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Abstract Multi-scale local feature detection enables downstream registration and recognition tasks in med-

ical image analysis. This paper articulates a novel robust method for multi-scale local feature extraction on

volumetric data. The central idea is the elegant unification of local/global eigen-structures within the powerful

framework of anisotropic heat diffusion. First, the local vector field is constructed by way of Hessian matrix and

its eigenvectors/eigenvalues. Second, anisotropic heat kernels are computed using the vector field’s global graph

Laplacian. Robust local features are manifested as extrema across multiple time scales, serving as volumetric

heat kernel signature. To tackle the computational challenge for massive volumetric data, we propose a multi-

resolution strategy for hierarchical feature extraction based on our feature-preserving down-sampling approach.

As a result, heat kernels and local feature identification can be approximated at a coarser level first, and then

are pinpointed in a localized region at a finer resolution. Another novelty of this work lies at the initial heat

design directly using local eigenvalue for anisotropic heat diffusion across the volumetric domain. We conduct

experiments on various medical datasets, and draw comparisons with 3D SIFT method. The diffusion property

of our local features, which can be interpreted as random walks in statistics, makes our method robust to noise,

and gives rise to intrinsic multi-scale characteristics.
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1 Introduction

Multi-scale local feature extraction of images is one of the most fundamental analytical tools, with

widespread applications in feature-driven registration, region segmentation, object recognition, and illus-

trative visualization. In recent years, many powerful algorithms such as SIFT [1] and its variant [2] have

been devised to support a suite of applications. Naively generalizing such 2D algorithms to handle 3D

volumetric data have gained limited success, yet still encountering tremendous computational challenges
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when processing massive datasets in a desktop environment. In addition, 3D extensions of SIFT-like

algorithms typically consider voxel intensity as scalar input while ignoring local/global inner structure.

This is not enough due to the unpredictable external factors during data acquisition, such as severity

of diseased organs, illumination, 3D camera viewpoint, equipment, etc. It will result in a large number

of less salient or false alarm candidates; especially, ambiguities are unavoidable for the ones with low

contrast or being poorly localized near an edge. Therefore, anisotropic and more material-aware method

that can respect the local geometry structure and its orientations, must be considered during feature

extraction.

Inspired by the scale-space theory and the use of heat diffusion in image analysis [3], one aim of this

paper is to reveal the intrinsic structure of volumetric data to facilitate the local feature extraction. How-

ever, existing diffusion-based image analysis methods also tend to directly employ intensity information

without discovering its local anatomical structure. When designing edge weights of the global graph

Laplacian for anisotropic heat diffusion, how to incorporate the knowledge from the local anatomical

structure into the feature-finding procedure remains elusive. Besides, existing diffusion methods such

as heat kernel signature (HKS) [4] are more effective for locating large-scale features. Local features,

on the other hand, are intrinsically linked to local details within certain smaller regions. To assist the

heat kernel function to capture details more accurately in short-time scales, extra efforts are needed to

design an initial meaningful heat field across the entire volume. Directly using voxel intensity is not a

good solution towards robustness to both scale change and noisy input. At the time-performance front,

heat-diffusion-based methods need to calculate the heat kernel using the eigen-spectrum of the Laplacian

matrix or directly computing matrix exponentiation [5]. For massive volumetric data, such computation

is formidable.

To overcome the aforementioned difficulties, our key idea is to employ the local eigen-structure of

data as a high-dimensional vector input that governs the anisotropic heat diffusion, which automatically

respects the anatomical structure during local feature extraction. As illustrated in Figure 1, the key

steps of our algorithm include: local volumetric structure quantification via Hessian matrix computation

and its eigen-decomposition, anisotropic heat diffusion in a feature-preserving and down-sampled volume,

feature extraction at a coarse scale, and heat field design and local fine feature identification at a localized

sub-volume. The novelty of our system lies at the powerful integration of local/global eigen-structures

and anisotropic heat kernel computation towards multi-scale local feature extraction. Specifically, the

contributions of this paper are as follows:

• We design an eigen-space local structure vectorization representation (ELSVR) for scalar volumetric

image by way of Hessian matrix analysis and its eigenvector/eigenvalue concatenation, whose distance

metric intrinsically measures the local material continuity of volumetric data.

• We formulate novel anisotropic heat diffusion by integrating ELSVR distance metric into the global

graph Laplacian over volumetric image, which naturally respects the local and global structure of volu-

metric data.

•We advocate volumetric heat kernel to guide multi-scale local feature extraction by employing the first

eigenvalue of local Hessian as the initial heat field, of which robust local features, also called volumetric

heat kernel signatures, are manifested as extrema across multiple time scales.

• We devise a hierarchical scheme to accelerate the volumetric heat kernel computation by introduc-

ing feature-sensitive multi-resolution analysis, of which large-scale features emerge in the down-sampled

volume first and exact heat kernels are only computed locally to speedup the feature finding process.

2 Related work

We briefly review previous work in three categories: heat kernel, local image feature extraction, and

diffusion-based image processing.
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1 Anisotropic heat diffusion at different time scales 
with the initial heat source located in the yellow circle

2 Anisotropic heat kernel signatures at different 
time scales

t=1 t=2 t=4
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Figure 1 Algorithmic architecture of our new method. (a) Volumetric data; (b) eigenspace local structure vectorization

representation; (c) feature-sensitive down-sampling; (d) multi-scale anisotropic heat kernels at coarse resolution; (e) multi-

scale feature points at coarse resolution; (f) multi-scale diffusion of heat field at fine resolution; (g) extracted multi-scale

feature points.

2.1 Heat kernel

In recent years, heat kernels and diffusion-driven utilities have gained momentum in multi-scale feature

detection [4], scalar field smoothing [6] and shape retrieval [7] over manifold. In [8], a scale-invariant heat

kernel signature is proposed using Fourier transformation to eliminate the scaling factor, and applied to

shape retrieval. Vaxman et al. [5] proposed a multi-resolution approach to improve the computational

efficiency of HKS for large meshes. The most significant advantage of such process is that, both diffusion

and its kernel function afford robust multi-scale processing on manifold with intrinsic feature of scale-

invariance and isometric deformation.

2.2 Local image feature extraction

Local image features are meaningful patterns, which are distinguishable from nearby regions. They

typically have rich information content or are evidenced by large differential quantities. A comprehensive

review of local image feature detectors can be found in [9]. The core idea of existing 2D feature extraction

methods, such as Harris detector, Determinant of Hessian detector, Laplacian of Gaussian detector, and

Difference of Gaussian detector, is to pinpoint local extrema by analyzing images’ differential quantities.

Naturally, these methods are inherently sensitive to scale changes, noisy inputs, and image deformation.

To make improvements, Ref. [10] state that combining Harris or Hessian methods with scale selection is

a good strategy, and it is recently generalized to a 3D setting [11]. At present, SIFT [1] remains to be

one of the most successful algorithms to identify stable features in 2D images, and its generalization to

high dimension is also available [12].

2.3 Diffusion-based image processing

During the past two decades, the diffusion theory was used in multi-scale image analysis by means of

Gaussian kernel. The Gaussian kernel can mimic the diffusion kernel only in small regions on curved

surfaces, but are not suitable for large regions. In essence, it is equivalent to convoluting the original

image using classical isotropic heat diffusion. Later, bilateral filtering is proposed in [13] to smooth

images while preserving edges. Since then, anisotropic diffusion based filtering has been ubiquitous in 2D

image-processing applications, such as denoising, stylization, and optical-flow estimation. It is also worth

noting that the idea of heat kernel signature [4] has been extended to isometry-invariant homogeneous

solid geometry [14] of 3-manifold without considering material densities. This prompts us to investigate

anisotropic heat kernels directly defined over volumetric medical data.
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3 Eigenspace local structure vectorization representation

Hessian matrix H is a powerful means to encode local shape information in volumetric data, and it intu-

itively depicts how the normal (i.e., gradient) of an iso-surface changes. As a real-valued and symmetric

matrix, H has real-valued eigenvalues (|λ1| � |λ2| � |λ3|) and corresponding eigenvectors (e1, e2, e3). In

some sense, the directions corresponding to maximal eigenvalue represent the most direct transition from

one material to other neighboring materials, while the direction corresponding to minimal eigenvalue

shows the material flow of certain material, and the maximal and minimum eigenvalues represent the

principal curvatures. Thus, from the standpoint of anisotropic heat diffusion, considering both eigenval-

ues and eigenvectors simultaneously overcome the limitation of isotropic Laplacian filter, our goal is to

extract local structure and quantify material property change among neighboring voxels.

In [15], Alfiansyah et al. documented the relationship between different combinations of the eigenvalues

of Hessian matrix and their corresponding 3D local structures (sheet, blob, and noise) as follows:

Rsheet = (|λ3|+ |λ2|)/|λ1|,
Rblob = (2|λ1| − |λ2| − |λ3|)/2|λ1|, (1)

Rnoise =
√
λ2
3 + λ2

2 + λ2
1.

According to [15], the eigenvalues for voxels on a tube surface will be: |λ1| = 0 and |λ2| = |λ3| >> 0;

thus we can homoplastically define a ratio to depict the tube-like local structure as

Rtube = (|λ3|+ |λ2| − |λ1|)/|λ1|. (2)

The values of the four ratios become 0 when their corresponding local structures emerge. We now set

a stage to construct a high-dimensional eigen-space by concatenating eigenvectors, eigenvalues, and their

ratios computed from local Hessian matrices. Our eigen-space local structure vectorization representation

is formulated as ELSVR= (eT1 , e
T
2 , e

T
3 , λ1, λ2, λ3, Rsheet, Rblob, Rtube, Rnoise).

Next, ELSVR is employed to govern the anisotropic heat diffusion via initial heat field design and

global graph Laplacian assembly.

4 Anisotropic heat diffusion and global graph Laplacian

4.1 Heat kernel

Heat diffusion over high-dimensional ELSVR manifold is governed by a heat equation. Let (M ;μ) be a

compact Riemannian manifold with metric μ. The heat diffusion over (M ;μ) is controlled by

∂u(x, t)

∂t
= −�μu(x, t), (3)

where �μ denotes the Laplace-Beltrami operator on (M ;μ), and ht(x, y): R
+×M ×M −→ R+ is called

the heat kernel if, for all f ∈ L2(M ;μ), t > 0, x ∈ M ,

Htf(x) =

∫

M

ht(x, y)f(y)dμ(y). (4)

The heat kernel ht is the integral kernel of the operator Ht. Assume the Laplace-Beltrami operator �μ

of M has the eigen-decomposition {λk, φk}∞k=1. Then it can be formulated as a series of eigenfunctions:

ht(x, y) =

∞∑
k=1

e−tλkφk(x)φk(y). (5)

The physical meaning of heat kernel is the heat diffused from x to y at any time t, with a unit heat

source placed at x. Heat kernels have many attractive properties. They are symmetric, isometric-

invariant, multi-scale, informative, and stable. They also satisfy the semigroup identity: ht+s(x, y) =∫
M

ht(x, z)hs(y, z)dz.
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4.2 ELSVR-weighted global graph Laplacian

Over ELSVR manifold, the behavior of anisotropic heat diffusion is determined by its graph Laplacian

that encodes neighborhood information. Consider volumetric data as an undirected graph G = (V,E),

where V represents all voxels and E satisfies E ∈ V × V , and an edge Eij ∈ E exists if and only if the

corresponding voxel pair satisfies the one-ring connectivity requirement (we denote the neighboring voxel

set by Ni). In order to favor heat diffusion across similar material and suppress its conduction among

different materials, the key idea is to design a global graph Laplacian which is ELSVR-weighted. We first

measure to what extent two neighboring voxels Vi and Vj belong to the same material:

Si,j =

{
0, if Ri

noise = 0 or Rj
noise = 0,

e−dr , otherwise,
(6)

where dr =
∑

Rk∈R(R
i
k −Rj

k)
2, R = {Rsheet, Rblob, Rtube}. The edge weight W (i, j) can be defined as

Wi,j =

⎧
⎨
⎩

e
−(1 − Si,j)di,jd

α
i,j

σ2 , Vj ∈ Ni,

0, otherwise,
(7)

where di,j is the Euclidean distance between Vi and Vj with sampling intervals dx, dy, dz, d
α
i,j = (arccos(ei1·

ej1) + arccos(ei2 · ej2) + arccos(ei3 · ej3)), and σ is a control parameter and proportional to the variance of

structure distance of two voxels. For highly noisy images, we must find a way to suppress noise influence.

One feasible method is to smooth the image with 3D Gaussian kernel first. Thus the graph Laplacian is

defined as

Li,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Wi,j , Vj ∈ Ni,

− ∑
j∈Ni

Wi,j , i = j,

0, otherwise.

(8)

Based on (4), our volumetric anisotropic heat kernel hv
t (Vi, Vj) (VAHK) can be approximated by using

a finite number of eigenfunctions of this matrix. The ELSVR-weighted graph Laplacian enables new

heat kernels that take local structure information into consideration and thus is more material-aware and

structure-sensitive (see Figure 1 for its anisotropic behavior).

4.3 Initial heat field design

One naive way to initialize the heat field is to directly use voxel intensity. Yet, this simple approach

ignores rich local structure encoded by ELSVR. As shown in Figure 2, eigenvalue components in ELSVR

are potential candidates for feature-sensitive initial heat field design, because: 1) the first eigenvector

represents the direction of the maximum curvature; 2) the eigenvalues are rotation-invariant; 3) the first

and third eigenvalues approximately exhibit a negative symmetry in boundary areas, while the second

eigenvalue often lacks good contrast. We choose the first eigenvalue to initiate the heat field.

We now conduct heat kernel convolution with multiple time scales in a local region and determine

the feature location by searching local extrema. The initial heat field f0(λ
i
1) after one-step convolution

should be updated as

ft(λ
i
1) =

∑
Vj∈Ωi

hv
t (Vj , Vi)f0(λ

j
1), (9)

where Ωi is the local convolution region of Vi.

Rewriting (8) in matrix form, we can get Ft(λ1) = AtF0(λ1). By using the semigroup identity of

heat kernel, the heat field after n-step convolution can be obtained as Fnt(λ1) = At0F(n−1)t(λ1) = · · · =
An−1

t0 Ft(λ1) = An
t0F0(λ1). By fixing time t = t0 for the one-step diffusion, as n increases, the diffusion can

be approximated by a sparse matrix and its multiplication; thus a GPU acceleration employing CUDA

is readily available towards performance improvement.
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Figure 2 A set of images corresponding to different value ranges of λ1.

Figure 3 Comparison of down-sampling methods. (a) Original volume, 1283 voxels; (b) average down-sampling method,

323 voxels; (c) our method, 323 voxels; (d) difference of (b) and (c).

5 Multi-resolution strategy and numerical techniques

The biggest challenge for volumetric data is its extremely high computational complexity. In practice,

the multi-resolution approach is much more desirable for performance speedup. The main idea is to

organize volumetric data in a hierarchical fashion, so that we process a much smaller dataset at a coarser

grid, and then refine our feature extraction procedure in a localized sub-volume at a finer grid. Since

any down-sampling strategy might result in important information loss, we propose a feature-preserving

down-sampling method:

˜I(Vi) =
1∑

Vj ∈ Ωi
e|λ

j
1|

∑
Vj ∈ Ωi

e|λ
j
1|I(Vj), (10)

where ˜I(Vi) is the down-sampled voxel intensity at a coarser grid, Ωi is the sampling region corresponding

to ˜I(Vi). The comparison between our down-sampling method and another method is illustrated in

Figure 3, where the down-sampled volumes using the average method, our method and the subtraction

result are illustrated respectively from left to right. It can be noted that, our method is sensitive to local

curvature information in original volumetric data, and this down-sampling method takes advantage of

already-computed ELSVR and reuses its curvature information encoded in ELSVR.

After down-sampling, the discrete anisotropic heat kernel is approximated by the first 300 smallest

eigenvalues and the corresponding eigenfunctions. As noted in [4], HKS is very robust to large scale

features. In the same spirit, the down-sampled volume retains large scale features because of its feature-

preserving property. Consequently, it is ideal to compute the volumetric anisotropic heat kernel signature

(VAHKS) using

hv
t (Vx, Vx) =

n∑
k=1

e−tλkφk(Vx)φk(Vx). (11)
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The important parameter is time scale t, which is intrinsically relevant to the size of local heat diffusion

region for each voxel. The smallest t in down-sampled volume should be set to Dsize ×min(dx, dy, dz),

and Dsize is the down-sampling interval. After getting multi-scale VAHKS, we can approximate locations

of feature points by choosing voxels that always occur as local extremum of VAHKS under multiple time

scales.

We then refine feature locations in the original volumetric data. In practical implementation, we employ

Matlab function eigs to conduct Laplacian matrix eigen-decomposition, according to our experience,

which will be very time-consuming when the matrix size is larger than 40000 × 40000. Besides, the

largest down-sampling interval in our experiments is 16-voxel long. Therefore, corresponding to each

feature location at a coarser grid, it suffices to choose the size of sub-volume as Ωrefine = 32 × 32 × 32

during VAHKS recomputation. In each sub-volume, we conduct heat field diffusion using the same

method as described in Subsection 4.3. Similar local extremum searching methods can be adopted to

extract local multi-scale feature points.

However, a remaining problem about the relationship between local diffusion region and the diffusion

time must be addressed. Heat kernel h(V, ·) can be viewed as the transition density function of the

Brownian motion, whose influence range is determined by a geodesic ball B(V,O
√
cnt lg t) [16]. Therefore,

around a voxel Vi in the original volume, it is justifiable and acceptable to define a heat region as

Ωi
t = {Vj |Vj ∈ Ωrefine and hv

t (Vj , Vi) > C(t)}, (12)

where C(t) is a threshold, which is set to min(dx, dy, dz)/(1 + t). Moreover, as features located near the

boundary of the sub-volume are not stable, we should discard them. In our experiments, the number of

extracted feature points for a volumetric image is around 100–1500, which is large enough to support the

subsequent feature-based applications.

6 Experimental results and evaluation

We conduct experiments on various data sets and make comparison with 3D SIFT method. Our method

is implemented using C++ on a computer with Intel Core (TM) i7 CPU (1.6 GHz, 4 cores) and 4G

RAM. To improve the time performance, we employ CUDA to conduct parallel ELSVR computation

of original volumetric image. Table 1 documents the statistics and time performance of key parts in

our experiments. The 4th and 5th columns show the timing (in seconds) for coarse level feature locating

(CLFL, also including down-sampling, VAHKS computation), and per sub-volume feature refining (PSFR,

including local VAHKS computation, convolution and multi-scale feature extraction). It indicates that

the time expense is comparable with that of 3D SIFT method.

Figure 4(a) illustrates experimental results and their comparison with 3D SIFT over volumetric MRI

images of human head. Figure 4(b) is a down-sampled version of Figure 4(a) with 32× 32× 9 resolution,

where VAHKS shown is computed at t = 6. Figure 4(c) shows the refined VAHKS when t = 0.6 and

t = 1.2 in a sub-volume of original volumetric images, which corresponds to a coarse feature location. It

shows that the VAHKS are more informative, since features extracted using VAHKS are mostly located

at the boundaries of different materials or regions with high curvature changes, while features from 3D

SIFT (see Figure 4(e)) lack such a property and occur irregularly. To examine the robustness of our

method, we add 5% and 10% (of average intensity) random noise to original images. The results are

shown in Figures 4(f)–(i). Comparing Figures 4(f), (h) with Figure 4(d) and comparing Figures 4(g), (i)

with Figure 4(e), we see that most of VAHKS feature points are stable and only a small portion of them

change when adding noisy perturbation (see points circled by red rings in Figures 4(f) and (h)). The

results from 3D SIFT show obvious changes (note that the features completely disappear in Figure 4(g)

and feature points in Figure 4(i) change drastically).

Figure 5 and Figure 6 show experimental results on volumetric CT images of human pelvis

(Figure 5(a)) and human abdomen (Figure 6(a)). In Figure 5, Figure 5(b) and Figure 5(c) respec-

tively show the feature points extracted from original volumetric images by using our method and 3D
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Table 1 Time performance of experiments (s)

Data Resolution ELSVR (CUDA) Down-sampling CLFL PSFR

Figure 4(a) 512 × 512× 147 36.4 32 × 32× 9 139 487

Figure 5(a) 512 × 512× 174 45.8 32× 32× 10 164 506

Figure 6(a) 512 × 512× 256 79.1 32× 32× 16 436 484

(a) (b) (c) (d) (e)

(f) (g) (h) (i)5% noise 5% noise 10% noise 10% noise

Figure 4 Experimental results and their comparison with 3D SIFT over MRI head volume. (a) Input images; (b) VAHKS

computed when t = 6 in the down-sampled images; (c) refined VAHKS when t = 0.6 and t = 1.2 in original images; (d)

features extracted by VAHKS from original images; (e) features extracted by SIFT from original images; (f) features

extracted by VAHKS from 5% noise perturbed images; (g) features extracted by SIFT from 5% noise perturbed images; (h)

features extracted by VAHKS from 10% noise perturbed images; (i) features extracted by SIFT from 10% noise perturbed

images.

(a)

(b) (c) (d)

(e) (f) (g)5% noise

5% noise

10% noise 10% noise

Figure 5 Experimental results and their comparison with 3D SIFT over CT pelvis volume. (a) Input images; (b) features

extracted by VAHKS from original images; (c) features extracted by SIFT from original images; (d) features extracted by

VAHKS from 5% noise perturbed images; (e) features extracted by SIFT from 5% noise perturbed images; (f) features

extracted by VAHKS from 10% noise perturbed images; (g) features extracted by SIFT from 10% noise perturbed images.

SIFT method, Figures 5(d), (e) and Figures 5(f), (g) are the corresponding results when adding 5%

and 10% random noise to original pelvis images. In Figure 6, Figures 6(b), (c) and Figures 6(d), (e)

respectively demonstrate the experimental results on original abdomen images and the perturbed ones

with 10% random noise. For both our method and 3D SIFT method, the points circled by yellow rings

represent stable feature points which are not affected by noise. Such results further verify the robustness

of our method. Thus, our method is not sensitive to the modalities of volumetric images, and it is multi-
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(a) (b) (c) (d) (e)10% noise 10% noise

Figure 6 Experimental results and their comparison with 3D SIFT over CT abdomen volume. (a) Input images; (b)

features extracted by VAHKS from original images; (c) features extracted by SIFT from original images; (d) features

extracted by VAHKS from 10% noise perturbed images; (e) features extracted by SIFT from 10% noise perturbed images.

scale, informative and robust since it directly inherits such excellent properties from heat kernel and

random walk.

Our volumetric heat kernel based feature extraction can facilitate many down-stream applications,

such as feature-based sparse registration, feature-constrained dense registration, feature-preserving de-

noising/smoothing, feature-centric segmentation, and feature-driven illustrative visualization. Especially

for registration, Ovsjanikov et al. [17] have employed heat kernel to map isometric shapes by defining

injective heat kernel map (HKM) for surface points over the 2D manifold. Although the original HKM

still suffers from some limitations in injection property and discriminating power, inspired by HKM, we

can further define a simple and robust descriptor by means of the proposed VAHKS at multiple different

time scales, which can be used to match the sparse local features between two homologous volumetric

medical images. Furthermore, we can take the sparsely matched feature points as anchors and extend

HKM from one source to multiple sources, since multiple sources can offer direction and distance infor-

mation during feature matching, and thus have stronger discriminating power. This mechanism offers

good promise to further support the dense registration of volumetric images. Our immediate efforts will

be geared towards broadening the application scope of our method.

7 Conclusion and discussion

We have detailed a novel robust method for multi-scale local feature extraction in volumetric data. Our

newly-proposed solutions include many technical elements, including ELSVR, ELSVR-weighted graph

Laplacian, anisotropic volumetric heat kernel computation in a hierarchical fashion, and initial heat field

design using the first eigenvalue of local Hessian matrices. The center piece of our method is the unified

treatment of local/global eigen-structures and their participation in the anisotropic heat diffusion process.

As a result, we are capable of locating multi-scale local features, supporting multi-resolution analysis in

volumetric images. Our experiments demonstrate good properties of this volumetric anisotropic heat

kernel, especially its robustness to noisy input.

Based on the theoretical analysis and experimental results shown above, we also discuss some limita-

tions and open problems of our method. In general, the volumetric dataset may have thousands of millions

of voxels, which can’t afford to conduct global spectral analysis, since the corresponding Laplacian matrix

will be a square matrix with many billions of entries. While our multi-resolution method aims to tackle

this challenge, the full spectrum eigen-decomposition of the low-resolution volume (or sub-volume) still

remains very time-consuming. We will have to adopt a brute-force truncation method to restrain the heat

diffusion in a sub-volume, where the uncertainty will gradually increase when the heat diffusion start to

approach boundaries of the sub-volume. As a result, the feature points close to the boundary tend to be

less trustworthy, which should be abandoned, so we may miss some feature points. In practice, however,

we typically need hundreds of sparse feature points, and our method can extract enough feature points

to enable the down-stream feature-based applications. Meanwhile, the feature-sensitive down-sampling

method might still cause information loss, which remains a challenge to quantitatively analyzing the

relationship between the image feature preservation and the multi-resolution representation of images.
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