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Since late 1990s, Empirical Mode Decomposition (EMD) starts to emerge as a powerful tool
for processing non-linear and non-stationary signals. Nonetheless, the research on explor-
ing EMD-relevant techniques in the domain of geometric modeling and processing is extre-
mely rare. Directly applying EMD to coordinate functions of 3D shape geometry will not
take advantage of the attractive EMD properties. To ameliorate, in this paper we articulate
a novel 3D surface modeling and processing framework founded upon improved, feature-
centric EMD, with a goal of realizing the full potential of EMD. Our strategy starts with a
measure of mean curvature as a surface signal for EMD. Our newly-formulated measure
of mean curvature is computed via the inner product of Laplacian vector and vertex nor-
mal. Such measure is both rotation-invariant and translation-invariant, facilitates the com-
putation of different scale features for original surfaces, and avoids boundary shrinkage
when processing open surfaces. Moreover, we modify the original EMD formulation by
devising a feature-preserving multiscale decomposition algorithm for surface analysis
and synthesis. The key idea is to explicitly formulate details as oscillation between local
minima and maxima. Within our novel framework, we could accommodate many model-
ing and processing operations, such as filter design, detail transfer, and feature-preserving
smoothing and denoising. Comprehensive experiments and quantitative evaluations/com-
parisons on popular models have demonstrated that our new surface processing method-
ology and algorithm based on the improved, feature-centric EMD are of great value in
digital geometry processing, analysis, and synthesis.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

(IMFs) with multi-scale oscillatory modes and a residue
with monotonic trend, where the first IMF starts with the

In 1998, Empirical Mode Decomposition (EMD) was
developed for processing 1D non-linear and non-stationary
signals by Huang et al. [9]. The central idea is to decompose
a signal into a finite number of intrinsic mode functions
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finest, temporal/spatial scale, and the subsequent IMFs
gradually exhibit coarser, temporal/spatial scales (Fig. 1).
The IMFs represent the natural oscillatory modes embed-
ded in signals and can play a role of the basis functions.
Such basis functions can be computed by operating on
the local extremum sequence, while extracting the local
energy associated with the intrinsic temporal/spatial
scales of the signal itself. Consequently, such decomposi-
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Fig. 1. EMD for lena and vase images using the method of Wang et al. [34], where the images are treated as functions defined over a planar domain. All IMF

images are scaled into [0,255] for better visualization.

tion is fully data-driven and different from the other
multiscale analysis technologies (e.g., Fourier analysis,
short-time Fourier analysis, and wavelet analysis), which
(in contrast) characterize the scale of a signal using pre-
defined basis functions.

Ever since its inception, EMD has been considered as a
revolutionary method in signal analysis and processing
due to its above-documented special properties, and has
given rise to a wide variety of applications in 1D and 2D
data analysis and processing [10], such as biomedical engi-
neering [24], speech processing [8], image fusion [38],
image compression [12], image analysis [19], etc. However,
there is little literature on how to apply EMD to 3D surface
processing [22,34]. Qin et al. [22] first converted coordi-
nate functions of 3D surfaces to 2D planar signals with
the help of spherical parameterization, and then computed
EMD representations using the conventional 2D EMD
method, where global mesh parameterization is a pre-req-
uisite (which might limit its application scopes). To over-
come this limitation, Wang et al. [34] generalized 1D
EMD to surfaces directly without resorting to any surface
parameterization technique. Their method generates the
upper and lower envelopes of a function defined on a 3D
surface by computing a biharmonic field with Dirichlet
boundary conditions. This generalized EMD on surfaces
could be directly applied to coordinate functions of 3D
geometry for surface filtering.

The primary reasons about the scarce use of EMD in 3D
surface processing are twofold. First, 3D surfaces are repre-
sented by 3 coordinate functions independent of each
other, yet meaningful geometry features must be charac-
terized by simultaneously utilizing multiple coordinates
in the computation of differential properties. However,
the naive integration of 3 independent decompositions
could not properly lead to surface features of different
scales, therefore losing the inherent advantage of EMD
completely. In the mean time, undesirable effects inherited
from 1D EMD near boundary will be enlarged if simply

combining separate decompositions of 3 coordinate func-
tions, i.e., boundary shrinkage will emerge when applying
EMD to open surfaces, and this becomes unacceptable in
3D surface processing. Second, the feature awareness of
3D surfaces (e.g., sharp edges and corners) is critical in
many tasks of 3D surface processing, such as surface deno-
ising and editing. However, the original EMD is only
designed to obtain IMFs at different scales from the given
data and does not have the feature-aware property. Hence,
it could not preserve features during processing.

In this paper, we make significant efforts to tackle the
aforementioned problems, with an ambitious goal of
adapting EMD to 3D surface processing. We articulate a
novel 3D surface modeling and processing framework
founded upon a new, improved, feature-centric EMD. We
first employ a measure of mean curvature as the input sig-
nal of EMD, which can be computed by the inner product of
Laplacian vector at each vertex and its corresponding nor-
mal. It can help get different scale features of the original
surface and prevent the boundary shrinkage when com-
puting EMD for open surfaces. Furthermore, we design a
new EMD formulation on 3D surfaces by devising a fea-
ture-preserving multiscale decomposition algorithm for
surface analysis and synthesis, which defines detail as
oscillation between local minima and maxima. This is
motivated by the edge-preserving multiscale image
decomposition based on extremal envelopes [29]. As a
result, within our novel framework, we could accommo-
date many modeling and processing operations, such as fil-
ter design, detail transfer, feature-preserving smoothing
and denoising. Fig. 2 illustrates the pipeline of our
framework.

Our major contributions in this paper are summarized
as follows:

1. We develop a novel 3D surface analysis and processing
framework where EMD takes on the center stage. We
make use of a measure of mean curvature as an input
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Fig. 2. The pipline of our framework based on the improved, feature-centric EMD for 3D surface modeling and processing. (A) Compute the signal about the
measure of mean curvature of the input model. (B) Decompose the signal by EMD or feature-preserving multiscale decomposition. (C) Process the IMFs and
the detail levels. (D) Reconstruct surfaces from the modified signal in the least-squares sense.

signal of EMD. This can help extract different scale fea-
tures of the original surface, and prevent the boundary
shrinkage when handling open surfaces.

2. We modify the original EMD formulation on 3D sur-
faces by designing a feature-preserving multiscale
decomposition algorithm for surface analysis and syn-
thesis, which overcomes the limitation of the original
EMD on 3D surfaces. The newly-devised EMD formula-
tion now becomes feature-aware and enables feature-
preserving operations.

3. Our framework could facilitate many modeling and
processing operations, such as filter design, detail trans-
fer, and feature-preserving smoothing and denoising,
which are both effectively and powerful, and collec-
tively demonstrate more potential of EMD in 3D surface
modeling and processing.

2. Related work

We shall briefly review related works in Empirical
Mode Decomposition (EMD), 3D surface processing based
on time-frequency analysis, and feature-preserving sur-
face smoothing.

2.1. Empirical mode decomposition

EMD was first introduced by Huang et al. [9] and is a
fully adaptive multiscale decomposition method. It gener-
ates IMFs by a sifting process, which needs to find local
extrema points (maxima and minima) and subsequent
interpolation of those points in each iteration of the pro-
cess by cubic splines to generate upper and lower enve-
lopes [9]. The time frequency distribution of the signal
from each IMF can be generated by Hilbert transform. This
method can overcome the limitation of Fourier analysis,
short-time Fourier analysis and wavelet analysis that
essentially depend on the methods for processing linear

and stationary signals, and has been applied to various
data analysis and processing fields [8,10,12,19,24,38].

This decomposition technique has also been extended
to high dimensional signals (e.g., 2D and 3D signals
[12,15,19,23,38]). As for signals on 3D surfaces, Qin et al.
[22] first transformed coordinate functions of 3D surfaces
to 2D planar signals with the help of spherical parameter-
ization, and then obtained the EMD representations by the
exiting 2D EMD methods. Unfortunately, it is utmost diffi-
cult to generalize such method to process models with
high genus and complicated structure due to the use of glo-
bal mesh parameterization. To overcome this limitation,
Wang et al. [34] directly generalized 1D EMD to 3D sur-
faces, which generates the upper and lower envelopes of
a function by computing a biharmonic field with Dirichlet
boundary conditions.

The classical 1D EMD does not have the feature-pre-
serving property, and its direct generalization to 2D or
3D surfaces will not have such property either. An edge-
preserving multiscale image decomposition was proposed
by Suber et al. [29], which is inspired by EMD and treats
details as oscillation between local minima and maxima.
Motivated by their method, we improve the original EMD
formulation on 3D surfaces by devising a new feature-pre-
serving multiscale decomposition algorithm for surface
analysis and synthesis. However, the feature-preserving
multiscale decomposition on surfaces is much more tech-
nically challenging than that of 2D images because sharp
edges and corners of 3D geometry will be blurred when
we attempt to use currently available methods to extract
details by subtracting the average of extremal envelopes
interpolated from local extrema.

2.2. 3D Surface processing based on time—frequency analysis

Classical time-frequency analysis tools for signal
processing, such as Fourier analysis, short-time Fourier
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analysis, and wavelet analysis, can transform a signal to a
sum of different frequency components, which are often-
times very helpful for signal processing and have been gen-
eralized to 3D surfaces.

Taubin [30] attempted to design and analyze approxi-
mations of low-pass filters using the similarity between
the eigenvectors of the graph Laplacian and the basis func-
tions used in the discrete Fourier transform. Instead of
using Fourier analysis as a theoretical tool to analyze
approximations of filters, Vallet and Levy computed the
Fourier transform of the signal on the mesh directly [32].
Spherical harmonic analysis, which is also called Fourier
analysis on the unit sphere, was employed to conduct sur-
face filtering, surface reconstruction, and texture transfer
[17,41]. The short-time Fourier transforms are also used
for signal processing of point cloud surfaces, where each
surface patch is resampled on a regular grid using a fast
scattered data approximation [20].

Compared to Fourier analysis, wavelet analysis has local-
ity in both time/space and frequency domain, and is a more
powerful tool for signal processing. Various kinds of wavelets
have been proposed for 3D surface processing, such as subdi-
vision wavelets [6,14], spherical wavelets [25] and diffusion
wavelets [3,7]. Most of the above-mentioned wavelets
require certain preprocessing operations, for example, subdi-
vision wavelets require that the surfaces must be the multi-
scale meshes generated by simplification and subdivision,
spherical wavelets need that the surface must be parameter-
ized over a sphere. In contrast, diffusion wavelets do not need
subdivision, leading to more flexibility in practical use.

As a novel fully adaptive and data-driven time-fre-
quency analysis method, EMD has been also used for 3D
surface processing. The existing methods directly apply
EMD to coordinate functions to conduct 3D surface filter-
ing [22,34], which cannot take advantage of the attractive
EMD properties and can cause boundary shrinkage when
processing open surfaces due to the end effects inheriting
from 1D EMD along surface boundaries. In this paper, we
develop a novel framework based on EMD using a measure
of mean curvature as an input signal of EMD, and our moti-
vation is to broaden the application scopes and utilities of
EMD. Specifically, our goal is to obtain features of different
scales by decomposing the original surface and overcome
the shortcoming of boundary shrinkage when handling
open surfaces.

2.3. Feature-preserving surface smoothing

Although surface smoothing can be naively achieved by
a low-pass filter, much more work must be introduced in
order to preserve features such as sharp edges and corners
in 3D surfaces during smoothing and denoising processes.

Laplacian smoothing is the most commonly-used sur-
face smoothing techniques. Unfortunately, it is not fea-
ture-preserving. To over this limitation, Nealen et al. [18]
and Liu et al. [13] proposed similar Laplacian smoothing
schemes by setting the vertex Laplacians to zero and recon-
structing the surface with geometric feature constraints.

Some feature-preserving surface smoothing techniques
are based on anisotropic diffusion which generalizes fea-
ture-preserving anisotropic diffusion in image processing

to anisotropic geometric diffusion on surfaces [1,2,36]. Such
approaches try to preserve the geometric features by intro-
ducing anisotropic heat diffusion, which are mainly dic-
tated by the heat diffusion equation over surfaces. In
principle, the expensive computation of energy gradients
and Hessians or eigen-decomposition is unavoidable.

Some other feature-preserving surface smoothing tech-
niques [4,33,35,39,40] are based on bilateral filter from
image processing, which was first extended to surfaces
by Fleishman et al. [4]. The bilateral filter had also been
used for smoothing the Laplacian coordinates and face nor-
mals and preserving features [33,40]. However, it is diffi-
cult to determine the best parameters of spatial locations
and signals, additional processes must be introduced for
better feature-preserving [35].

Unlike the aforementioned methods, Wang et al. [34]
proposed an approach based on extremal envelopes to con-
duct multiscale surface decomposition with the property
of feature-preserving motivated by an edge-preserving
multiscale image decomposition [29], which cannot pre-
serve feature well and is only limited to watertight sur-
faces. In our current work, we use our feature-preserving
multiscale decomposition algorithm instead of the conven-
tional EMD to serve as a solid theoretical foundation for
our novel surface processing framework with which we
not only can preserve sharp features well but can handle
open surfaces as well.

3. Measure of mean curvature and surface signals

Laplace operator is a second-order differential operator
and can be extended to 3D surfaces, called Laplace-Beltrami
operator (manifold Laplacian). It can measure the local
deviation from the smooth thin-plate surface and record
information about the local shape. The discrete Laplace
operator has been used in various tasks of geometric pro-
cessing, for example, mesh smoothing, mesh editing, and
shape interpolation [26].

Let M = (V,K) be a triangular mesh which represents a
discretization of a 2-manifold in 3D, where V denotes a set
of vertices {v; = (x;,¥;,zi) € R, i=1,... ,n}, and K contains
all the adjacency information of the mesh including edges
and faces. The discrete Laplace operator on a meshed surface
can be computed by weighted average over the
neighborhood

Avi) = D wii(V; = Vi), (1)
jeNGD

where N(i) is the vertex set of the 1-ring neighbors of ver-
tex v;.
If we employ the cotangent weights,

wj; = cot oy — cot B, (2)

the discrete Laplace vector is parallel to the vertex normal
and becomes [16]

A(vi) =4 Q| ki, 3)
where o;; and f; are the angles opposite to the mesh edge

(i,j), | Qi | and k; are the Voronoi cell area and the mean
curvature at v;, respectively.
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We define a signal using the inner product of discretized
Laplacian vector and the corresponding vertex normal as
follows:

s(vi) = (A(vi) - my), (4)

which can be regarded as a measure of mean curvature and
is the sampling-density-dependent version of mean curva-
ture, i.e., mean curvature times the one-ring area.

Obviously, Eq. (4) is both rotation-invariant and transla-
tion-invariant and can be used as a signal serving as the
input of EMD while retaining all the attractive EMD prop-
erties. Furthermore, it can be effectively used to recon-
struct meshes. Such procedure is common in the existing
Laplacian surface processing methods [26,27].

Laplacian vector computed with the cotangent weights
(Eq. (2)) has a strong tangential component for each
boundary vertex of open surfaces since the outer edges
are missing and there is no mechanism to compensate
the surface tension. Some solutions for this problem are
proposed in [31,36]. We use the method of Wang et al.
[36] to combat this problem. The process is as follows,

1. Project each boundary vertex v; and its one-ring verti-
ces vj, j € N(i) onto its normal plane to generate v;
and vj, j € N(i).

2. Compute the Laplacian vector in the normal plane as
A(Vi) = D jenn Wi (vj’ - v;), where wy is computed using
Eq. (2)

The Laplacian vector computed this way is parallel to
the normal of the boundary vertex and can remove tangen-
tial component of the original cotangent Laplacian vector.

4. Signal decomposition based on measure of mean
curvature

We use two methods to decompose the signal about the
measure of mean curvature, one is the classical EMD algo-
rithm to extract IMFs encoded different scale features of
surfaces, and another is our improved feature-preserving
multiscale decomposition method of EMD to generate a
feature-aware decomposition.

4.1. Empirical mode decomposition on 3D surfaces

EMD on 3D surfaces proposed by Wang et al. [34]
extends 1D EMD to 3D surfaces. It can adaptively extract
a finite number of intrinsic mode functions (IMFs) from
the given function defined on a 3D surface by a sifting pro-
cessing, which represents the intrinsic oscillatory modes
imbedded in the data (Fig. 1). Specifically, it can decom-
pose a function g defined on a 3D surface, i.e., g: M — R as

N
g= ka +1In, )
k=1

where f,, k =1,...,N are IMFs and ry is the corresponding
residue (Figs. 1 and 3). They can be computed using Algo-
rithm 1.

Algorithm 1. EMD Algorithm on 3D Surfaces

Input: a function g defined on a surface M
Initialization: set the initial residue and the initial
index of IMFs, rg =g, k=1;
1: repeat
2: hy=r4,j=1;
3: for eachjdo
4: find all local extrema of h;_; (Section 4.1.1);
5: interpolate all local maxima (resp. minima) of
h;_; to obtain the upper envelopes and the lower
envelopes Uh;_; and Dh;_; (Section 4.1.2);
6: compute the local mean m;_; of h;_; using
m;_; = (Uh;_; +Dh;_;)/2;
7: hj=h; ; —m;_;

8: if h; satisfies the stopping criteria of the
sifting process (Section 4.1.3) then

9: obtain the k-th IMF f; = h; and the k-th
residue ry =ry_1 — fi;

10: k=k+1;

11: break;

12: else

13: j=j+1;

14: end if

15: end for

16: until the residue ry is a constant or a monotonic
function, or the number of IMFs is more than a
given threshold

Output: all IMFs f,, k=1,... N and the residue ry.

4.1.1. Extremum definition
As for the function g defined on a 3D surface, if g(v;)
satisfies

8(vi) > g(vj), JjeN(org(vi) <g(vy), keN(),

then v; is defined as a local maximum or a local minimum.

4.1.2. Interpolation method for computing envelopes

Biharmonic interpolation is used to generate the upper
and lower envelopes in EMD on surfaces [34], which is a
natural extension of the cubic spline to 3D surface and
minimizes the thin-plate energy of a function @ defined
on a 3D surface M,

/ (Au®)dV. (6)
M
The corresponding Euler-Lagrange equation of the
energy formulation (Eq. (6)) is
73D =0, (7)
where Ay is the Laplace-Beltrami operator on the surface M.
Specifically, given interpolated anchors and corre-
sponding values {(v;,g(v;)),i € C}, the interpolation func-

tion @ = (P(vy), P(V2),...,P(v,)) can be computed by
solving the following n x n linear system

L*- =0, st, &(v)=gV), ieC, (8)
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Lion model IMF1

IMF3 Res3

Fig. 3. EMD using the measure of mean curvature of the lion model as an input signal. In order to visualize IMFs, meshes corresponding to IMFs (shown in
the second row) are reconstructed using its IMFs and the 3rd residue (shown in the first row) of the input signal, respectively.

where C is the interpolated anchor set for the scalar func-
tion g, and L is the n x n discretized Laplacian matrix with
the following elements

Dkeniy Wik, J =1
Lj =4 —wy, J€N() 9)
0, otherwise

where wj = 5 (cotoy — cot ) [16], o and p; are the
angles opposite to the mesh edge (i, ), and A; is the Voronoi
area of vertex v;.

The direct elimination method in [5] can be used to
solve this biharmonic field with Dirichlet boundary condi-
tions (Eq. (8)), which eliminates from the linear system
matrix the variables corresponding to the anchor vertices
with known constraints. The unknown interpolation func-
tion values can be computed by solving the rearranged lin-
ear system using Cholesky factorization.

4.1.3. Stopping criteria of the sifting process

The essence of the stopping criteria of the sifting pro-
cess is to judge whether the function after being sifted
once is an IMF. It is controlled by limiting the size of the
standard deviation SD. The sifting process is stopped if SD
falls below a threshold. It is computed from the two con-
secutive sifting results h; and h;_; at all vertices as follows:

" | hy(vi) — i (vi)
SD = — s - 10
21 |y (v)? 1o

The typical threshold value of the stopping criteria is set
between 0.1 and 0.3 just like that in the original 1D EMD.
Generally speaking, a smaller value would lead to more
IMFs, while a larger value would lead to less IMFs. The
default value in this paper is 0.1.

4.2. Feature-preserving multiscale decomposition on 3D
surfaces

We modify the original EMD formulation on 3D surfaces
by devising a feature-preserving multiscale decomposition
algorithm for surface analysis and synthesis to overcome
the limitation of the EMD on 3D surfaces. The key idea is
to explicitly formulate details as oscillation between local
minima and maxima which is similar to the edge-preserv-
ing image multiscale decomposition method in spirit [29],
but we must do extra work to preserve sharp edges and
corners since they will be blurred when extracting details
by subtracting the average of extremal envelopes interpo-
lated from local extrema (Fig. 4(c)).

Our feature-preserving multiscale decomposition
method uses only one feature-preserving smoothing step
to get the detail level instead of one iterative sifting pro-
cessing step to accelerate the decomposition. The smooth-
ing step treats the mean of the upper and lower envelope
interpolating the maxima and minima independently as
the smoothing function. The detail level can be extracted
by substracting the smoothing function. In order to extract
multiscale details, we enlarge the extrema-location kernel
with the increasing of the smoothing number k, i.e, k-ring
neighborhood of each vertex. In addition, we add the sharp
features as constraints extracted before multiscale decom-
position to avoid their blurring.

Let g be a function on a meshed 3D surface
M, g: M — R, our feature-preserving multiscale decompo-
sition algorithm can compute

N
g=> Di+ry, (11)
k=1

where D, k =1,...,N are details of different levels and ry
is the N-th level residue (Fig. 5). They can be computed
using Algorithm 2.
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(d)

Fig. 4. Illustration of the function of feature constraints in our feature-preserving multiscale decomposition. (a) The octahedral model as a ground truth. (b)
The model artificially corrupted by Gaussian noise of 5% of mean edge length. (c and d) are the 3rd residue using our feature-preserving multiscale
decomposition without feature constraints and with feature constraints, respectively. The first row contains the mesh models and the second row shows

the visualizations of their signals about the measure of mean curvature.

Algorithm 2. Feature-preserving multiscale decomposi-
tion algorithm on 3D surfaces

Input: a function g defined on a meshed surface M and
the feature vertex set G

Initialization: set the initial residue and the initial
decomposition level, rp =g, k=1;

1: repeat

2: find all local maxima and minima of r;_;
(Section 4.2.1);

3: interpolate all local maxima (resp. minima) to
obtain the upper envelopes Ur;_; and the lower
envelopes Dr;_; with feature vertex constraint G,
and then get the local mean m;_; using
my_; = (Ur,_; +Dry_;)/2 (Section 4.2.2);

4: extract the k-th detail level D, using
D, =r;_; — m,_; and the k-th residue using
I =My _q;

5. k=k+1;

6: until the number of detail levels is more than a
given threshold

Output: all detail levels D,, k=1,...,N and the
residue ry.

4.2.1. Feature extraction and extremum definition

4.2.1.1. Feature extraction. Feature extraction has been a
well-studied research area in many scientific fields. In this
paper, we do not discuss how to extract the features but
only use the existing method [37] to detect sharp features
(Fig. 6), which combines normal tensor voting with neigh-
bor supporting and is robust to noises.

4.2.1.2. Extremum definition. Different from the extremum
definition in EMD on 3D surfaces, we enlarge the
extrema-location kernel with the increasing decomposi-

tion level and set a parameter to incorporate more vertices
as extrema in order to preserve features. Specifically, in the
kth decomposition, if g(v;) satisfies the following
condition:

| Ng (vi) [> t [ Ni(i) |,

where N;(vi) = {j| g(vi) > g(V)), j € Ni(i)}, | -| denotes
the element number of a set, t € [0,1] is a parameter, and
Ni (i) denotes the k-ring neighbors of v;, then v; is defined
as a local maximum. The local minimum can be deter-
mined in a similar fashion. If t is much smaller, more
extrema are involved. The default value of ¢ is 0.8 in this
paper, and we will discuss it in more details in Section 6.

It should be pointed out that some feature vertices
extracted beforehand may be included into the extremum
set. We must remove them from the extremum set to avoid
their blurring when extracting details by subtracting the
average of extremal envelopes interpolated from local
extrema.

4.2.2. Interpolation method for computing envelopes

In EMD on 3D surfaces [34], biharmonic interpolation is
used to generated the upper and lower envelopes, which is
very similar to the approaches using the uniform discreti-
zation of the Laplace operator and soft (instead of hard)
constraints [27].

We use the similar idea to compute the interpolation
function @ for the interpolated anchors and corresponding
values {(vi,g(vi)), i € C}, but edge-aware weights are used
to discretize the Laplace operator, which are widely used
during feature-preserving image and surface processing
[4,11,29]. Meanwhile, the feature vertex index set
G = {51,S2,...,Sm} is regarded as soft constraints. Specifi-
cally, the interpolation function & = (®(vy),®(Va),
...,®(vy)) can be generated by minimizing the following
energy function:
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Input signal D2

0.015

D3 Res3

Fig. 5. Feature-preserving multiscale decomposition for the Fandisk model into three levels. The input signal is the measure of mean curvature of the
Fandisk model artificially corrupted by Gaussian noise of 5% of mean edge length.

Fig. 6. The feature vertices detected by the method of [37] which are treated as the feature constraints in this paper for the synthetic models corrupted by

Gaussian noise of 5% of mean edge length.

L@ + 32" |@(vi) — g(vi), (12)

ieG
with the extremum constraints
D(vi) =g(vi), i€C,

where / is the weighting factor for feature vertex positions
and its default value is 0.1 in this paper, and L is the dis-
cretized Laplacian matrix with elements computed in Eq.
(9) and wj; can be computed for the non-feature vertices
using

wy = e 1B)-8v)P/2108 i e N(i), (13)

and for the feature vertices using
~Igvi-gv)l?/2te? i
Wij:{e i , JEN(ING (14)

0, otherwise ’

where o; is the local standard deviation of the original
function g in one ring of the vertex v;, and 7 is a parameter
for the user which can control the level of feature enforce-
ment. A smaller parameter means a higher level of feature
enforcement, and the default value is 0.6 in this paper, we
will discuss it in more details in Section 6.

The energy function (Eq. (12)) can be written as the fol-
lowing form

i

where g is the original function vector in the feature ver-
tex set G, and F is a m x m matrix with elements

2

)

F.— 1, j=sieG
Y710, otherwise’

This optimization is a linear least-squares optimization
problem, which results in the following (n + m) x n linear
system

{%]q;; [%} st., d(v) =gv;), ieC, (15)

and can be solved by the direct elimination method [5] just
like solving the linear system Eq. (8).

5. Surface reconstruction using measure of mean
curvature

Once the original surface signal governed by the mea-
sure of mean curvature is decomposed into several IMFs
or detail levels, we can modify them to generate a new sig-
nal s’ about the measure of mean curvature according to
the specific needs of surface modeling and processing.
We will discuss how to modify them according to the spe-
cific applications in Section 6 in more details.

In our framework, a new mesh with vertex positions V'
corresponding to a new signal s’ about the measure of
mean curvature can be constructed by a mesh reconstruc-
tion method in the least squares sense with the original
vertex positions V as constraints. This idea has been widely
used in Laplacian surface processing [26,27]. It is com-
puted by minimizing the following quadratic energy

LV — §N|* + 23|V — il (16)

i=1
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This energy can be changed into

L], [sN
v

and the corresponding 2n x n rectangular linear system
AV =bis

e 123

where L is the discretized Laplacian matrix with elements
computed using Eq. (9) and wjy is computed using Eq. (2), N
is the vertex normal matrix, u is the weighting factor for
vertex positions and its default value is 0.1 in this paper.

The linear system Eq. (17) can be solved using its nor-
mal equation (ATA)V' = A”b, which can be efficiently han-
dled by Cholesky factorization.

2

5.1. Processing open surfaces

During the creation of envelopes in 1D EMD by the
interpolation approach, it is difficult to interpolate the data
near the two ends because the extrema outside the original
signal are unknown. If the two ends are not handled prop-
erly, they will give rise to illusive oscillations which will
propagate inwards and progressively corrupt the subse-
quent low frequency IMFs, and this phenomenon is called
the end effect [9,10]. These end effects still arise in EMD
on open surfaces even though existing EMD methods on
3D surfaces did not explicitly address this deficiency with
a proper strategy. For example, the boundary of the resi-
dues corresponding to the low frequency IMFs will shrink
dramatically when applying the existing algorithm to the
coordinates functions of surfaces with boundary (Fig. 7(b)).

Although we could use the measure of mean curvature
as the input signal of EMD which would curb such end
effect greatly (compared with the method of applying the
EMD to the coordinate functions), the shrinkage of bound-
ary is still existing (Fig. 7(c and e)). So we design an alter-
native method to get rid of this problem. One way is to give
more weights on boundary vertices than non-boundary
vertices. Specifically, we modify the above-mentioned lin-
ear system Eq. (17) during reconstruction as follows:

LV’ s'N
uVy | = | uVy |, (18)
VV’B v B

where Vy and V; are the original non-boundary vertices
and boundary vertices respectively, Vy and Vj are the
new non-boundary vertices and boundary vertices respec-
tively, and v is the weighting factor for boundary vertices.
If v is set to be much larger than before, the boundary
becomes much closer to the original boundary. The default
value of v is 1.0 in this paper. Using this modified scheme,
we are able to prevent the boundary shrinkage of the res-
idues (Fig. 7(d)).

6. Experimental results and applications

We have implemented the above framework and tested
them on many models including synthetic and scanned

meshes. Fig. 3 gives the result about decomposing the
measure of mean curvature of the lion model into 3 IMFs
using EMD. The meshes corresponding to IMFs are recon-
structed by its IMF and the 3rd residue and demonstrate
the different scale features of the lion models, i.e., the first
IMF represents the finest spatial scale, the second and third
IMFs offer much coarser spatial scales. Figs. 4 and 5 give
the results about decomposing the signals about the mea-
sure of mean curvature of some noisy models with sharp
features into three detail levels using our feature-preserv-
ing multiscale decomposition method, which treats the
noises as details, and the residuals of signals on sharp fea-
tures can be preserved very well.

In our framework, the different scale features of the 3D
surfaces can be extracted by EMD on the measure of mean
curvature, thus such framework is highly promising in 3D
surface modeling and processing, and many modeling and
processing operations can be accommodated, such as filter
design, detail transfer, 3D watermark and so on. Further-
more, the features can be preserved by our feature-
preserving multiscale decomposition method, we also can
conduct some feature-preserving processing applications.
In the subsequent sections, we will focus on the applica-
tions about filer design, detail transfer, and feature-
preserving smoothing and denoising.

6.1. Filter design

Actually, 3D surface filtering can be implemented by
enhancing or smoothing IMFs of the measure of mean cur-
vature (i.e., scaling corresponding IMFs), and leaving the
residue unchanged:

k

$' =Y ul)-fi+ i, (19)

i=1

where f; represents the extracted IMFs from the input sig-
nal about the measure of mean curvature s, ry is the k-th
residue, s’ represents the filtering result of s, and u(i) are
used to control the filtering intensities of different scales.
In most cases, the number of IMFs is selected as 3 (k =3
is the default value in this paper), and u(i) is selected as
linear functions (Fig. 9) which can be used to conduct var-
ious 3D surface filtering operations (e.g., low-pass filtering,
high-enhancement filtering, band-stop filtering, and band-
enhancement filter, etc.) (see Fig. 8).

In addition, all IMFs of the signal about the measure of
mean curvature defined on each vertex also carry the spa-
tial information. Thus, we can also interactively process
IMFs according to its positional information. Specifically,
the user can process IMFs at different parts by different
ways, for example, we can use high-enhancement filter
to enhance the left foot of Armadillo and use low-pass filter
to smooth the right foot of Armadillo (Fig. 10).

Although the surface filtering method using coordinate
functions as an input of EMD [34] is related to ours, their
method cannot differentiate the features of different scales
well since the first IMF almost includes all the detail
features and the second IMF and third IMF have few differ-
ence (Fig. 8(c and d)). This can also be further demon-
strated by the band-enhancement filtering results in
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Fig. 7. Result comparison for processing open surfaces. (a) Original model. (b) The method of Wang et al. (c and d) are our methods without and with
boundary processing. (e) The error curves between the original boundary and the new boundary with different methods, blue curve, green curve, and red
curve corresponds to the results of (b, ¢, and d), respectively. Meshes of each method from top to bottom correspond to the 1st residue, the 2nd residue and
the 3rd residue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Various 3D surface filtering comparison for hygeia model between our EMD method (shown in the first row) and the EMD method of Wang et al.
(shown in the second row). (a) The original model, (b-f) are the filtering results by using (1,0,0), (0,1,0), (0,0,1), (1,2.5,1) and (1,1,2.5) as the linear filter

functions for the corresponding IMFs, respectively.

Fig. 8(e and f). The main reason lies in that 3D surfaces are
represented by 3 coordinate functions independent of each
other, but the geometry features can only be formulated by
collectively making use of all 3 functions. The simple com-
bination of 3 separate decompositions cannot naturally

lead to the meaningful computation of any differential fea-
tures of different scales of the surface. In contrast, the
decomposition of our measure of mean curvature can
describe the multiscale feature of the original surface per-
fectly. As for processing open surfaces (Fig. 7), we can see
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Fig. 9. Linear filter functions.

that the shrinkage of the decomposition on coordinate
functions are unacceptable when decomposing the surface
after two scales (Fig. 7(b)). The reason lies in that the end
effects in EMD are enlarged by decomposing three coordi-
nate functions at the same time. Although the end effect is
still existing in our measure of mean curvature for our
method (Fig. 7(c)), we can prevent it by adding more con-
straints at the boundary when reconstructing the surface
using the modified IMFs (Fig. 7(d)). Furthermore, their
method is pose-dependent as the coordinate functions will
have different extrema after changing their poses. Our
measure of mean curvature is both rotation and translation
invariant, therefore the filtering results using our method
are pose-independent.

6.2. Detail transfer

Geometry details are important features of 3D objects.
The transfer of details from one shape to another affords
a rapid mechanism to create new meaningful models
[17,21,28]. In principle, the details are high frequency com-
ponents of objects, which can be extracted according to
several leading IMFs in EMD on the signal about the mea-

sure of mean curvature of the model. Therefore, we can
conduct detail transfer in our framework effectively.

Before introducing our specific method about detail
transfer, let us assume that the source model M; and the
target model M, have the same connectivity and vertices
are corresponded to each other beforehand in order that
relevant details like facial features of two heads can be
transferred into the corresponding positions. If this condi-
tion breaks down, we need to select some features as cor-
responding anchors and parameterize two models onto a
common domain, and a remeshing operation can be con-
ducted on both of them in order to generate meshes with
the same connectivity [21].

Our detail transfer method first extracts the detail d of
the source model M;, which can be computed by decom-
posing its signal about the measure of mean curvature s;
by EMD,

d=>f, (20)

M=

i=1

where f;, i =1,... k are the leading IMFs from the mea-
sure of mean curvature s;, and k is the decomposition level
which can be selected by a user and represents the range of
detail that the user wishes to transfer (The default value is
set to be 3 in our paper). Then the signal about the measure
of mean curvature s, of the target model can be modified
by adding the detail d of the source model

sy =s, +d. (21)

Finally, the detail transfer model can be reconstructed
by the new signal about the measure of mean curvature
s, according to the reconstruction system of the target sur-
face M,.

Fig. 11 shows the results about transferring the detail of
Hygeia to Manniquin and Cat-head, we can see that the
two new models not only have the detail of Hygeia but also
preserve the global shape of the original models.

6.3. Feature-preserving smoothing and denoising

For the task of feature-preserving smoothing and deno-
ising, we have used our feature-preserving multiscale
method to decompose the signal about the measure of
mean curvature and treated the surface reconstructed

Fig. 10. Local filtering on Armadillo model. The left foot is processed by high-enhancement filter while the right foot is smoothed by low-pass filter.
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Fig. 11. Detail transfer results (c) from Hygeia (a) to Manniquin (top) and Cat-head (bottom) in (b).

using the residue as the smoothing result. Sharp features
such as sharp edge and corners of synthetic models are
extracted by the existing method [37] during the pre-pro-
cessing stage. In addition, we need to update the normals
before updating the vertex positions in order to better
reconstruct the smoothing surface by using

/
n;

1 > s(vim;. (22)

ZjeN(i) JjeN()

We shall demonstrate the results about feature-pre-
serving surface smoothing on synthetic meshes with sharp
edges and corners, which are also perturbed by some
Gaussian noise (Figs. 4, 12 and 13). We also show some
results about feature-preserving surface smoothing on sur-
faces scanned from real world physical prototypes which
exhibit both noises and holes (Fig. 14). We can see that
our method can remove noises of the models and preserve
the features such as the sharp edges and corners.

As documented before our method is an extension of
the edge-preserving multiscale image decomposition
based on extremal envelopes, the feature-preserving
smoothing on surfaces is more complicated than that of
2D images as the sharp edges and corners will be
smoothed when extracting details by subtracting the aver-
age of extremal envelopes interpolated from local extrema

@

(Fig. 4). By explicitly tagging the sharp feature vertices as
constraints extracted prior to multiscale decomposition,
we cannot only remove the noise of the models but also
preserve the sharp features.

We compare our method with the global Laplacian
smoothing method which also makes use of the explicit
features as constraints [13,18]. In Fig. 12, we can see that
those methods cannot preserve the sharp features when
only vertex constraints are enforced. More constraints such
as face barycenter constraints, and coplanar constraints
must be added in order to better preserve features in those
methods. In addition, it is extremely hard to control if we
add other types of constraints. Therefore we choose not
to investigate whether our method can outperform their
methods when more constraints are added into the surface
reconstruction processing. In addition, our method can
generate good results without the explicit feature con-
straints if models have no sharp edges and corners while
their methods always need these feature constraints
(Fig. 14).

We compare our method with the bilateral filtering
method [4]. As explicitly documented in the introduction
of [29], the bilateral filtering technique is effective in
smoothing variation with small amplitude, it necessarily
blurs sharp edges that have smaller magnitudes of gradi-
ents more than the oscillations to be smoothed. Therefore

@

Fig. 12. Comparison with global Laplacian smoothing with feature constraints. (a) The original cubic model as a ground truth. (b) The cubic model
artificially corrupted by 5% Gaussian noise of mean edge length. (c) Global Laplacian smoothing with feature constraints with 10 as weight. (d) The mesh
corresponding to the 3th residue using by our feature-preserving multiscale decomposition.
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Fig. 13. Comparison with bilateral filtering. (a) The Fandisk model as a ground truth. (b) The model artificially corrupted by 5% Gaussian noise of mean edge
length. (c) Perform a smoothing operation 3 times by bilateral filtering with the parameter . = 0.4p, and g, = 0.025p, p is the mean edge length of the
mesh. (d) Perform a smoothing operation 3 times by bilateral filtering with much larger parameter . = 0.4p , and g; = 0.05p. (e) The mesh reconstructed

using 3rd residue of our method.

Fig. 14. Smooth the models (left) with real world noise. The results (right) are generated by reconstructing the 3rd residue of our feature-preserving

multiscale decomposition method.

it is difficult to choose the best intervals of spatial locations
for signals. In contrast, our smoothing algorithm smoothes
large oscillations and strictly preserves sharp edges, with-
out the need of careful selection of parameter values
(Fig. 13).

It may be noted that, Wang et al. [34] also proposed an
approach based on extremal envelopes to conduct multi-
scale surface decomposition with the feature-preserving
property, which made an attempt to extend the edge-pre-
serving multiscale image decomposition method [29] to
3D surfaces. Nevertheless, by examining the experiment
on Fandisk model in Fig. 12 of [34] and making a compar-
ison with Fig. 13(e), it is apparent that our method outper-
forms their method. In addition, their method cannot
process open surfaces while our method can support this
functionality with much better results.

6.4. Time performance and parameters

We implement our method in matlab 2012 on a laptop
with Inter Core (TM) i5-3230 CPU @ 2.60 GHz, 2.60 GHz,

and with 8.0 GB RAM. The main time-consuming part of
our method is the decomposition of the signal about the
measure of mean curvature. EMD requires an iterate sifting
process to extract each IMF and two linear systems are
solved in each iteration. Our feature-preserving multiscale
decomposition uses only one feature-preserving smooth-
ing step to extract each detail level instead of the iterate
sifting process in order to accelerate the decomposition.
Another time consuming part is the surface reconstruction
step which needs to solve a sparse linear system. In all our
experiments the signals about the measure of mean curva-
ture are decomposed into three levels which is usually
enough in many geometric modeling and processing tasks.
Hence, our method is fast and efficient. All the timing sta-
tistics of tested models are documented in Table 1.

Two parameters in our method need to be further dis-
cussed. One is the extremum detection parameter t in fea-
ture-preserving multiscale decomposition, which should
be set to be much smaller in order to extract more extremum
for the objects with rich features (0.6 is used to obtain
results shown in Fig. 14). The other is the feature-preserving
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Table 1

353

Run time and parameter statistics. EMD: time of using EMD. FPMD: time of using the feature-preserving multiscale decomposition. SR: surface reconstruction
time using the new signal about the measure of mean curvature. Total: total time.

Figures #Vertices Parameters Timing (s)

t A T u v EMD FPMD SR Total
3 30,563 0.1 4.26 0.29 5.08
4 4098 0.8 0.1 0.3 0.1 0.34 0.04 0.51
5&13 6475 0.8 0.1 0.3 0.1 0.56 0.08 0.93
7 4486 0.1 1.0 0.5 0.05 0.67
8 13,460 0.1 1.53 0.13 1.95
10 172,974 0.1 26.88 221 32.06
12 6177 0.8 0.1 0.3 0.1 0.55 0.07 0.98
14(a) 501,500 0.6 0.6 0.1 36.82 10.41 53.35
14(b) 60,754 0.6 0.6 0.1 1.0 3.93 0.55 5.65

parameter T for the extremum envelope computation,
which should be set much smaller in order to preserve the
sharp features (0.3 is used to generate results shown in
Figs. 4, 12 and 13). All other parameters can be set to be
default values while guaranteeing satisfactory results, such
as the constraint parameters y and v for non-boundary and
boundary vertex positions for surface reconstruction
respectively, and the feature constraint parameter 4 of the
extrema envelope computation for the feature-preserving
multiscale decomposition. All parameters used in our
experiments are also documented in Table 1.

6.5. Limitation

Our feature-preserving multiscale decomposition
method must detect sharp features of 3D surfaces in a pre-
processing stage. Unfortunately, if the models are cor-
rupted by large amount of noise it is much more
challenging to detect sharp features. If sharp features can-
not be identified properly, processed models will be
blurred when we try to smooth the models. To ameliorate,
we believe that it is more promising to implicitly define
features in our feature-preserving multiscale decomposi-
tion algorithm, for example, one promising approach is to
incorporate more powerful sparse modeling tools into
our surface processing framework. This will be our future
work next.

7. Conclusion

With a goal of realizing the full potential of EMD for 3D
surface modeling and processing in mind, we have devel-
oped a framework based on the improved, feature-centric
EMD formulation in this paper. Our system first employs
a measure of mean curvature as an input of EMD, and then
conduct its EMD operation to acquire several IMFs (that
encode features at different scales), which can enable 3D
surface modeling and processing to be both powerful and
efficient by only editing the IMFs. More importantly, the
theoretical originality of this paper results from a novel
feature-sensitive multiscale decomposition algorithm
enabled by our feature-preserving EMD formulation. The
core idea is to explicitly formulate details as oscillation
between local minima and maxima.

Within our novel framework, potential applications are
widespread, and we can accommodate many modeling
and processing operations, such as filter design, detail trans-
fer, and feature-preserving smoothing and denoising.
Experiments and comparisons on popularly-used geometric
models have effectively demonstrated that our surface pro-
cessing method based on EMD and our feature-preserving
multiscale decomposition can guarantee excellent results
and has shown greater promise to broaden their application
scopes towards more powerful digital geometry modeling
and processing.
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