consists of the multi-spectral values
of pixels in 3×3 neighborhoods in a satellite image which has
unbalanced classification associated with each neighborhood
central pixel. Magic04 is a binary classification dataset from
the UCI repository which was generated to simulate registra-
tion of high energy gamma particles.

For text datasets, cosine similarity (Section V-A) is a
reasonable choice. For USPS, MNIST, magic04 and satellite,
Gaussian kernel (Section V-B) is used. To adopt an adaptive
width of neighborhood σ instead of a fixed value, we assign
σ to be the average Euclidean distance of each instance to its
second nearest neighbor.

Baselines. For clustering we choose five baselines: NJW
(one of the conventional spectral clustering, or Spectral Em-
bedding (SE) when we mention in feature selection) [19],
Power Iteration Embedding (PIE) [13], PIE-k [12], Matrix
Sketching (MatSket) [11] and DeflationPIC [26]. Once we get
the embeddings, we performed a 2-norm normalization along
instance side and a WCSS (minimizing within-cluster sum of
squares, with 100 inner loops and 100 outer loops) K-means
to obtain the cluster assignments.

The anomaly detection experiment is inspired by HKS [8]
which is a measure of X(i)’s anomalousness using Ht(i) =∑

p[e
λpt(ψp(i))

2] (λ and ψ are derived from positive random
walk Laplacian). We name HKS with true eigenvectors as
HKS-SE. However, since eigenvalues are not explicitly extract-
ed by PIE, PIE-k, MatSket, DeflationPIC and our proposed D-
PIE, we use the approximated equation H ′(i) =

∑
p[(vp(i))

2]
where vp is the p-th embedding vector, and call them HKS-
PIE, HKS-PIEK, HKS-MatSket, HKS-DFL and HKS-DPIE
respectively. To have a more comprehensive comparison, we
also include IForest [16] which is a very efficient and effective
anomaly detection method. IForest detects data-anomalies with
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binary trees, using the property that anomalies are more
susceptible to isolation.

The feature selection experiment is integrated with MCFS
[1] which measures the importance of each feature along each
generated embedding that corresponds to the contribution of
each cluster by minimizing {minsp(‖ vp −Xsp ‖2 +β | sp |
)} where sp is a m-dimensional vector and β controls the
sp’s approximation speed to zero. For the j-th feature, MCFS
defines the feature importance as maxp|sp,j | where sp,j is
the j-th element of vector sp. We evaluate the output feature
subsets by WCSS K-means clustering.

Parameters. Firstly, the number of generated embeddings
plays an essential role on the embedding quality. It should
be large enough to cover all the signals but small enough to
stay away from noise. For clustering and feature selection,
we use the first c embeddings from NJW, MatSket and
DeflationPIC. PIE generates only one vector while PIE-k set
k = 	log(c)
 [12]. We set the maximum number of DPIEs to
be e = 	log(c)
∗6 out of E = max(	log(c)
∗30, 2c) random
seeds. In anomaly detection experiment, for HKS-SE we use
all the eigenvectors with eigenvalue-weighted, as the original
definition in [25] and [8]. HKS-PIE use only one embedding.
For a fair comparison, we compute H ′ with (the first) 5 output
embeddings for HKS-PIEK, HKS-MatSket HKS-DFL and our
HKS-DPIE. It is also worth to mention the followings: 1) As
the other methods, we use the same normalized affinity matrix
as the input in Matrix Sketching to provide manifold insight;
2) For text dataset on IForest, we use l2-norm normalized
X as input to make sure that the result is not sensitive to
the document length; and 3) For MCFS in feature selection,
we perform 2-norm normalization along sample side of X to
evaluate uniform feature scales.

The heat diffusion time variable t in HKS-SE is set to be
1 in order to avoid over-diffusion [8]. In IForest, to conduct
a safe and fair comparison, we set the sub-sampling size
ρ = 4000 and the number of trees nt = 100 because these
parameters are the authors’ recommendation [15].

When we use Gaussian kernel approximation (Section V-B)
we set the number of samples d = 2000 and σ = 2000. The
maximum number of power iteration T is fixed to be 1000.
Acceleration convergence rate in PIE and PIE-k is set to be ε =
10−5/n where n is the number of samples, as described in [13]
and [12]. In our proposed DPIE, we set εi = i∗	log(c)
∗ε/n
with ε = 10−6, and normalized residual threshold as 	log(c)
∗
η/n with η = 10−6 by default. In Section VII-E we test DPIE
stability with different ε and η.

Finally, for each method with sampling steps or random
seeds, we run 50 times and report the average performance.

B. Clustering Result Analysis

The clustering results are summarized in Table III. We
reported the time used for the affinity matrix and embeddings
constructions but we excluded the final K-means steps. For
NJW, we also excluded the affinity matrix construction time.

Generally speaking, NJW has the best average performance
in NMI since it has full knowledge of the real eigenvectors,
but at the same time requires the most expensive cost in time.
Compared with PIE, PIE-k is 15 times slower on average

since it requires more input and output, but PIE-k improves
20% on average NMI since it has the potential to contain
different aspects of signal resulting from different starting
vectors. However, it only gets 40% of NJW in NMI. By
truncated SVD on normalized affinity matrix, MatSket can
deterministically extract the low rank approximation. So it
covers additional signals in a more effective way than PIE-
k (more than two times better in NMI). But at the same
time MatSket is also 1000+ times slower than PIE-k since it
requires lots of SVD calculations. DeflationPIC, on the other
hand, computes multiple orthogonal pseudo-eigenvectors using
deflation technique, so that it could approximate the original
eigenvectors to certain degree. It shows improved performance
in USPS and MNIST compared with MatSket. But since it
requires more matrix computations in the deflation equation, it
is noticeably much slower than PIE-k. Our DPIE, although not
always the best among all the (approximate) methods, achieves
more than 95% performance of NJW in NMI, and at the same
time only requires quite a short running time which is close to
PIE-k. Especially, DPIE only takes about 2 minutes to process
RCV1 dataset but more than 35% better than the second best
approximation method with 7 times faster speed.

Due to out-of-memory problem, the NJW experiment on
RCV1 could not be finished since it requires full affinity
matrix construction. However, using the space-efficient ways
introduced in Section V it is not a problem for the other listed
methods, especially our proposed DPIE.

C. Anomaly Detection

Table IV shows the anomaly detection results. Similar to
the clustering comparisons, HKS-PIEK performed better than
HKS-PIE (21% improvement), with the reason that PIE-k is
possible to provide more informative signals. HKS-DFL and
HKS-MatSket can capture supplementary yet important eigen-
vectors, which leads to a 6% and 10% boost up respectively
compared with HKS-PIEK, but still much worse than HKS-
SE (less than 73%). IForest is efficient in that it detects the
anomalies by recording the short expected path lengths, so that
it has 200% faster running time than HKS-SE and still acquires
86+% performance of HKS-SE. However, our proposed HKS-
DPIE is 4220 times faster than HKS-SE and yet reach the best
average performance.

D. Feature Selection

We tested all the embedding construction methods using
MCFS [1] with {50, 200, 800, 1200, 1800} selected features,
and reported the result in Table V. Similar to clustering
experiments, DeflationPIC and MatSket perform better than
PIE-k and PIE. But DPIE extracts more representative features,
which are even with better quality than those derived from
original spectral embeddings (SE). This can be explained by
the fact that DPIE formulates all the informative signals within
diffusion space, which is a more compact and profound way
than discrete eigenvectors.

E. Stability Experiments

We conduct experiments with different acceleration thresh-
old ε and normalized residual threshold η to study the param-
eter tuning sensitivities of DPIE. The results are illustrated
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TABLE III. CLUSTERING RESULTS IN NMI AND TIME CONSUMING. FOR EACH DATASET, THE BOLD-FACED NUMBER INDICATES THE BEST

APPROXIMATION METHOD (EXCEPT NJW), AND THE NUMBERS IN THE PARENTHESES INDICATE THE RANKS OF OUR DPIE. AVERAGE IS THE AVERAGE

NMI AND TIME OF EACH METHOD ACROSS ALL THE DATASETS RESPECTIVELY. *We couldn’t run NJW on RCV1 dataset due to out-of-memory error, but
instead cite its NJW score from [23] for reference.

NMI NJW PIE PIE-k MatSket DeflationPIC DPIE

20Newsgroups 0.5326 0.2519 0.3266 0.4877 0.4847 0.5061 (1)
Reuters21578 0.5048 0.2557 0.2718 0.5322 0.5014 0.5143 (2)
RCV1 [23]0.2875 0.1022 0.1237 0.1521 0.1941 0.2644 (1)
USPS 0.6207 0.2026 0.2401 0.4667 0.5871 0.5786 (2)
MNIST 0.4433 0.0022 0.0028 0.3523 0.3788 0.4032 (1)

Average 0.4778 0.1629 0.1930 0.3982 0.4292 0.4533 (1)

Time(s) NJW PIE PIE-k MatSket DeflationPIC DPIE

20Newsgroups 5653.0193 0.1461 5.0816 4131.7741 35.4688 5.0834
Reuters21578 1958.5777 0.0671 2.3548 830.7118 13.7681 1.6388
RCV1 —— 5.1961 110.5477 108998.2234 923.6324 127.6903
USPS 1665.3840 0.0675 1.9807 395.9329 7.2451 0.6584
MNIST 201581.2017 4.0707 38.8645 46072.8311 196.3723 43.6582

Average —— 1.9095 31.7659 32085.8947 235.2973 35.7458

TABLE IV. ANOMALY DETECTION RESULTS IN AUC AND TIME CONSUMING. FOR EACH DATASET, THE BOLD-FACED NUMBER INDICATES THE BEST

APPROXIMATION METHOD (EXCEPT HKS-SE), AND THE NUMBERS IN THE PARENTHESES INDICATE THE RANKS OF OUR HKS-DPIE. AVERAGE IS THE

AVERAGE AUC AND TIME OF EACH METHOD ACROSS ALL THE DATASETS RESPECTIVELY.

AUC HKS-SE HKS-PIE HKS-PIEK HKS-MatSket HKS-DFL IForest HKS-DPIE

20NG-10-11 0.9042 0.3294 0.4858 0.6331 0.2318 0.6176 0.8844 (1)
Reuters21578AD 0.7845 0.3034 0.5131 0.4824 0.7863 0.6048 0.9271 (1)
RCV1AD 0.5428 0.4403 0.5049 0.4619 0.5925 0.4879 0.5547 (2)
magic04 0.7286 0.5757 0.5757 0.5799 0.4205 0.7506 0.7179 (3)
satellite 0.7078 0.3378 0.3378 0.5062 0.5416 0.7173 0.7193 (1)

Average 0.7336 0.3973 0.4835 0.5327 0.5145 0.6356 0.7607 (1)

Time(s) HKS-SE HKS-PIE HKS-PIEK HKS-MatSket HKS-DFL IForest HKS-DPIE

20NG-10-11 876.9247 0.0297 0.8683 181.7283 5.7138 7.6199 0.8193
Reuters21578AD 4141.9718 0.0528 1.1995 170.0181 7.3392 8.2016 1.0608
RCV1AD 4199.1405 0.0476 1.3253 475.9983 10.6519 5.5944 1.1128
magic04 14732.0387 0.1252 0.3402 3241.6766 20.3112 53.8751 2.2759
satellite 779.7334 0.0145 0.1121 152.7320 8.9713 49.3959 0.5889

Average 4945.9618 0.0540 0.7691 844.4307 10.5975 24.9374 1.1715

TABLE V. FEATURE SELECTION RESULTS IN NMI. FOR EACH DATASET, THE BOLD-FACED NUMBER INDICATES THE BEST APPROXIMATED METHOD,
AND THE NUMBERS IN THE PARENTHESES INDICATE THE RANKS OF OUR DPIE. AVERAGE IS THE AVERAGE NMI OF EACH METHOD. DUE TO SPACE

LIMITATION AND THE CLOSE CONNECTIONS BETWEEN CLUSTERING AND FEATURE SELECTION TECHNIQUE WE USED IN THIS PAPER WE DO NOT LIST THE

TIME CONSUMING HERE.

20Newsgroups MCFS-SE MCFS-PIE MCFS-PIEK MCFS-MatSket MCFS-DFL MCFS-DPIE

50 0.2971 0.1691 0.1590 0.2691 0.2552 0.3446 (1)
200 0.3361 0.3089 0.3181 0.3603 0.3274 0.3834 (1)
800 0.4118 0.3899 0.4115 0.4061 0.4256 0.4372 (1)
1200 0.4256 0.4696 0.4498 0.4692 0.4335 0.4819 (1)
1800 0.4865 0.4671 0.4587 0.4340 0.4748 0.4993 (1)

Reuters21578 MCFS-SE MCFS-PIE MCFS-PIEK MCFS-MatSket MCFS-DFL MCFS-DPIE

50 0.3957 0.3959 0.3889 0.4399 0.3973 0.4366 (2)
200 0.4607 0.4539 0.4598 0.4745 0.4677 0.4814 (1)
800 0.5125 0.5021 0.5183 0.5113 0.4993 0.5176 (2)
1200 0.5125 0.4783 0.4882 0.4971 0.5122 0.5297 (1)
1800 0.5081 0.5104 0.5078 0.4980 0.5200 0.5308 (1)

Average 0.4347 0.4145 0.4160 0.4360 0.4313 0.4646 (1)

in Figure 4. It indicates that DPIE has a stable range of
performance on clustering with large enough ε and small
enough η. The reason is that for clustering we need more
number of embeddings which cover enough informative eigen-
vectors. Consequently the iteration should have early stopping
controlled by increasing ε to prevent the iteration procedure
to remove the less strong eigencomponents, and lowering
η to include more diverse DPIEs. Similarly, for anomaly
detection DPIE performs stably with large ε and small η. If the
anomalies only take a small percentage of total instances, more
PIEs are required to separate anomalies from the normal ones.
By assigning large enough ε and small enough η, we ensure
to obtain enough PIEs while removing the negative influence
from the later (noisy) ones.

VIII. CONCLUSION

We proposed a power-iteration-based low dimensional
embeddings to cope with the time and space complexities
of traditional spectral analysis. Our proposed Diverse Power
Iteration Embedding (DPIE), inspired by the power iteration
embedding (PIE [13]), can eliminate duplicated information
due to a few dominant eigenvectors, which makes it achieve
outstanding performance compared with PIE and other related
methods [12]. DPIE can be used for not only clustering but
also various spectral analysis including feature selection and
anomaly detection. Extensive experiments and evaluations on
the three spectral analysis applications have demonstrated that
our proposed DPIE is the most effective in improving the
clustering, anomaly detection, and feature selection methods
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Fig. 4. Stability experiment with different acceleration threshold ε and normalized residual threshold η.

in the comparison with state-of-the-art baseline approximation
algorithms. Meanwhile, DPIE remains efficient in terms of
time and space complexity, i.e. being as efficient as PIE-k
and much faster than MatrixSketching [11] and DeflationPIC
[26].
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